1 /* 2 * blk-mq scheduling framework 3 * 4 * Copyright (C) 2016 Jens Axboe 5 */ 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/blk-mq.h> 9 10 #include <trace/events/block.h> 11 12 #include "blk.h" 13 #include "blk-mq.h" 14 #include "blk-mq-sched.h" 15 #include "blk-mq-tag.h" 16 #include "blk-wbt.h" 17 18 void blk_mq_sched_free_hctx_data(struct request_queue *q, 19 void (*exit)(struct blk_mq_hw_ctx *)) 20 { 21 struct blk_mq_hw_ctx *hctx; 22 int i; 23 24 queue_for_each_hw_ctx(q, hctx, i) { 25 if (exit && hctx->sched_data) 26 exit(hctx); 27 kfree(hctx->sched_data); 28 hctx->sched_data = NULL; 29 } 30 } 31 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 32 33 static void __blk_mq_sched_assign_ioc(struct request_queue *q, 34 struct request *rq, 35 struct bio *bio, 36 struct io_context *ioc) 37 { 38 struct io_cq *icq; 39 40 spin_lock_irq(q->queue_lock); 41 icq = ioc_lookup_icq(ioc, q); 42 spin_unlock_irq(q->queue_lock); 43 44 if (!icq) { 45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 46 if (!icq) 47 return; 48 } 49 50 rq->elv.icq = icq; 51 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) { 52 rq->rq_flags |= RQF_ELVPRIV; 53 get_io_context(icq->ioc); 54 return; 55 } 56 57 rq->elv.icq = NULL; 58 } 59 60 static void blk_mq_sched_assign_ioc(struct request_queue *q, 61 struct request *rq, struct bio *bio) 62 { 63 struct io_context *ioc; 64 65 ioc = rq_ioc(bio); 66 if (ioc) 67 __blk_mq_sched_assign_ioc(q, rq, bio, ioc); 68 } 69 70 struct request *blk_mq_sched_get_request(struct request_queue *q, 71 struct bio *bio, 72 unsigned int op, 73 struct blk_mq_alloc_data *data) 74 { 75 struct elevator_queue *e = q->elevator; 76 struct request *rq; 77 78 blk_queue_enter_live(q); 79 data->q = q; 80 if (likely(!data->ctx)) 81 data->ctx = blk_mq_get_ctx(q); 82 if (likely(!data->hctx)) 83 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 84 85 /* 86 * For a reserved tag, allocate a normal request since we might 87 * have driver dependencies on the value of the internal tag. 88 */ 89 if (e && !(data->flags & BLK_MQ_REQ_RESERVED)) { 90 data->flags |= BLK_MQ_REQ_INTERNAL; 91 92 /* 93 * Flush requests are special and go directly to the 94 * dispatch list. 95 */ 96 if (!op_is_flush(op) && e->type->ops.mq.get_request) { 97 rq = e->type->ops.mq.get_request(q, op, data); 98 if (rq) 99 rq->rq_flags |= RQF_QUEUED; 100 } else 101 rq = __blk_mq_alloc_request(data, op); 102 } else { 103 rq = __blk_mq_alloc_request(data, op); 104 } 105 106 if (rq) { 107 if (!op_is_flush(op)) { 108 rq->elv.icq = NULL; 109 if (e && e->type->icq_cache) 110 blk_mq_sched_assign_ioc(q, rq, bio); 111 } 112 data->hctx->queued++; 113 return rq; 114 } 115 116 blk_queue_exit(q); 117 return NULL; 118 } 119 120 void blk_mq_sched_put_request(struct request *rq) 121 { 122 struct request_queue *q = rq->q; 123 struct elevator_queue *e = q->elevator; 124 125 if (rq->rq_flags & RQF_ELVPRIV) { 126 blk_mq_sched_put_rq_priv(rq->q, rq); 127 if (rq->elv.icq) { 128 put_io_context(rq->elv.icq->ioc); 129 rq->elv.icq = NULL; 130 } 131 } 132 133 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request) 134 e->type->ops.mq.put_request(rq); 135 else 136 blk_mq_finish_request(rq); 137 } 138 139 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 140 { 141 struct request_queue *q = hctx->queue; 142 struct elevator_queue *e = q->elevator; 143 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request; 144 bool did_work = false; 145 LIST_HEAD(rq_list); 146 147 if (unlikely(blk_mq_hctx_stopped(hctx))) 148 return; 149 150 hctx->run++; 151 152 /* 153 * If we have previous entries on our dispatch list, grab them first for 154 * more fair dispatch. 155 */ 156 if (!list_empty_careful(&hctx->dispatch)) { 157 spin_lock(&hctx->lock); 158 if (!list_empty(&hctx->dispatch)) 159 list_splice_init(&hctx->dispatch, &rq_list); 160 spin_unlock(&hctx->lock); 161 } 162 163 /* 164 * Only ask the scheduler for requests, if we didn't have residual 165 * requests from the dispatch list. This is to avoid the case where 166 * we only ever dispatch a fraction of the requests available because 167 * of low device queue depth. Once we pull requests out of the IO 168 * scheduler, we can no longer merge or sort them. So it's best to 169 * leave them there for as long as we can. Mark the hw queue as 170 * needing a restart in that case. 171 */ 172 if (!list_empty(&rq_list)) { 173 blk_mq_sched_mark_restart_hctx(hctx); 174 did_work = blk_mq_dispatch_rq_list(q, &rq_list); 175 } else if (!has_sched_dispatch) { 176 blk_mq_flush_busy_ctxs(hctx, &rq_list); 177 blk_mq_dispatch_rq_list(q, &rq_list); 178 } 179 180 /* 181 * We want to dispatch from the scheduler if we had no work left 182 * on the dispatch list, OR if we did have work but weren't able 183 * to make progress. 184 */ 185 if (!did_work && has_sched_dispatch) { 186 do { 187 struct request *rq; 188 189 rq = e->type->ops.mq.dispatch_request(hctx); 190 if (!rq) 191 break; 192 list_add(&rq->queuelist, &rq_list); 193 } while (blk_mq_dispatch_rq_list(q, &rq_list)); 194 } 195 } 196 197 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 198 struct request **merged_request) 199 { 200 struct request *rq; 201 202 switch (elv_merge(q, &rq, bio)) { 203 case ELEVATOR_BACK_MERGE: 204 if (!blk_mq_sched_allow_merge(q, rq, bio)) 205 return false; 206 if (!bio_attempt_back_merge(q, rq, bio)) 207 return false; 208 *merged_request = attempt_back_merge(q, rq); 209 if (!*merged_request) 210 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 211 return true; 212 case ELEVATOR_FRONT_MERGE: 213 if (!blk_mq_sched_allow_merge(q, rq, bio)) 214 return false; 215 if (!bio_attempt_front_merge(q, rq, bio)) 216 return false; 217 *merged_request = attempt_front_merge(q, rq); 218 if (!*merged_request) 219 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 220 return true; 221 default: 222 return false; 223 } 224 } 225 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 226 227 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) 228 { 229 struct elevator_queue *e = q->elevator; 230 231 if (e->type->ops.mq.bio_merge) { 232 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 233 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 234 235 blk_mq_put_ctx(ctx); 236 return e->type->ops.mq.bio_merge(hctx, bio); 237 } 238 239 return false; 240 } 241 242 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 243 { 244 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 245 } 246 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 247 248 void blk_mq_sched_request_inserted(struct request *rq) 249 { 250 trace_block_rq_insert(rq->q, rq); 251 } 252 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 253 254 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 255 struct request *rq) 256 { 257 if (rq->tag == -1) { 258 rq->rq_flags |= RQF_SORTED; 259 return false; 260 } 261 262 /* 263 * If we already have a real request tag, send directly to 264 * the dispatch list. 265 */ 266 spin_lock(&hctx->lock); 267 list_add(&rq->queuelist, &hctx->dispatch); 268 spin_unlock(&hctx->lock); 269 return true; 270 } 271 272 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx) 273 { 274 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) { 275 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 276 if (blk_mq_hctx_has_pending(hctx)) { 277 blk_mq_run_hw_queue(hctx, true); 278 return true; 279 } 280 } 281 return false; 282 } 283 284 /** 285 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list 286 * @pos: loop cursor. 287 * @skip: the list element that will not be examined. Iteration starts at 288 * @skip->next. 289 * @head: head of the list to examine. This list must have at least one 290 * element, namely @skip. 291 * @member: name of the list_head structure within typeof(*pos). 292 */ 293 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \ 294 for ((pos) = (skip); \ 295 (pos = (pos)->member.next != (head) ? list_entry_rcu( \ 296 (pos)->member.next, typeof(*pos), member) : \ 297 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \ 298 (pos) != (skip); ) 299 300 /* 301 * Called after a driver tag has been freed to check whether a hctx needs to 302 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware 303 * queues in a round-robin fashion if the tag set of @hctx is shared with other 304 * hardware queues. 305 */ 306 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx) 307 { 308 struct blk_mq_tags *const tags = hctx->tags; 309 struct blk_mq_tag_set *const set = hctx->queue->tag_set; 310 struct request_queue *const queue = hctx->queue, *q; 311 struct blk_mq_hw_ctx *hctx2; 312 unsigned int i, j; 313 314 if (set->flags & BLK_MQ_F_TAG_SHARED) { 315 rcu_read_lock(); 316 list_for_each_entry_rcu_rr(q, queue, &set->tag_list, 317 tag_set_list) { 318 queue_for_each_hw_ctx(q, hctx2, i) 319 if (hctx2->tags == tags && 320 blk_mq_sched_restart_hctx(hctx2)) 321 goto done; 322 } 323 j = hctx->queue_num + 1; 324 for (i = 0; i < queue->nr_hw_queues; i++, j++) { 325 if (j == queue->nr_hw_queues) 326 j = 0; 327 hctx2 = queue->queue_hw_ctx[j]; 328 if (hctx2->tags == tags && 329 blk_mq_sched_restart_hctx(hctx2)) 330 break; 331 } 332 done: 333 rcu_read_unlock(); 334 } else { 335 blk_mq_sched_restart_hctx(hctx); 336 } 337 } 338 339 /* 340 * Add flush/fua to the queue. If we fail getting a driver tag, then 341 * punt to the requeue list. Requeue will re-invoke us from a context 342 * that's safe to block from. 343 */ 344 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx, 345 struct request *rq, bool can_block) 346 { 347 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) { 348 blk_insert_flush(rq); 349 blk_mq_run_hw_queue(hctx, true); 350 } else 351 blk_mq_add_to_requeue_list(rq, false, true); 352 } 353 354 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 355 bool run_queue, bool async, bool can_block) 356 { 357 struct request_queue *q = rq->q; 358 struct elevator_queue *e = q->elevator; 359 struct blk_mq_ctx *ctx = rq->mq_ctx; 360 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 361 362 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) { 363 blk_mq_sched_insert_flush(hctx, rq, can_block); 364 return; 365 } 366 367 if (e && blk_mq_sched_bypass_insert(hctx, rq)) 368 goto run; 369 370 if (e && e->type->ops.mq.insert_requests) { 371 LIST_HEAD(list); 372 373 list_add(&rq->queuelist, &list); 374 e->type->ops.mq.insert_requests(hctx, &list, at_head); 375 } else { 376 spin_lock(&ctx->lock); 377 __blk_mq_insert_request(hctx, rq, at_head); 378 spin_unlock(&ctx->lock); 379 } 380 381 run: 382 if (run_queue) 383 blk_mq_run_hw_queue(hctx, async); 384 } 385 386 void blk_mq_sched_insert_requests(struct request_queue *q, 387 struct blk_mq_ctx *ctx, 388 struct list_head *list, bool run_queue_async) 389 { 390 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 391 struct elevator_queue *e = hctx->queue->elevator; 392 393 if (e) { 394 struct request *rq, *next; 395 396 /* 397 * We bypass requests that already have a driver tag assigned, 398 * which should only be flushes. Flushes are only ever inserted 399 * as single requests, so we shouldn't ever hit the 400 * WARN_ON_ONCE() below (but let's handle it just in case). 401 */ 402 list_for_each_entry_safe(rq, next, list, queuelist) { 403 if (WARN_ON_ONCE(rq->tag != -1)) { 404 list_del_init(&rq->queuelist); 405 blk_mq_sched_bypass_insert(hctx, rq); 406 } 407 } 408 } 409 410 if (e && e->type->ops.mq.insert_requests) 411 e->type->ops.mq.insert_requests(hctx, list, false); 412 else 413 blk_mq_insert_requests(hctx, ctx, list); 414 415 blk_mq_run_hw_queue(hctx, run_queue_async); 416 } 417 418 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 419 struct blk_mq_hw_ctx *hctx, 420 unsigned int hctx_idx) 421 { 422 if (hctx->sched_tags) { 423 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 424 blk_mq_free_rq_map(hctx->sched_tags); 425 hctx->sched_tags = NULL; 426 } 427 } 428 429 static int blk_mq_sched_alloc_tags(struct request_queue *q, 430 struct blk_mq_hw_ctx *hctx, 431 unsigned int hctx_idx) 432 { 433 struct blk_mq_tag_set *set = q->tag_set; 434 int ret; 435 436 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 437 set->reserved_tags); 438 if (!hctx->sched_tags) 439 return -ENOMEM; 440 441 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 442 if (ret) 443 blk_mq_sched_free_tags(set, hctx, hctx_idx); 444 445 return ret; 446 } 447 448 static void blk_mq_sched_tags_teardown(struct request_queue *q) 449 { 450 struct blk_mq_tag_set *set = q->tag_set; 451 struct blk_mq_hw_ctx *hctx; 452 int i; 453 454 queue_for_each_hw_ctx(q, hctx, i) 455 blk_mq_sched_free_tags(set, hctx, i); 456 } 457 458 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 459 unsigned int hctx_idx) 460 { 461 struct elevator_queue *e = q->elevator; 462 int ret; 463 464 if (!e) 465 return 0; 466 467 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx); 468 if (ret) 469 return ret; 470 471 if (e->type->ops.mq.init_hctx) { 472 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx); 473 if (ret) { 474 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); 475 return ret; 476 } 477 } 478 479 return 0; 480 } 481 482 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 483 unsigned int hctx_idx) 484 { 485 struct elevator_queue *e = q->elevator; 486 487 if (!e) 488 return; 489 490 if (e->type->ops.mq.exit_hctx && hctx->sched_data) { 491 e->type->ops.mq.exit_hctx(hctx, hctx_idx); 492 hctx->sched_data = NULL; 493 } 494 495 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); 496 } 497 498 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 499 { 500 struct blk_mq_hw_ctx *hctx; 501 struct elevator_queue *eq; 502 unsigned int i; 503 int ret; 504 505 if (!e) { 506 q->elevator = NULL; 507 return 0; 508 } 509 510 /* 511 * Default to 256, since we don't split into sync/async like the 512 * old code did. Additionally, this is a per-hw queue depth. 513 */ 514 q->nr_requests = 2 * BLKDEV_MAX_RQ; 515 516 queue_for_each_hw_ctx(q, hctx, i) { 517 ret = blk_mq_sched_alloc_tags(q, hctx, i); 518 if (ret) 519 goto err; 520 } 521 522 ret = e->ops.mq.init_sched(q, e); 523 if (ret) 524 goto err; 525 526 if (e->ops.mq.init_hctx) { 527 queue_for_each_hw_ctx(q, hctx, i) { 528 ret = e->ops.mq.init_hctx(hctx, i); 529 if (ret) { 530 eq = q->elevator; 531 blk_mq_exit_sched(q, eq); 532 kobject_put(&eq->kobj); 533 return ret; 534 } 535 } 536 } 537 538 return 0; 539 540 err: 541 blk_mq_sched_tags_teardown(q); 542 q->elevator = NULL; 543 return ret; 544 } 545 546 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 547 { 548 struct blk_mq_hw_ctx *hctx; 549 unsigned int i; 550 551 if (e->type->ops.mq.exit_hctx) { 552 queue_for_each_hw_ctx(q, hctx, i) { 553 if (hctx->sched_data) { 554 e->type->ops.mq.exit_hctx(hctx, i); 555 hctx->sched_data = NULL; 556 } 557 } 558 } 559 if (e->type->ops.mq.exit_sched) 560 e->type->ops.mq.exit_sched(e); 561 blk_mq_sched_tags_teardown(q); 562 q->elevator = NULL; 563 } 564 565 int blk_mq_sched_init(struct request_queue *q) 566 { 567 int ret; 568 569 mutex_lock(&q->sysfs_lock); 570 ret = elevator_init(q, NULL); 571 mutex_unlock(&q->sysfs_lock); 572 573 return ret; 574 } 575