xref: /openbmc/linux/block/blk-mq-sched.c (revision 174cd4b1)
1 /*
2  * blk-mq scheduling framework
3  *
4  * Copyright (C) 2016 Jens Axboe
5  */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-sched.h"
15 #include "blk-mq-tag.h"
16 #include "blk-wbt.h"
17 
18 void blk_mq_sched_free_hctx_data(struct request_queue *q,
19 				 void (*exit)(struct blk_mq_hw_ctx *))
20 {
21 	struct blk_mq_hw_ctx *hctx;
22 	int i;
23 
24 	queue_for_each_hw_ctx(q, hctx, i) {
25 		if (exit && hctx->sched_data)
26 			exit(hctx);
27 		kfree(hctx->sched_data);
28 		hctx->sched_data = NULL;
29 	}
30 }
31 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
32 
33 int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
34 				int (*init)(struct blk_mq_hw_ctx *),
35 				void (*exit)(struct blk_mq_hw_ctx *))
36 {
37 	struct blk_mq_hw_ctx *hctx;
38 	int ret;
39 	int i;
40 
41 	queue_for_each_hw_ctx(q, hctx, i) {
42 		hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
43 		if (!hctx->sched_data) {
44 			ret = -ENOMEM;
45 			goto error;
46 		}
47 
48 		if (init) {
49 			ret = init(hctx);
50 			if (ret) {
51 				/*
52 				 * We don't want to give exit() a partially
53 				 * initialized sched_data. init() must clean up
54 				 * if it fails.
55 				 */
56 				kfree(hctx->sched_data);
57 				hctx->sched_data = NULL;
58 				goto error;
59 			}
60 		}
61 	}
62 
63 	return 0;
64 error:
65 	blk_mq_sched_free_hctx_data(q, exit);
66 	return ret;
67 }
68 EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);
69 
70 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
71 				      struct request *rq,
72 				      struct bio *bio,
73 				      struct io_context *ioc)
74 {
75 	struct io_cq *icq;
76 
77 	spin_lock_irq(q->queue_lock);
78 	icq = ioc_lookup_icq(ioc, q);
79 	spin_unlock_irq(q->queue_lock);
80 
81 	if (!icq) {
82 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
83 		if (!icq)
84 			return;
85 	}
86 
87 	rq->elv.icq = icq;
88 	if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
89 		rq->rq_flags |= RQF_ELVPRIV;
90 		get_io_context(icq->ioc);
91 		return;
92 	}
93 
94 	rq->elv.icq = NULL;
95 }
96 
97 static void blk_mq_sched_assign_ioc(struct request_queue *q,
98 				    struct request *rq, struct bio *bio)
99 {
100 	struct io_context *ioc;
101 
102 	ioc = rq_ioc(bio);
103 	if (ioc)
104 		__blk_mq_sched_assign_ioc(q, rq, bio, ioc);
105 }
106 
107 struct request *blk_mq_sched_get_request(struct request_queue *q,
108 					 struct bio *bio,
109 					 unsigned int op,
110 					 struct blk_mq_alloc_data *data)
111 {
112 	struct elevator_queue *e = q->elevator;
113 	struct blk_mq_hw_ctx *hctx;
114 	struct blk_mq_ctx *ctx;
115 	struct request *rq;
116 
117 	blk_queue_enter_live(q);
118 	ctx = blk_mq_get_ctx(q);
119 	hctx = blk_mq_map_queue(q, ctx->cpu);
120 
121 	blk_mq_set_alloc_data(data, q, data->flags, ctx, hctx);
122 
123 	if (e) {
124 		data->flags |= BLK_MQ_REQ_INTERNAL;
125 
126 		/*
127 		 * Flush requests are special and go directly to the
128 		 * dispatch list.
129 		 */
130 		if (!op_is_flush(op) && e->type->ops.mq.get_request) {
131 			rq = e->type->ops.mq.get_request(q, op, data);
132 			if (rq)
133 				rq->rq_flags |= RQF_QUEUED;
134 		} else
135 			rq = __blk_mq_alloc_request(data, op);
136 	} else {
137 		rq = __blk_mq_alloc_request(data, op);
138 		if (rq)
139 			data->hctx->tags->rqs[rq->tag] = rq;
140 	}
141 
142 	if (rq) {
143 		if (!op_is_flush(op)) {
144 			rq->elv.icq = NULL;
145 			if (e && e->type->icq_cache)
146 				blk_mq_sched_assign_ioc(q, rq, bio);
147 		}
148 		data->hctx->queued++;
149 		return rq;
150 	}
151 
152 	blk_queue_exit(q);
153 	return NULL;
154 }
155 
156 void blk_mq_sched_put_request(struct request *rq)
157 {
158 	struct request_queue *q = rq->q;
159 	struct elevator_queue *e = q->elevator;
160 
161 	if (rq->rq_flags & RQF_ELVPRIV) {
162 		blk_mq_sched_put_rq_priv(rq->q, rq);
163 		if (rq->elv.icq) {
164 			put_io_context(rq->elv.icq->ioc);
165 			rq->elv.icq = NULL;
166 		}
167 	}
168 
169 	if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
170 		e->type->ops.mq.put_request(rq);
171 	else
172 		blk_mq_finish_request(rq);
173 }
174 
175 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
176 {
177 	struct elevator_queue *e = hctx->queue->elevator;
178 	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
179 	bool did_work = false;
180 	LIST_HEAD(rq_list);
181 
182 	if (unlikely(blk_mq_hctx_stopped(hctx)))
183 		return;
184 
185 	hctx->run++;
186 
187 	/*
188 	 * If we have previous entries on our dispatch list, grab them first for
189 	 * more fair dispatch.
190 	 */
191 	if (!list_empty_careful(&hctx->dispatch)) {
192 		spin_lock(&hctx->lock);
193 		if (!list_empty(&hctx->dispatch))
194 			list_splice_init(&hctx->dispatch, &rq_list);
195 		spin_unlock(&hctx->lock);
196 	}
197 
198 	/*
199 	 * Only ask the scheduler for requests, if we didn't have residual
200 	 * requests from the dispatch list. This is to avoid the case where
201 	 * we only ever dispatch a fraction of the requests available because
202 	 * of low device queue depth. Once we pull requests out of the IO
203 	 * scheduler, we can no longer merge or sort them. So it's best to
204 	 * leave them there for as long as we can. Mark the hw queue as
205 	 * needing a restart in that case.
206 	 */
207 	if (!list_empty(&rq_list)) {
208 		blk_mq_sched_mark_restart_hctx(hctx);
209 		did_work = blk_mq_dispatch_rq_list(hctx, &rq_list);
210 	} else if (!has_sched_dispatch) {
211 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
212 		blk_mq_dispatch_rq_list(hctx, &rq_list);
213 	}
214 
215 	/*
216 	 * We want to dispatch from the scheduler if we had no work left
217 	 * on the dispatch list, OR if we did have work but weren't able
218 	 * to make progress.
219 	 */
220 	if (!did_work && has_sched_dispatch) {
221 		do {
222 			struct request *rq;
223 
224 			rq = e->type->ops.mq.dispatch_request(hctx);
225 			if (!rq)
226 				break;
227 			list_add(&rq->queuelist, &rq_list);
228 		} while (blk_mq_dispatch_rq_list(hctx, &rq_list));
229 	}
230 }
231 
232 void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
233 				   struct list_head *rq_list,
234 				   struct request *(*get_rq)(struct blk_mq_hw_ctx *))
235 {
236 	do {
237 		struct request *rq;
238 
239 		rq = get_rq(hctx);
240 		if (!rq)
241 			break;
242 
243 		list_add_tail(&rq->queuelist, rq_list);
244 	} while (1);
245 }
246 EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);
247 
248 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
249 			    struct request **merged_request)
250 {
251 	struct request *rq;
252 
253 	switch (elv_merge(q, &rq, bio)) {
254 	case ELEVATOR_BACK_MERGE:
255 		if (!blk_mq_sched_allow_merge(q, rq, bio))
256 			return false;
257 		if (!bio_attempt_back_merge(q, rq, bio))
258 			return false;
259 		*merged_request = attempt_back_merge(q, rq);
260 		if (!*merged_request)
261 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
262 		return true;
263 	case ELEVATOR_FRONT_MERGE:
264 		if (!blk_mq_sched_allow_merge(q, rq, bio))
265 			return false;
266 		if (!bio_attempt_front_merge(q, rq, bio))
267 			return false;
268 		*merged_request = attempt_front_merge(q, rq);
269 		if (!*merged_request)
270 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
271 		return true;
272 	default:
273 		return false;
274 	}
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
277 
278 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
279 {
280 	struct elevator_queue *e = q->elevator;
281 
282 	if (e->type->ops.mq.bio_merge) {
283 		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
284 		struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
285 
286 		blk_mq_put_ctx(ctx);
287 		return e->type->ops.mq.bio_merge(hctx, bio);
288 	}
289 
290 	return false;
291 }
292 
293 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
294 {
295 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
296 }
297 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
298 
299 void blk_mq_sched_request_inserted(struct request *rq)
300 {
301 	trace_block_rq_insert(rq->q, rq);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
304 
305 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
306 				       struct request *rq)
307 {
308 	if (rq->tag == -1) {
309 		rq->rq_flags |= RQF_SORTED;
310 		return false;
311 	}
312 
313 	/*
314 	 * If we already have a real request tag, send directly to
315 	 * the dispatch list.
316 	 */
317 	spin_lock(&hctx->lock);
318 	list_add(&rq->queuelist, &hctx->dispatch);
319 	spin_unlock(&hctx->lock);
320 	return true;
321 }
322 
323 static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
324 {
325 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
326 		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
327 		if (blk_mq_hctx_has_pending(hctx))
328 			blk_mq_run_hw_queue(hctx, true);
329 	}
330 }
331 
332 void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx)
333 {
334 	struct request_queue *q = hctx->queue;
335 	unsigned int i;
336 
337 	if (test_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
338 		if (test_and_clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
339 			queue_for_each_hw_ctx(q, hctx, i)
340 				blk_mq_sched_restart_hctx(hctx);
341 		}
342 	} else {
343 		blk_mq_sched_restart_hctx(hctx);
344 	}
345 }
346 
347 /*
348  * Add flush/fua to the queue. If we fail getting a driver tag, then
349  * punt to the requeue list. Requeue will re-invoke us from a context
350  * that's safe to block from.
351  */
352 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
353 				      struct request *rq, bool can_block)
354 {
355 	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
356 		blk_insert_flush(rq);
357 		blk_mq_run_hw_queue(hctx, true);
358 	} else
359 		blk_mq_add_to_requeue_list(rq, false, true);
360 }
361 
362 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
363 				 bool run_queue, bool async, bool can_block)
364 {
365 	struct request_queue *q = rq->q;
366 	struct elevator_queue *e = q->elevator;
367 	struct blk_mq_ctx *ctx = rq->mq_ctx;
368 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
369 
370 	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
371 		blk_mq_sched_insert_flush(hctx, rq, can_block);
372 		return;
373 	}
374 
375 	if (e && blk_mq_sched_bypass_insert(hctx, rq))
376 		goto run;
377 
378 	if (e && e->type->ops.mq.insert_requests) {
379 		LIST_HEAD(list);
380 
381 		list_add(&rq->queuelist, &list);
382 		e->type->ops.mq.insert_requests(hctx, &list, at_head);
383 	} else {
384 		spin_lock(&ctx->lock);
385 		__blk_mq_insert_request(hctx, rq, at_head);
386 		spin_unlock(&ctx->lock);
387 	}
388 
389 run:
390 	if (run_queue)
391 		blk_mq_run_hw_queue(hctx, async);
392 }
393 
394 void blk_mq_sched_insert_requests(struct request_queue *q,
395 				  struct blk_mq_ctx *ctx,
396 				  struct list_head *list, bool run_queue_async)
397 {
398 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
399 	struct elevator_queue *e = hctx->queue->elevator;
400 
401 	if (e) {
402 		struct request *rq, *next;
403 
404 		/*
405 		 * We bypass requests that already have a driver tag assigned,
406 		 * which should only be flushes. Flushes are only ever inserted
407 		 * as single requests, so we shouldn't ever hit the
408 		 * WARN_ON_ONCE() below (but let's handle it just in case).
409 		 */
410 		list_for_each_entry_safe(rq, next, list, queuelist) {
411 			if (WARN_ON_ONCE(rq->tag != -1)) {
412 				list_del_init(&rq->queuelist);
413 				blk_mq_sched_bypass_insert(hctx, rq);
414 			}
415 		}
416 	}
417 
418 	if (e && e->type->ops.mq.insert_requests)
419 		e->type->ops.mq.insert_requests(hctx, list, false);
420 	else
421 		blk_mq_insert_requests(hctx, ctx, list);
422 
423 	blk_mq_run_hw_queue(hctx, run_queue_async);
424 }
425 
426 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
427 				   struct blk_mq_hw_ctx *hctx,
428 				   unsigned int hctx_idx)
429 {
430 	if (hctx->sched_tags) {
431 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
432 		blk_mq_free_rq_map(hctx->sched_tags);
433 		hctx->sched_tags = NULL;
434 	}
435 }
436 
437 int blk_mq_sched_setup(struct request_queue *q)
438 {
439 	struct blk_mq_tag_set *set = q->tag_set;
440 	struct blk_mq_hw_ctx *hctx;
441 	int ret, i;
442 
443 	/*
444 	 * Default to 256, since we don't split into sync/async like the
445 	 * old code did. Additionally, this is a per-hw queue depth.
446 	 */
447 	q->nr_requests = 2 * BLKDEV_MAX_RQ;
448 
449 	/*
450 	 * We're switching to using an IO scheduler, so setup the hctx
451 	 * scheduler tags and switch the request map from the regular
452 	 * tags to scheduler tags. First allocate what we need, so we
453 	 * can safely fail and fallback, if needed.
454 	 */
455 	ret = 0;
456 	queue_for_each_hw_ctx(q, hctx, i) {
457 		hctx->sched_tags = blk_mq_alloc_rq_map(set, i, q->nr_requests, 0);
458 		if (!hctx->sched_tags) {
459 			ret = -ENOMEM;
460 			break;
461 		}
462 		ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests);
463 		if (ret)
464 			break;
465 	}
466 
467 	/*
468 	 * If we failed, free what we did allocate
469 	 */
470 	if (ret) {
471 		queue_for_each_hw_ctx(q, hctx, i) {
472 			if (!hctx->sched_tags)
473 				continue;
474 			blk_mq_sched_free_tags(set, hctx, i);
475 		}
476 
477 		return ret;
478 	}
479 
480 	return 0;
481 }
482 
483 void blk_mq_sched_teardown(struct request_queue *q)
484 {
485 	struct blk_mq_tag_set *set = q->tag_set;
486 	struct blk_mq_hw_ctx *hctx;
487 	int i;
488 
489 	queue_for_each_hw_ctx(q, hctx, i)
490 		blk_mq_sched_free_tags(set, hctx, i);
491 }
492 
493 int blk_mq_sched_init(struct request_queue *q)
494 {
495 	int ret;
496 
497 	mutex_lock(&q->sysfs_lock);
498 	ret = elevator_init(q, NULL);
499 	mutex_unlock(&q->sysfs_lock);
500 
501 	return ret;
502 }
503