xref: /openbmc/linux/block/blk-mq-sched.c (revision 0c874100)
1 /*
2  * blk-mq scheduling framework
3  *
4  * Copyright (C) 2016 Jens Axboe
5  */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18 
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 				 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 	struct blk_mq_hw_ctx *hctx;
23 	int i;
24 
25 	queue_for_each_hw_ctx(q, hctx, i) {
26 		if (exit && hctx->sched_data)
27 			exit(hctx);
28 		kfree(hctx->sched_data);
29 		hctx->sched_data = NULL;
30 	}
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33 
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35 {
36 	struct request_queue *q = rq->q;
37 	struct io_context *ioc = rq_ioc(bio);
38 	struct io_cq *icq;
39 
40 	spin_lock_irq(q->queue_lock);
41 	icq = ioc_lookup_icq(ioc, q);
42 	spin_unlock_irq(q->queue_lock);
43 
44 	if (!icq) {
45 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 		if (!icq)
47 			return;
48 	}
49 	get_io_context(icq->ioc);
50 	rq->elv.icq = icq;
51 }
52 
53 /*
54  * Mark a hardware queue as needing a restart. For shared queues, maintain
55  * a count of how many hardware queues are marked for restart.
56  */
57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
58 {
59 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 		return;
61 
62 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
63 }
64 
65 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
66 {
67 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
68 		return;
69 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
70 
71 	blk_mq_run_hw_queue(hctx, true);
72 }
73 
74 /*
75  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
76  * its queue by itself in its completion handler, so we don't need to
77  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
78  */
79 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
80 {
81 	struct request_queue *q = hctx->queue;
82 	struct elevator_queue *e = q->elevator;
83 	LIST_HEAD(rq_list);
84 
85 	do {
86 		struct request *rq;
87 
88 		if (e->type->ops.mq.has_work &&
89 				!e->type->ops.mq.has_work(hctx))
90 			break;
91 
92 		if (!blk_mq_get_dispatch_budget(hctx))
93 			break;
94 
95 		rq = e->type->ops.mq.dispatch_request(hctx);
96 		if (!rq) {
97 			blk_mq_put_dispatch_budget(hctx);
98 			break;
99 		}
100 
101 		/*
102 		 * Now this rq owns the budget which has to be released
103 		 * if this rq won't be queued to driver via .queue_rq()
104 		 * in blk_mq_dispatch_rq_list().
105 		 */
106 		list_add(&rq->queuelist, &rq_list);
107 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
108 }
109 
110 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
111 					  struct blk_mq_ctx *ctx)
112 {
113 	unsigned idx = ctx->index_hw;
114 
115 	if (++idx == hctx->nr_ctx)
116 		idx = 0;
117 
118 	return hctx->ctxs[idx];
119 }
120 
121 /*
122  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
123  * its queue by itself in its completion handler, so we don't need to
124  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
125  */
126 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
127 {
128 	struct request_queue *q = hctx->queue;
129 	LIST_HEAD(rq_list);
130 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
131 
132 	do {
133 		struct request *rq;
134 
135 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
136 			break;
137 
138 		if (!blk_mq_get_dispatch_budget(hctx))
139 			break;
140 
141 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
142 		if (!rq) {
143 			blk_mq_put_dispatch_budget(hctx);
144 			break;
145 		}
146 
147 		/*
148 		 * Now this rq owns the budget which has to be released
149 		 * if this rq won't be queued to driver via .queue_rq()
150 		 * in blk_mq_dispatch_rq_list().
151 		 */
152 		list_add(&rq->queuelist, &rq_list);
153 
154 		/* round robin for fair dispatch */
155 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
156 
157 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
158 
159 	WRITE_ONCE(hctx->dispatch_from, ctx);
160 }
161 
162 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
163 {
164 	struct request_queue *q = hctx->queue;
165 	struct elevator_queue *e = q->elevator;
166 	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
167 	LIST_HEAD(rq_list);
168 
169 	/* RCU or SRCU read lock is needed before checking quiesced flag */
170 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
171 		return;
172 
173 	hctx->run++;
174 
175 	/*
176 	 * If we have previous entries on our dispatch list, grab them first for
177 	 * more fair dispatch.
178 	 */
179 	if (!list_empty_careful(&hctx->dispatch)) {
180 		spin_lock(&hctx->lock);
181 		if (!list_empty(&hctx->dispatch))
182 			list_splice_init(&hctx->dispatch, &rq_list);
183 		spin_unlock(&hctx->lock);
184 	}
185 
186 	/*
187 	 * Only ask the scheduler for requests, if we didn't have residual
188 	 * requests from the dispatch list. This is to avoid the case where
189 	 * we only ever dispatch a fraction of the requests available because
190 	 * of low device queue depth. Once we pull requests out of the IO
191 	 * scheduler, we can no longer merge or sort them. So it's best to
192 	 * leave them there for as long as we can. Mark the hw queue as
193 	 * needing a restart in that case.
194 	 *
195 	 * We want to dispatch from the scheduler if there was nothing
196 	 * on the dispatch list or we were able to dispatch from the
197 	 * dispatch list.
198 	 */
199 	if (!list_empty(&rq_list)) {
200 		blk_mq_sched_mark_restart_hctx(hctx);
201 		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
202 			if (has_sched_dispatch)
203 				blk_mq_do_dispatch_sched(hctx);
204 			else
205 				blk_mq_do_dispatch_ctx(hctx);
206 		}
207 	} else if (has_sched_dispatch) {
208 		blk_mq_do_dispatch_sched(hctx);
209 	} else if (hctx->dispatch_busy) {
210 		/* dequeue request one by one from sw queue if queue is busy */
211 		blk_mq_do_dispatch_ctx(hctx);
212 	} else {
213 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
214 		blk_mq_dispatch_rq_list(q, &rq_list, false);
215 	}
216 }
217 
218 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
219 			    struct request **merged_request)
220 {
221 	struct request *rq;
222 
223 	switch (elv_merge(q, &rq, bio)) {
224 	case ELEVATOR_BACK_MERGE:
225 		if (!blk_mq_sched_allow_merge(q, rq, bio))
226 			return false;
227 		if (!bio_attempt_back_merge(q, rq, bio))
228 			return false;
229 		*merged_request = attempt_back_merge(q, rq);
230 		if (!*merged_request)
231 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
232 		return true;
233 	case ELEVATOR_FRONT_MERGE:
234 		if (!blk_mq_sched_allow_merge(q, rq, bio))
235 			return false;
236 		if (!bio_attempt_front_merge(q, rq, bio))
237 			return false;
238 		*merged_request = attempt_front_merge(q, rq);
239 		if (!*merged_request)
240 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
241 		return true;
242 	case ELEVATOR_DISCARD_MERGE:
243 		return bio_attempt_discard_merge(q, rq, bio);
244 	default:
245 		return false;
246 	}
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
249 
250 /*
251  * Iterate list of requests and see if we can merge this bio with any
252  * of them.
253  */
254 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
255 			   struct bio *bio)
256 {
257 	struct request *rq;
258 	int checked = 8;
259 
260 	list_for_each_entry_reverse(rq, list, queuelist) {
261 		bool merged = false;
262 
263 		if (!checked--)
264 			break;
265 
266 		if (!blk_rq_merge_ok(rq, bio))
267 			continue;
268 
269 		switch (blk_try_merge(rq, bio)) {
270 		case ELEVATOR_BACK_MERGE:
271 			if (blk_mq_sched_allow_merge(q, rq, bio))
272 				merged = bio_attempt_back_merge(q, rq, bio);
273 			break;
274 		case ELEVATOR_FRONT_MERGE:
275 			if (blk_mq_sched_allow_merge(q, rq, bio))
276 				merged = bio_attempt_front_merge(q, rq, bio);
277 			break;
278 		case ELEVATOR_DISCARD_MERGE:
279 			merged = bio_attempt_discard_merge(q, rq, bio);
280 			break;
281 		default:
282 			continue;
283 		}
284 
285 		return merged;
286 	}
287 
288 	return false;
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
291 
292 /*
293  * Reverse check our software queue for entries that we could potentially
294  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
295  * too much time checking for merges.
296  */
297 static bool blk_mq_attempt_merge(struct request_queue *q,
298 				 struct blk_mq_ctx *ctx, struct bio *bio)
299 {
300 	lockdep_assert_held(&ctx->lock);
301 
302 	if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
303 		ctx->rq_merged++;
304 		return true;
305 	}
306 
307 	return false;
308 }
309 
310 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
311 {
312 	struct elevator_queue *e = q->elevator;
313 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
314 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
315 	bool ret = false;
316 
317 	if (e && e->type->ops.mq.bio_merge) {
318 		blk_mq_put_ctx(ctx);
319 		return e->type->ops.mq.bio_merge(hctx, bio);
320 	}
321 
322 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
323 			!list_empty_careful(&ctx->rq_list)) {
324 		/* default per sw-queue merge */
325 		spin_lock(&ctx->lock);
326 		ret = blk_mq_attempt_merge(q, ctx, bio);
327 		spin_unlock(&ctx->lock);
328 	}
329 
330 	blk_mq_put_ctx(ctx);
331 	return ret;
332 }
333 
334 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
335 {
336 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
337 }
338 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
339 
340 void blk_mq_sched_request_inserted(struct request *rq)
341 {
342 	trace_block_rq_insert(rq->q, rq);
343 }
344 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
345 
346 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
347 				       bool has_sched,
348 				       struct request *rq)
349 {
350 	/* dispatch flush rq directly */
351 	if (rq->rq_flags & RQF_FLUSH_SEQ) {
352 		spin_lock(&hctx->lock);
353 		list_add(&rq->queuelist, &hctx->dispatch);
354 		spin_unlock(&hctx->lock);
355 		return true;
356 	}
357 
358 	if (has_sched)
359 		rq->rq_flags |= RQF_SORTED;
360 
361 	return false;
362 }
363 
364 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
365 				 bool run_queue, bool async)
366 {
367 	struct request_queue *q = rq->q;
368 	struct elevator_queue *e = q->elevator;
369 	struct blk_mq_ctx *ctx = rq->mq_ctx;
370 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
371 
372 	/* flush rq in flush machinery need to be dispatched directly */
373 	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
374 		blk_insert_flush(rq);
375 		goto run;
376 	}
377 
378 	WARN_ON(e && (rq->tag != -1));
379 
380 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
381 		goto run;
382 
383 	if (e && e->type->ops.mq.insert_requests) {
384 		LIST_HEAD(list);
385 
386 		list_add(&rq->queuelist, &list);
387 		e->type->ops.mq.insert_requests(hctx, &list, at_head);
388 	} else {
389 		spin_lock(&ctx->lock);
390 		__blk_mq_insert_request(hctx, rq, at_head);
391 		spin_unlock(&ctx->lock);
392 	}
393 
394 run:
395 	if (run_queue)
396 		blk_mq_run_hw_queue(hctx, async);
397 }
398 
399 void blk_mq_sched_insert_requests(struct request_queue *q,
400 				  struct blk_mq_ctx *ctx,
401 				  struct list_head *list, bool run_queue_async)
402 {
403 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
404 	struct elevator_queue *e = hctx->queue->elevator;
405 
406 	if (e && e->type->ops.mq.insert_requests)
407 		e->type->ops.mq.insert_requests(hctx, list, false);
408 	else {
409 		/*
410 		 * try to issue requests directly if the hw queue isn't
411 		 * busy in case of 'none' scheduler, and this way may save
412 		 * us one extra enqueue & dequeue to sw queue.
413 		 */
414 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
415 			blk_mq_try_issue_list_directly(hctx, list);
416 			if (list_empty(list))
417 				return;
418 		}
419 		blk_mq_insert_requests(hctx, ctx, list);
420 	}
421 
422 	blk_mq_run_hw_queue(hctx, run_queue_async);
423 }
424 
425 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
426 				   struct blk_mq_hw_ctx *hctx,
427 				   unsigned int hctx_idx)
428 {
429 	if (hctx->sched_tags) {
430 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
431 		blk_mq_free_rq_map(hctx->sched_tags);
432 		hctx->sched_tags = NULL;
433 	}
434 }
435 
436 static int blk_mq_sched_alloc_tags(struct request_queue *q,
437 				   struct blk_mq_hw_ctx *hctx,
438 				   unsigned int hctx_idx)
439 {
440 	struct blk_mq_tag_set *set = q->tag_set;
441 	int ret;
442 
443 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
444 					       set->reserved_tags);
445 	if (!hctx->sched_tags)
446 		return -ENOMEM;
447 
448 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
449 	if (ret)
450 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
451 
452 	return ret;
453 }
454 
455 static void blk_mq_sched_tags_teardown(struct request_queue *q)
456 {
457 	struct blk_mq_tag_set *set = q->tag_set;
458 	struct blk_mq_hw_ctx *hctx;
459 	int i;
460 
461 	queue_for_each_hw_ctx(q, hctx, i)
462 		blk_mq_sched_free_tags(set, hctx, i);
463 }
464 
465 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
466 {
467 	struct blk_mq_hw_ctx *hctx;
468 	struct elevator_queue *eq;
469 	unsigned int i;
470 	int ret;
471 
472 	if (!e) {
473 		q->elevator = NULL;
474 		q->nr_requests = q->tag_set->queue_depth;
475 		return 0;
476 	}
477 
478 	/*
479 	 * Default to double of smaller one between hw queue_depth and 128,
480 	 * since we don't split into sync/async like the old code did.
481 	 * Additionally, this is a per-hw queue depth.
482 	 */
483 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
484 				   BLKDEV_MAX_RQ);
485 
486 	queue_for_each_hw_ctx(q, hctx, i) {
487 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
488 		if (ret)
489 			goto err;
490 	}
491 
492 	ret = e->ops.mq.init_sched(q, e);
493 	if (ret)
494 		goto err;
495 
496 	blk_mq_debugfs_register_sched(q);
497 
498 	queue_for_each_hw_ctx(q, hctx, i) {
499 		if (e->ops.mq.init_hctx) {
500 			ret = e->ops.mq.init_hctx(hctx, i);
501 			if (ret) {
502 				eq = q->elevator;
503 				blk_mq_exit_sched(q, eq);
504 				kobject_put(&eq->kobj);
505 				return ret;
506 			}
507 		}
508 		blk_mq_debugfs_register_sched_hctx(q, hctx);
509 	}
510 
511 	return 0;
512 
513 err:
514 	blk_mq_sched_tags_teardown(q);
515 	q->elevator = NULL;
516 	return ret;
517 }
518 
519 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
520 {
521 	struct blk_mq_hw_ctx *hctx;
522 	unsigned int i;
523 
524 	queue_for_each_hw_ctx(q, hctx, i) {
525 		blk_mq_debugfs_unregister_sched_hctx(hctx);
526 		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
527 			e->type->ops.mq.exit_hctx(hctx, i);
528 			hctx->sched_data = NULL;
529 		}
530 	}
531 	blk_mq_debugfs_unregister_sched(q);
532 	if (e->type->ops.mq.exit_sched)
533 		e->type->ops.mq.exit_sched(e);
534 	blk_mq_sched_tags_teardown(q);
535 	q->elevator = NULL;
536 }
537