1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/blk-mq.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-debugfs.h" 16 #include "blk-mq-sched.h" 17 #include "blk-mq-tag.h" 18 #include "blk-wbt.h" 19 20 void blk_mq_sched_free_hctx_data(struct request_queue *q, 21 void (*exit)(struct blk_mq_hw_ctx *)) 22 { 23 struct blk_mq_hw_ctx *hctx; 24 int i; 25 26 queue_for_each_hw_ctx(q, hctx, i) { 27 if (exit && hctx->sched_data) 28 exit(hctx); 29 kfree(hctx->sched_data); 30 hctx->sched_data = NULL; 31 } 32 } 33 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 34 35 void blk_mq_sched_assign_ioc(struct request *rq) 36 { 37 struct request_queue *q = rq->q; 38 struct io_context *ioc; 39 struct io_cq *icq; 40 41 /* 42 * May not have an IO context if it's a passthrough request 43 */ 44 ioc = current->io_context; 45 if (!ioc) 46 return; 47 48 spin_lock_irq(&q->queue_lock); 49 icq = ioc_lookup_icq(ioc, q); 50 spin_unlock_irq(&q->queue_lock); 51 52 if (!icq) { 53 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 54 if (!icq) 55 return; 56 } 57 get_io_context(icq->ioc); 58 rq->elv.icq = icq; 59 } 60 61 /* 62 * Mark a hardware queue as needing a restart. For shared queues, maintain 63 * a count of how many hardware queues are marked for restart. 64 */ 65 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 66 { 67 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 68 return; 69 70 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 71 } 72 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 73 74 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 75 { 76 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 77 return; 78 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 79 80 blk_mq_run_hw_queue(hctx, true); 81 } 82 83 /* 84 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 85 * its queue by itself in its completion handler, so we don't need to 86 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 87 */ 88 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 89 { 90 struct request_queue *q = hctx->queue; 91 struct elevator_queue *e = q->elevator; 92 LIST_HEAD(rq_list); 93 94 do { 95 struct request *rq; 96 97 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 98 break; 99 100 if (!blk_mq_get_dispatch_budget(hctx)) 101 break; 102 103 rq = e->type->ops.dispatch_request(hctx); 104 if (!rq) { 105 blk_mq_put_dispatch_budget(hctx); 106 break; 107 } 108 109 /* 110 * Now this rq owns the budget which has to be released 111 * if this rq won't be queued to driver via .queue_rq() 112 * in blk_mq_dispatch_rq_list(). 113 */ 114 list_add(&rq->queuelist, &rq_list); 115 } while (blk_mq_dispatch_rq_list(q, &rq_list, true)); 116 } 117 118 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 119 struct blk_mq_ctx *ctx) 120 { 121 unsigned short idx = ctx->index_hw[hctx->type]; 122 123 if (++idx == hctx->nr_ctx) 124 idx = 0; 125 126 return hctx->ctxs[idx]; 127 } 128 129 /* 130 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 131 * its queue by itself in its completion handler, so we don't need to 132 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 133 */ 134 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 135 { 136 struct request_queue *q = hctx->queue; 137 LIST_HEAD(rq_list); 138 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 139 140 do { 141 struct request *rq; 142 143 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 144 break; 145 146 if (!blk_mq_get_dispatch_budget(hctx)) 147 break; 148 149 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 150 if (!rq) { 151 blk_mq_put_dispatch_budget(hctx); 152 break; 153 } 154 155 /* 156 * Now this rq owns the budget which has to be released 157 * if this rq won't be queued to driver via .queue_rq() 158 * in blk_mq_dispatch_rq_list(). 159 */ 160 list_add(&rq->queuelist, &rq_list); 161 162 /* round robin for fair dispatch */ 163 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 164 165 } while (blk_mq_dispatch_rq_list(q, &rq_list, true)); 166 167 WRITE_ONCE(hctx->dispatch_from, ctx); 168 } 169 170 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 171 { 172 struct request_queue *q = hctx->queue; 173 struct elevator_queue *e = q->elevator; 174 const bool has_sched_dispatch = e && e->type->ops.dispatch_request; 175 LIST_HEAD(rq_list); 176 177 /* RCU or SRCU read lock is needed before checking quiesced flag */ 178 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 179 return; 180 181 hctx->run++; 182 183 /* 184 * If we have previous entries on our dispatch list, grab them first for 185 * more fair dispatch. 186 */ 187 if (!list_empty_careful(&hctx->dispatch)) { 188 spin_lock(&hctx->lock); 189 if (!list_empty(&hctx->dispatch)) 190 list_splice_init(&hctx->dispatch, &rq_list); 191 spin_unlock(&hctx->lock); 192 } 193 194 /* 195 * Only ask the scheduler for requests, if we didn't have residual 196 * requests from the dispatch list. This is to avoid the case where 197 * we only ever dispatch a fraction of the requests available because 198 * of low device queue depth. Once we pull requests out of the IO 199 * scheduler, we can no longer merge or sort them. So it's best to 200 * leave them there for as long as we can. Mark the hw queue as 201 * needing a restart in that case. 202 * 203 * We want to dispatch from the scheduler if there was nothing 204 * on the dispatch list or we were able to dispatch from the 205 * dispatch list. 206 */ 207 if (!list_empty(&rq_list)) { 208 blk_mq_sched_mark_restart_hctx(hctx); 209 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) { 210 if (has_sched_dispatch) 211 blk_mq_do_dispatch_sched(hctx); 212 else 213 blk_mq_do_dispatch_ctx(hctx); 214 } 215 } else if (has_sched_dispatch) { 216 blk_mq_do_dispatch_sched(hctx); 217 } else if (hctx->dispatch_busy) { 218 /* dequeue request one by one from sw queue if queue is busy */ 219 blk_mq_do_dispatch_ctx(hctx); 220 } else { 221 blk_mq_flush_busy_ctxs(hctx, &rq_list); 222 blk_mq_dispatch_rq_list(q, &rq_list, false); 223 } 224 } 225 226 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 227 unsigned int nr_segs, struct request **merged_request) 228 { 229 struct request *rq; 230 231 switch (elv_merge(q, &rq, bio)) { 232 case ELEVATOR_BACK_MERGE: 233 if (!blk_mq_sched_allow_merge(q, rq, bio)) 234 return false; 235 if (!bio_attempt_back_merge(rq, bio, nr_segs)) 236 return false; 237 *merged_request = attempt_back_merge(q, rq); 238 if (!*merged_request) 239 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 240 return true; 241 case ELEVATOR_FRONT_MERGE: 242 if (!blk_mq_sched_allow_merge(q, rq, bio)) 243 return false; 244 if (!bio_attempt_front_merge(rq, bio, nr_segs)) 245 return false; 246 *merged_request = attempt_front_merge(q, rq); 247 if (!*merged_request) 248 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 249 return true; 250 case ELEVATOR_DISCARD_MERGE: 251 return bio_attempt_discard_merge(q, rq, bio); 252 default: 253 return false; 254 } 255 } 256 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 257 258 /* 259 * Iterate list of requests and see if we can merge this bio with any 260 * of them. 261 */ 262 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list, 263 struct bio *bio, unsigned int nr_segs) 264 { 265 struct request *rq; 266 int checked = 8; 267 268 list_for_each_entry_reverse(rq, list, queuelist) { 269 bool merged = false; 270 271 if (!checked--) 272 break; 273 274 if (!blk_rq_merge_ok(rq, bio)) 275 continue; 276 277 switch (blk_try_merge(rq, bio)) { 278 case ELEVATOR_BACK_MERGE: 279 if (blk_mq_sched_allow_merge(q, rq, bio)) 280 merged = bio_attempt_back_merge(rq, bio, 281 nr_segs); 282 break; 283 case ELEVATOR_FRONT_MERGE: 284 if (blk_mq_sched_allow_merge(q, rq, bio)) 285 merged = bio_attempt_front_merge(rq, bio, 286 nr_segs); 287 break; 288 case ELEVATOR_DISCARD_MERGE: 289 merged = bio_attempt_discard_merge(q, rq, bio); 290 break; 291 default: 292 continue; 293 } 294 295 return merged; 296 } 297 298 return false; 299 } 300 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge); 301 302 /* 303 * Reverse check our software queue for entries that we could potentially 304 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 305 * too much time checking for merges. 306 */ 307 static bool blk_mq_attempt_merge(struct request_queue *q, 308 struct blk_mq_hw_ctx *hctx, 309 struct blk_mq_ctx *ctx, struct bio *bio, 310 unsigned int nr_segs) 311 { 312 enum hctx_type type = hctx->type; 313 314 lockdep_assert_held(&ctx->lock); 315 316 if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) { 317 ctx->rq_merged++; 318 return true; 319 } 320 321 return false; 322 } 323 324 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 325 unsigned int nr_segs) 326 { 327 struct elevator_queue *e = q->elevator; 328 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 329 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 330 bool ret = false; 331 enum hctx_type type; 332 333 if (e && e->type->ops.bio_merge) 334 return e->type->ops.bio_merge(hctx, bio, nr_segs); 335 336 type = hctx->type; 337 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 338 !list_empty_careful(&ctx->rq_lists[type])) { 339 /* default per sw-queue merge */ 340 spin_lock(&ctx->lock); 341 ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs); 342 spin_unlock(&ctx->lock); 343 } 344 345 return ret; 346 } 347 348 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 349 { 350 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 351 } 352 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 353 354 void blk_mq_sched_request_inserted(struct request *rq) 355 { 356 trace_block_rq_insert(rq->q, rq); 357 } 358 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 359 360 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 361 bool has_sched, 362 struct request *rq) 363 { 364 /* 365 * dispatch flush and passthrough rq directly 366 * 367 * passthrough request has to be added to hctx->dispatch directly. 368 * For some reason, device may be in one situation which can't 369 * handle FS request, so STS_RESOURCE is always returned and the 370 * FS request will be added to hctx->dispatch. However passthrough 371 * request may be required at that time for fixing the problem. If 372 * passthrough request is added to scheduler queue, there isn't any 373 * chance to dispatch it given we prioritize requests in hctx->dispatch. 374 */ 375 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 376 return true; 377 378 if (has_sched) 379 rq->rq_flags |= RQF_SORTED; 380 381 return false; 382 } 383 384 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 385 bool run_queue, bool async) 386 { 387 struct request_queue *q = rq->q; 388 struct elevator_queue *e = q->elevator; 389 struct blk_mq_ctx *ctx = rq->mq_ctx; 390 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 391 392 /* flush rq in flush machinery need to be dispatched directly */ 393 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) { 394 blk_insert_flush(rq); 395 goto run; 396 } 397 398 WARN_ON(e && (rq->tag != -1)); 399 400 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) { 401 /* 402 * Firstly normal IO request is inserted to scheduler queue or 403 * sw queue, meantime we add flush request to dispatch queue( 404 * hctx->dispatch) directly and there is at most one in-flight 405 * flush request for each hw queue, so it doesn't matter to add 406 * flush request to tail or front of the dispatch queue. 407 * 408 * Secondly in case of NCQ, flush request belongs to non-NCQ 409 * command, and queueing it will fail when there is any 410 * in-flight normal IO request(NCQ command). When adding flush 411 * rq to the front of hctx->dispatch, it is easier to introduce 412 * extra time to flush rq's latency because of S_SCHED_RESTART 413 * compared with adding to the tail of dispatch queue, then 414 * chance of flush merge is increased, and less flush requests 415 * will be issued to controller. It is observed that ~10% time 416 * is saved in blktests block/004 on disk attached to AHCI/NCQ 417 * drive when adding flush rq to the front of hctx->dispatch. 418 * 419 * Simply queue flush rq to the front of hctx->dispatch so that 420 * intensive flush workloads can benefit in case of NCQ HW. 421 */ 422 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 423 blk_mq_request_bypass_insert(rq, at_head, false); 424 goto run; 425 } 426 427 if (e && e->type->ops.insert_requests) { 428 LIST_HEAD(list); 429 430 list_add(&rq->queuelist, &list); 431 e->type->ops.insert_requests(hctx, &list, at_head); 432 } else { 433 spin_lock(&ctx->lock); 434 __blk_mq_insert_request(hctx, rq, at_head); 435 spin_unlock(&ctx->lock); 436 } 437 438 run: 439 if (run_queue) 440 blk_mq_run_hw_queue(hctx, async); 441 } 442 443 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 444 struct blk_mq_ctx *ctx, 445 struct list_head *list, bool run_queue_async) 446 { 447 struct elevator_queue *e; 448 struct request_queue *q = hctx->queue; 449 450 /* 451 * blk_mq_sched_insert_requests() is called from flush plug 452 * context only, and hold one usage counter to prevent queue 453 * from being released. 454 */ 455 percpu_ref_get(&q->q_usage_counter); 456 457 e = hctx->queue->elevator; 458 if (e && e->type->ops.insert_requests) 459 e->type->ops.insert_requests(hctx, list, false); 460 else { 461 /* 462 * try to issue requests directly if the hw queue isn't 463 * busy in case of 'none' scheduler, and this way may save 464 * us one extra enqueue & dequeue to sw queue. 465 */ 466 if (!hctx->dispatch_busy && !e && !run_queue_async) { 467 blk_mq_try_issue_list_directly(hctx, list); 468 if (list_empty(list)) 469 goto out; 470 } 471 blk_mq_insert_requests(hctx, ctx, list); 472 } 473 474 blk_mq_run_hw_queue(hctx, run_queue_async); 475 out: 476 percpu_ref_put(&q->q_usage_counter); 477 } 478 479 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 480 struct blk_mq_hw_ctx *hctx, 481 unsigned int hctx_idx) 482 { 483 if (hctx->sched_tags) { 484 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 485 blk_mq_free_rq_map(hctx->sched_tags); 486 hctx->sched_tags = NULL; 487 } 488 } 489 490 static int blk_mq_sched_alloc_tags(struct request_queue *q, 491 struct blk_mq_hw_ctx *hctx, 492 unsigned int hctx_idx) 493 { 494 struct blk_mq_tag_set *set = q->tag_set; 495 int ret; 496 497 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 498 set->reserved_tags); 499 if (!hctx->sched_tags) 500 return -ENOMEM; 501 502 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 503 if (ret) 504 blk_mq_sched_free_tags(set, hctx, hctx_idx); 505 506 return ret; 507 } 508 509 /* called in queue's release handler, tagset has gone away */ 510 static void blk_mq_sched_tags_teardown(struct request_queue *q) 511 { 512 struct blk_mq_hw_ctx *hctx; 513 int i; 514 515 queue_for_each_hw_ctx(q, hctx, i) { 516 if (hctx->sched_tags) { 517 blk_mq_free_rq_map(hctx->sched_tags); 518 hctx->sched_tags = NULL; 519 } 520 } 521 } 522 523 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 524 { 525 struct blk_mq_hw_ctx *hctx; 526 struct elevator_queue *eq; 527 unsigned int i; 528 int ret; 529 530 if (!e) { 531 q->elevator = NULL; 532 q->nr_requests = q->tag_set->queue_depth; 533 return 0; 534 } 535 536 /* 537 * Default to double of smaller one between hw queue_depth and 128, 538 * since we don't split into sync/async like the old code did. 539 * Additionally, this is a per-hw queue depth. 540 */ 541 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 542 BLKDEV_MAX_RQ); 543 544 queue_for_each_hw_ctx(q, hctx, i) { 545 ret = blk_mq_sched_alloc_tags(q, hctx, i); 546 if (ret) 547 goto err; 548 } 549 550 ret = e->ops.init_sched(q, e); 551 if (ret) 552 goto err; 553 554 blk_mq_debugfs_register_sched(q); 555 556 queue_for_each_hw_ctx(q, hctx, i) { 557 if (e->ops.init_hctx) { 558 ret = e->ops.init_hctx(hctx, i); 559 if (ret) { 560 eq = q->elevator; 561 blk_mq_sched_free_requests(q); 562 blk_mq_exit_sched(q, eq); 563 kobject_put(&eq->kobj); 564 return ret; 565 } 566 } 567 blk_mq_debugfs_register_sched_hctx(q, hctx); 568 } 569 570 return 0; 571 572 err: 573 blk_mq_sched_free_requests(q); 574 blk_mq_sched_tags_teardown(q); 575 q->elevator = NULL; 576 return ret; 577 } 578 579 /* 580 * called in either blk_queue_cleanup or elevator_switch, tagset 581 * is required for freeing requests 582 */ 583 void blk_mq_sched_free_requests(struct request_queue *q) 584 { 585 struct blk_mq_hw_ctx *hctx; 586 int i; 587 588 queue_for_each_hw_ctx(q, hctx, i) { 589 if (hctx->sched_tags) 590 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i); 591 } 592 } 593 594 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 595 { 596 struct blk_mq_hw_ctx *hctx; 597 unsigned int i; 598 599 queue_for_each_hw_ctx(q, hctx, i) { 600 blk_mq_debugfs_unregister_sched_hctx(hctx); 601 if (e->type->ops.exit_hctx && hctx->sched_data) { 602 e->type->ops.exit_hctx(hctx, i); 603 hctx->sched_data = NULL; 604 } 605 } 606 blk_mq_debugfs_unregister_sched(q); 607 if (e->type->ops.exit_sched) 608 e->type->ops.exit_sched(e); 609 blk_mq_sched_tags_teardown(q); 610 q->elevator = NULL; 611 } 612