1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/blk-mq.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-debugfs.h" 16 #include "blk-mq-sched.h" 17 #include "blk-mq-tag.h" 18 #include "blk-wbt.h" 19 20 void blk_mq_sched_free_hctx_data(struct request_queue *q, 21 void (*exit)(struct blk_mq_hw_ctx *)) 22 { 23 struct blk_mq_hw_ctx *hctx; 24 int i; 25 26 queue_for_each_hw_ctx(q, hctx, i) { 27 if (exit && hctx->sched_data) 28 exit(hctx); 29 kfree(hctx->sched_data); 30 hctx->sched_data = NULL; 31 } 32 } 33 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 34 35 void blk_mq_sched_assign_ioc(struct request *rq) 36 { 37 struct request_queue *q = rq->q; 38 struct io_context *ioc; 39 struct io_cq *icq; 40 41 /* 42 * May not have an IO context if it's a passthrough request 43 */ 44 ioc = current->io_context; 45 if (!ioc) 46 return; 47 48 spin_lock_irq(&q->queue_lock); 49 icq = ioc_lookup_icq(ioc, q); 50 spin_unlock_irq(&q->queue_lock); 51 52 if (!icq) { 53 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 54 if (!icq) 55 return; 56 } 57 get_io_context(icq->ioc); 58 rq->elv.icq = icq; 59 } 60 61 /* 62 * Mark a hardware queue as needing a restart. For shared queues, maintain 63 * a count of how many hardware queues are marked for restart. 64 */ 65 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 66 { 67 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 68 return; 69 70 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 71 } 72 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 73 74 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 75 { 76 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 77 return; 78 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 79 80 blk_mq_run_hw_queue(hctx, true); 81 } 82 83 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 84 85 /* 86 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 87 * its queue by itself in its completion handler, so we don't need to 88 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 89 * 90 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 91 * be run again. This is necessary to avoid starving flushes. 92 */ 93 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 94 { 95 struct request_queue *q = hctx->queue; 96 struct elevator_queue *e = q->elevator; 97 LIST_HEAD(rq_list); 98 int ret = 0; 99 100 do { 101 struct request *rq; 102 103 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 104 break; 105 106 if (!list_empty_careful(&hctx->dispatch)) { 107 ret = -EAGAIN; 108 break; 109 } 110 111 if (!blk_mq_get_dispatch_budget(hctx)) 112 break; 113 114 rq = e->type->ops.dispatch_request(hctx); 115 if (!rq) { 116 blk_mq_put_dispatch_budget(hctx); 117 /* 118 * We're releasing without dispatching. Holding the 119 * budget could have blocked any "hctx"s with the 120 * same queue and if we didn't dispatch then there's 121 * no guarantee anyone will kick the queue. Kick it 122 * ourselves. 123 */ 124 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 125 break; 126 } 127 128 /* 129 * Now this rq owns the budget which has to be released 130 * if this rq won't be queued to driver via .queue_rq() 131 * in blk_mq_dispatch_rq_list(). 132 */ 133 list_add(&rq->queuelist, &rq_list); 134 } while (blk_mq_dispatch_rq_list(q, &rq_list, true)); 135 136 return ret; 137 } 138 139 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 140 struct blk_mq_ctx *ctx) 141 { 142 unsigned short idx = ctx->index_hw[hctx->type]; 143 144 if (++idx == hctx->nr_ctx) 145 idx = 0; 146 147 return hctx->ctxs[idx]; 148 } 149 150 /* 151 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 152 * its queue by itself in its completion handler, so we don't need to 153 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 154 * 155 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 156 * to be run again. This is necessary to avoid starving flushes. 157 */ 158 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 159 { 160 struct request_queue *q = hctx->queue; 161 LIST_HEAD(rq_list); 162 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 163 int ret = 0; 164 165 do { 166 struct request *rq; 167 168 if (!list_empty_careful(&hctx->dispatch)) { 169 ret = -EAGAIN; 170 break; 171 } 172 173 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 174 break; 175 176 if (!blk_mq_get_dispatch_budget(hctx)) 177 break; 178 179 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 180 if (!rq) { 181 blk_mq_put_dispatch_budget(hctx); 182 /* 183 * We're releasing without dispatching. Holding the 184 * budget could have blocked any "hctx"s with the 185 * same queue and if we didn't dispatch then there's 186 * no guarantee anyone will kick the queue. Kick it 187 * ourselves. 188 */ 189 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 190 break; 191 } 192 193 /* 194 * Now this rq owns the budget which has to be released 195 * if this rq won't be queued to driver via .queue_rq() 196 * in blk_mq_dispatch_rq_list(). 197 */ 198 list_add(&rq->queuelist, &rq_list); 199 200 /* round robin for fair dispatch */ 201 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 202 203 } while (blk_mq_dispatch_rq_list(q, &rq_list, true)); 204 205 WRITE_ONCE(hctx->dispatch_from, ctx); 206 return ret; 207 } 208 209 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 210 { 211 struct request_queue *q = hctx->queue; 212 struct elevator_queue *e = q->elevator; 213 const bool has_sched_dispatch = e && e->type->ops.dispatch_request; 214 int ret = 0; 215 LIST_HEAD(rq_list); 216 217 /* 218 * If we have previous entries on our dispatch list, grab them first for 219 * more fair dispatch. 220 */ 221 if (!list_empty_careful(&hctx->dispatch)) { 222 spin_lock(&hctx->lock); 223 if (!list_empty(&hctx->dispatch)) 224 list_splice_init(&hctx->dispatch, &rq_list); 225 spin_unlock(&hctx->lock); 226 } 227 228 /* 229 * Only ask the scheduler for requests, if we didn't have residual 230 * requests from the dispatch list. This is to avoid the case where 231 * we only ever dispatch a fraction of the requests available because 232 * of low device queue depth. Once we pull requests out of the IO 233 * scheduler, we can no longer merge or sort them. So it's best to 234 * leave them there for as long as we can. Mark the hw queue as 235 * needing a restart in that case. 236 * 237 * We want to dispatch from the scheduler if there was nothing 238 * on the dispatch list or we were able to dispatch from the 239 * dispatch list. 240 */ 241 if (!list_empty(&rq_list)) { 242 blk_mq_sched_mark_restart_hctx(hctx); 243 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) { 244 if (has_sched_dispatch) 245 ret = blk_mq_do_dispatch_sched(hctx); 246 else 247 ret = blk_mq_do_dispatch_ctx(hctx); 248 } 249 } else if (has_sched_dispatch) { 250 ret = blk_mq_do_dispatch_sched(hctx); 251 } else if (hctx->dispatch_busy) { 252 /* dequeue request one by one from sw queue if queue is busy */ 253 ret = blk_mq_do_dispatch_ctx(hctx); 254 } else { 255 blk_mq_flush_busy_ctxs(hctx, &rq_list); 256 blk_mq_dispatch_rq_list(q, &rq_list, false); 257 } 258 259 return ret; 260 } 261 262 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 263 { 264 struct request_queue *q = hctx->queue; 265 266 /* RCU or SRCU read lock is needed before checking quiesced flag */ 267 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 268 return; 269 270 hctx->run++; 271 272 /* 273 * A return of -EAGAIN is an indication that hctx->dispatch is not 274 * empty and we must run again in order to avoid starving flushes. 275 */ 276 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 277 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 278 blk_mq_run_hw_queue(hctx, true); 279 } 280 } 281 282 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 283 unsigned int nr_segs, struct request **merged_request) 284 { 285 struct request *rq; 286 287 switch (elv_merge(q, &rq, bio)) { 288 case ELEVATOR_BACK_MERGE: 289 if (!blk_mq_sched_allow_merge(q, rq, bio)) 290 return false; 291 if (!bio_attempt_back_merge(rq, bio, nr_segs)) 292 return false; 293 *merged_request = attempt_back_merge(q, rq); 294 if (!*merged_request) 295 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 296 return true; 297 case ELEVATOR_FRONT_MERGE: 298 if (!blk_mq_sched_allow_merge(q, rq, bio)) 299 return false; 300 if (!bio_attempt_front_merge(rq, bio, nr_segs)) 301 return false; 302 *merged_request = attempt_front_merge(q, rq); 303 if (!*merged_request) 304 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 305 return true; 306 case ELEVATOR_DISCARD_MERGE: 307 return bio_attempt_discard_merge(q, rq, bio); 308 default: 309 return false; 310 } 311 } 312 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 313 314 /* 315 * Iterate list of requests and see if we can merge this bio with any 316 * of them. 317 */ 318 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list, 319 struct bio *bio, unsigned int nr_segs) 320 { 321 struct request *rq; 322 int checked = 8; 323 324 list_for_each_entry_reverse(rq, list, queuelist) { 325 bool merged = false; 326 327 if (!checked--) 328 break; 329 330 if (!blk_rq_merge_ok(rq, bio)) 331 continue; 332 333 switch (blk_try_merge(rq, bio)) { 334 case ELEVATOR_BACK_MERGE: 335 if (blk_mq_sched_allow_merge(q, rq, bio)) 336 merged = bio_attempt_back_merge(rq, bio, 337 nr_segs); 338 break; 339 case ELEVATOR_FRONT_MERGE: 340 if (blk_mq_sched_allow_merge(q, rq, bio)) 341 merged = bio_attempt_front_merge(rq, bio, 342 nr_segs); 343 break; 344 case ELEVATOR_DISCARD_MERGE: 345 merged = bio_attempt_discard_merge(q, rq, bio); 346 break; 347 default: 348 continue; 349 } 350 351 return merged; 352 } 353 354 return false; 355 } 356 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge); 357 358 /* 359 * Reverse check our software queue for entries that we could potentially 360 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 361 * too much time checking for merges. 362 */ 363 static bool blk_mq_attempt_merge(struct request_queue *q, 364 struct blk_mq_hw_ctx *hctx, 365 struct blk_mq_ctx *ctx, struct bio *bio, 366 unsigned int nr_segs) 367 { 368 enum hctx_type type = hctx->type; 369 370 lockdep_assert_held(&ctx->lock); 371 372 if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) { 373 ctx->rq_merged++; 374 return true; 375 } 376 377 return false; 378 } 379 380 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 381 unsigned int nr_segs) 382 { 383 struct elevator_queue *e = q->elevator; 384 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 385 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 386 bool ret = false; 387 enum hctx_type type; 388 389 if (e && e->type->ops.bio_merge) 390 return e->type->ops.bio_merge(hctx, bio, nr_segs); 391 392 type = hctx->type; 393 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 394 !list_empty_careful(&ctx->rq_lists[type])) { 395 /* default per sw-queue merge */ 396 spin_lock(&ctx->lock); 397 ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs); 398 spin_unlock(&ctx->lock); 399 } 400 401 return ret; 402 } 403 404 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 405 { 406 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 407 } 408 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 409 410 void blk_mq_sched_request_inserted(struct request *rq) 411 { 412 trace_block_rq_insert(rq->q, rq); 413 } 414 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 415 416 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 417 bool has_sched, 418 struct request *rq) 419 { 420 /* 421 * dispatch flush and passthrough rq directly 422 * 423 * passthrough request has to be added to hctx->dispatch directly. 424 * For some reason, device may be in one situation which can't 425 * handle FS request, so STS_RESOURCE is always returned and the 426 * FS request will be added to hctx->dispatch. However passthrough 427 * request may be required at that time for fixing the problem. If 428 * passthrough request is added to scheduler queue, there isn't any 429 * chance to dispatch it given we prioritize requests in hctx->dispatch. 430 */ 431 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 432 return true; 433 434 if (has_sched) 435 rq->rq_flags |= RQF_SORTED; 436 437 return false; 438 } 439 440 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 441 bool run_queue, bool async) 442 { 443 struct request_queue *q = rq->q; 444 struct elevator_queue *e = q->elevator; 445 struct blk_mq_ctx *ctx = rq->mq_ctx; 446 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 447 448 /* flush rq in flush machinery need to be dispatched directly */ 449 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) { 450 blk_insert_flush(rq); 451 goto run; 452 } 453 454 WARN_ON(e && (rq->tag != -1)); 455 456 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) { 457 /* 458 * Firstly normal IO request is inserted to scheduler queue or 459 * sw queue, meantime we add flush request to dispatch queue( 460 * hctx->dispatch) directly and there is at most one in-flight 461 * flush request for each hw queue, so it doesn't matter to add 462 * flush request to tail or front of the dispatch queue. 463 * 464 * Secondly in case of NCQ, flush request belongs to non-NCQ 465 * command, and queueing it will fail when there is any 466 * in-flight normal IO request(NCQ command). When adding flush 467 * rq to the front of hctx->dispatch, it is easier to introduce 468 * extra time to flush rq's latency because of S_SCHED_RESTART 469 * compared with adding to the tail of dispatch queue, then 470 * chance of flush merge is increased, and less flush requests 471 * will be issued to controller. It is observed that ~10% time 472 * is saved in blktests block/004 on disk attached to AHCI/NCQ 473 * drive when adding flush rq to the front of hctx->dispatch. 474 * 475 * Simply queue flush rq to the front of hctx->dispatch so that 476 * intensive flush workloads can benefit in case of NCQ HW. 477 */ 478 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 479 blk_mq_request_bypass_insert(rq, at_head, false); 480 goto run; 481 } 482 483 if (e && e->type->ops.insert_requests) { 484 LIST_HEAD(list); 485 486 list_add(&rq->queuelist, &list); 487 e->type->ops.insert_requests(hctx, &list, at_head); 488 } else { 489 spin_lock(&ctx->lock); 490 __blk_mq_insert_request(hctx, rq, at_head); 491 spin_unlock(&ctx->lock); 492 } 493 494 run: 495 if (run_queue) 496 blk_mq_run_hw_queue(hctx, async); 497 } 498 499 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 500 struct blk_mq_ctx *ctx, 501 struct list_head *list, bool run_queue_async) 502 { 503 struct elevator_queue *e; 504 struct request_queue *q = hctx->queue; 505 506 /* 507 * blk_mq_sched_insert_requests() is called from flush plug 508 * context only, and hold one usage counter to prevent queue 509 * from being released. 510 */ 511 percpu_ref_get(&q->q_usage_counter); 512 513 e = hctx->queue->elevator; 514 if (e && e->type->ops.insert_requests) 515 e->type->ops.insert_requests(hctx, list, false); 516 else { 517 /* 518 * try to issue requests directly if the hw queue isn't 519 * busy in case of 'none' scheduler, and this way may save 520 * us one extra enqueue & dequeue to sw queue. 521 */ 522 if (!hctx->dispatch_busy && !e && !run_queue_async) { 523 blk_mq_try_issue_list_directly(hctx, list); 524 if (list_empty(list)) 525 goto out; 526 } 527 blk_mq_insert_requests(hctx, ctx, list); 528 } 529 530 blk_mq_run_hw_queue(hctx, run_queue_async); 531 out: 532 percpu_ref_put(&q->q_usage_counter); 533 } 534 535 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 536 struct blk_mq_hw_ctx *hctx, 537 unsigned int hctx_idx) 538 { 539 if (hctx->sched_tags) { 540 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 541 blk_mq_free_rq_map(hctx->sched_tags); 542 hctx->sched_tags = NULL; 543 } 544 } 545 546 static int blk_mq_sched_alloc_tags(struct request_queue *q, 547 struct blk_mq_hw_ctx *hctx, 548 unsigned int hctx_idx) 549 { 550 struct blk_mq_tag_set *set = q->tag_set; 551 int ret; 552 553 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 554 set->reserved_tags); 555 if (!hctx->sched_tags) 556 return -ENOMEM; 557 558 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 559 if (ret) 560 blk_mq_sched_free_tags(set, hctx, hctx_idx); 561 562 return ret; 563 } 564 565 /* called in queue's release handler, tagset has gone away */ 566 static void blk_mq_sched_tags_teardown(struct request_queue *q) 567 { 568 struct blk_mq_hw_ctx *hctx; 569 int i; 570 571 queue_for_each_hw_ctx(q, hctx, i) { 572 if (hctx->sched_tags) { 573 blk_mq_free_rq_map(hctx->sched_tags); 574 hctx->sched_tags = NULL; 575 } 576 } 577 } 578 579 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 580 { 581 struct blk_mq_hw_ctx *hctx; 582 struct elevator_queue *eq; 583 unsigned int i; 584 int ret; 585 586 if (!e) { 587 q->elevator = NULL; 588 q->nr_requests = q->tag_set->queue_depth; 589 return 0; 590 } 591 592 /* 593 * Default to double of smaller one between hw queue_depth and 128, 594 * since we don't split into sync/async like the old code did. 595 * Additionally, this is a per-hw queue depth. 596 */ 597 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 598 BLKDEV_MAX_RQ); 599 600 queue_for_each_hw_ctx(q, hctx, i) { 601 ret = blk_mq_sched_alloc_tags(q, hctx, i); 602 if (ret) 603 goto err; 604 } 605 606 ret = e->ops.init_sched(q, e); 607 if (ret) 608 goto err; 609 610 blk_mq_debugfs_register_sched(q); 611 612 queue_for_each_hw_ctx(q, hctx, i) { 613 if (e->ops.init_hctx) { 614 ret = e->ops.init_hctx(hctx, i); 615 if (ret) { 616 eq = q->elevator; 617 blk_mq_sched_free_requests(q); 618 blk_mq_exit_sched(q, eq); 619 kobject_put(&eq->kobj); 620 return ret; 621 } 622 } 623 blk_mq_debugfs_register_sched_hctx(q, hctx); 624 } 625 626 return 0; 627 628 err: 629 blk_mq_sched_free_requests(q); 630 blk_mq_sched_tags_teardown(q); 631 q->elevator = NULL; 632 return ret; 633 } 634 635 /* 636 * called in either blk_queue_cleanup or elevator_switch, tagset 637 * is required for freeing requests 638 */ 639 void blk_mq_sched_free_requests(struct request_queue *q) 640 { 641 struct blk_mq_hw_ctx *hctx; 642 int i; 643 644 queue_for_each_hw_ctx(q, hctx, i) { 645 if (hctx->sched_tags) 646 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i); 647 } 648 } 649 650 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 651 { 652 struct blk_mq_hw_ctx *hctx; 653 unsigned int i; 654 655 queue_for_each_hw_ctx(q, hctx, i) { 656 blk_mq_debugfs_unregister_sched_hctx(hctx); 657 if (e->type->ops.exit_hctx && hctx->sched_data) { 658 e->type->ops.exit_hctx(hctx, i); 659 hctx->sched_data = NULL; 660 } 661 } 662 blk_mq_debugfs_unregister_sched(q); 663 if (e->type->ops.exit_sched) 664 e->type->ops.exit_sched(e); 665 blk_mq_sched_tags_teardown(q); 666 q->elevator = NULL; 667 } 668