xref: /openbmc/linux/block/blk-mq-sched.c (revision 07c7c6bf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 #include "blk-mq.h"
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-mq-tag.h"
18 #include "blk-wbt.h"
19 
20 void blk_mq_sched_free_hctx_data(struct request_queue *q,
21 				 void (*exit)(struct blk_mq_hw_ctx *))
22 {
23 	struct blk_mq_hw_ctx *hctx;
24 	int i;
25 
26 	queue_for_each_hw_ctx(q, hctx, i) {
27 		if (exit && hctx->sched_data)
28 			exit(hctx);
29 		kfree(hctx->sched_data);
30 		hctx->sched_data = NULL;
31 	}
32 }
33 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
34 
35 void blk_mq_sched_assign_ioc(struct request *rq)
36 {
37 	struct request_queue *q = rq->q;
38 	struct io_context *ioc;
39 	struct io_cq *icq;
40 
41 	/*
42 	 * May not have an IO context if it's a passthrough request
43 	 */
44 	ioc = current->io_context;
45 	if (!ioc)
46 		return;
47 
48 	spin_lock_irq(&q->queue_lock);
49 	icq = ioc_lookup_icq(ioc, q);
50 	spin_unlock_irq(&q->queue_lock);
51 
52 	if (!icq) {
53 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
54 		if (!icq)
55 			return;
56 	}
57 	get_io_context(icq->ioc);
58 	rq->elv.icq = icq;
59 }
60 
61 /*
62  * Mark a hardware queue as needing a restart. For shared queues, maintain
63  * a count of how many hardware queues are marked for restart.
64  */
65 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
66 {
67 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
68 		return;
69 
70 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
71 }
72 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
73 
74 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
75 {
76 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
77 		return;
78 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
79 
80 	blk_mq_run_hw_queue(hctx, true);
81 }
82 
83 /*
84  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
85  * its queue by itself in its completion handler, so we don't need to
86  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
87  */
88 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
89 {
90 	struct request_queue *q = hctx->queue;
91 	struct elevator_queue *e = q->elevator;
92 	LIST_HEAD(rq_list);
93 
94 	do {
95 		struct request *rq;
96 
97 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
98 			break;
99 
100 		if (!blk_mq_get_dispatch_budget(hctx))
101 			break;
102 
103 		rq = e->type->ops.dispatch_request(hctx);
104 		if (!rq) {
105 			blk_mq_put_dispatch_budget(hctx);
106 			break;
107 		}
108 
109 		/*
110 		 * Now this rq owns the budget which has to be released
111 		 * if this rq won't be queued to driver via .queue_rq()
112 		 * in blk_mq_dispatch_rq_list().
113 		 */
114 		list_add(&rq->queuelist, &rq_list);
115 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
116 }
117 
118 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
119 					  struct blk_mq_ctx *ctx)
120 {
121 	unsigned short idx = ctx->index_hw[hctx->type];
122 
123 	if (++idx == hctx->nr_ctx)
124 		idx = 0;
125 
126 	return hctx->ctxs[idx];
127 }
128 
129 /*
130  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
131  * its queue by itself in its completion handler, so we don't need to
132  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
133  */
134 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
135 {
136 	struct request_queue *q = hctx->queue;
137 	LIST_HEAD(rq_list);
138 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
139 
140 	do {
141 		struct request *rq;
142 
143 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
144 			break;
145 
146 		if (!blk_mq_get_dispatch_budget(hctx))
147 			break;
148 
149 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
150 		if (!rq) {
151 			blk_mq_put_dispatch_budget(hctx);
152 			break;
153 		}
154 
155 		/*
156 		 * Now this rq owns the budget which has to be released
157 		 * if this rq won't be queued to driver via .queue_rq()
158 		 * in blk_mq_dispatch_rq_list().
159 		 */
160 		list_add(&rq->queuelist, &rq_list);
161 
162 		/* round robin for fair dispatch */
163 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
164 
165 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
166 
167 	WRITE_ONCE(hctx->dispatch_from, ctx);
168 }
169 
170 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
171 {
172 	struct request_queue *q = hctx->queue;
173 	struct elevator_queue *e = q->elevator;
174 	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
175 	LIST_HEAD(rq_list);
176 
177 	/* RCU or SRCU read lock is needed before checking quiesced flag */
178 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
179 		return;
180 
181 	hctx->run++;
182 
183 	/*
184 	 * If we have previous entries on our dispatch list, grab them first for
185 	 * more fair dispatch.
186 	 */
187 	if (!list_empty_careful(&hctx->dispatch)) {
188 		spin_lock(&hctx->lock);
189 		if (!list_empty(&hctx->dispatch))
190 			list_splice_init(&hctx->dispatch, &rq_list);
191 		spin_unlock(&hctx->lock);
192 	}
193 
194 	/*
195 	 * Only ask the scheduler for requests, if we didn't have residual
196 	 * requests from the dispatch list. This is to avoid the case where
197 	 * we only ever dispatch a fraction of the requests available because
198 	 * of low device queue depth. Once we pull requests out of the IO
199 	 * scheduler, we can no longer merge or sort them. So it's best to
200 	 * leave them there for as long as we can. Mark the hw queue as
201 	 * needing a restart in that case.
202 	 *
203 	 * We want to dispatch from the scheduler if there was nothing
204 	 * on the dispatch list or we were able to dispatch from the
205 	 * dispatch list.
206 	 */
207 	if (!list_empty(&rq_list)) {
208 		blk_mq_sched_mark_restart_hctx(hctx);
209 		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
210 			if (has_sched_dispatch)
211 				blk_mq_do_dispatch_sched(hctx);
212 			else
213 				blk_mq_do_dispatch_ctx(hctx);
214 		}
215 	} else if (has_sched_dispatch) {
216 		blk_mq_do_dispatch_sched(hctx);
217 	} else if (hctx->dispatch_busy) {
218 		/* dequeue request one by one from sw queue if queue is busy */
219 		blk_mq_do_dispatch_ctx(hctx);
220 	} else {
221 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
222 		blk_mq_dispatch_rq_list(q, &rq_list, false);
223 	}
224 }
225 
226 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
227 			    struct request **merged_request)
228 {
229 	struct request *rq;
230 
231 	switch (elv_merge(q, &rq, bio)) {
232 	case ELEVATOR_BACK_MERGE:
233 		if (!blk_mq_sched_allow_merge(q, rq, bio))
234 			return false;
235 		if (!bio_attempt_back_merge(q, rq, bio))
236 			return false;
237 		*merged_request = attempt_back_merge(q, rq);
238 		if (!*merged_request)
239 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
240 		return true;
241 	case ELEVATOR_FRONT_MERGE:
242 		if (!blk_mq_sched_allow_merge(q, rq, bio))
243 			return false;
244 		if (!bio_attempt_front_merge(q, rq, bio))
245 			return false;
246 		*merged_request = attempt_front_merge(q, rq);
247 		if (!*merged_request)
248 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
249 		return true;
250 	case ELEVATOR_DISCARD_MERGE:
251 		return bio_attempt_discard_merge(q, rq, bio);
252 	default:
253 		return false;
254 	}
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
257 
258 /*
259  * Iterate list of requests and see if we can merge this bio with any
260  * of them.
261  */
262 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
263 			   struct bio *bio)
264 {
265 	struct request *rq;
266 	int checked = 8;
267 
268 	list_for_each_entry_reverse(rq, list, queuelist) {
269 		bool merged = false;
270 
271 		if (!checked--)
272 			break;
273 
274 		if (!blk_rq_merge_ok(rq, bio))
275 			continue;
276 
277 		switch (blk_try_merge(rq, bio)) {
278 		case ELEVATOR_BACK_MERGE:
279 			if (blk_mq_sched_allow_merge(q, rq, bio))
280 				merged = bio_attempt_back_merge(q, rq, bio);
281 			break;
282 		case ELEVATOR_FRONT_MERGE:
283 			if (blk_mq_sched_allow_merge(q, rq, bio))
284 				merged = bio_attempt_front_merge(q, rq, bio);
285 			break;
286 		case ELEVATOR_DISCARD_MERGE:
287 			merged = bio_attempt_discard_merge(q, rq, bio);
288 			break;
289 		default:
290 			continue;
291 		}
292 
293 		return merged;
294 	}
295 
296 	return false;
297 }
298 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
299 
300 /*
301  * Reverse check our software queue for entries that we could potentially
302  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
303  * too much time checking for merges.
304  */
305 static bool blk_mq_attempt_merge(struct request_queue *q,
306 				 struct blk_mq_hw_ctx *hctx,
307 				 struct blk_mq_ctx *ctx, struct bio *bio)
308 {
309 	enum hctx_type type = hctx->type;
310 
311 	lockdep_assert_held(&ctx->lock);
312 
313 	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio)) {
314 		ctx->rq_merged++;
315 		return true;
316 	}
317 
318 	return false;
319 }
320 
321 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
322 {
323 	struct elevator_queue *e = q->elevator;
324 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
325 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
326 	bool ret = false;
327 	enum hctx_type type;
328 
329 	if (e && e->type->ops.bio_merge) {
330 		blk_mq_put_ctx(ctx);
331 		return e->type->ops.bio_merge(hctx, bio);
332 	}
333 
334 	type = hctx->type;
335 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
336 			!list_empty_careful(&ctx->rq_lists[type])) {
337 		/* default per sw-queue merge */
338 		spin_lock(&ctx->lock);
339 		ret = blk_mq_attempt_merge(q, hctx, ctx, bio);
340 		spin_unlock(&ctx->lock);
341 	}
342 
343 	blk_mq_put_ctx(ctx);
344 	return ret;
345 }
346 
347 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
348 {
349 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
350 }
351 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
352 
353 void blk_mq_sched_request_inserted(struct request *rq)
354 {
355 	trace_block_rq_insert(rq->q, rq);
356 }
357 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
358 
359 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
360 				       bool has_sched,
361 				       struct request *rq)
362 {
363 	/* dispatch flush rq directly */
364 	if (rq->rq_flags & RQF_FLUSH_SEQ) {
365 		spin_lock(&hctx->lock);
366 		list_add(&rq->queuelist, &hctx->dispatch);
367 		spin_unlock(&hctx->lock);
368 		return true;
369 	}
370 
371 	if (has_sched)
372 		rq->rq_flags |= RQF_SORTED;
373 
374 	return false;
375 }
376 
377 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
378 				 bool run_queue, bool async)
379 {
380 	struct request_queue *q = rq->q;
381 	struct elevator_queue *e = q->elevator;
382 	struct blk_mq_ctx *ctx = rq->mq_ctx;
383 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
384 
385 	/* flush rq in flush machinery need to be dispatched directly */
386 	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
387 		blk_insert_flush(rq);
388 		goto run;
389 	}
390 
391 	WARN_ON(e && (rq->tag != -1));
392 
393 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
394 		goto run;
395 
396 	if (e && e->type->ops.insert_requests) {
397 		LIST_HEAD(list);
398 
399 		list_add(&rq->queuelist, &list);
400 		e->type->ops.insert_requests(hctx, &list, at_head);
401 	} else {
402 		spin_lock(&ctx->lock);
403 		__blk_mq_insert_request(hctx, rq, at_head);
404 		spin_unlock(&ctx->lock);
405 	}
406 
407 run:
408 	if (run_queue)
409 		blk_mq_run_hw_queue(hctx, async);
410 }
411 
412 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
413 				  struct blk_mq_ctx *ctx,
414 				  struct list_head *list, bool run_queue_async)
415 {
416 	struct elevator_queue *e;
417 	struct request_queue *q = hctx->queue;
418 
419 	/*
420 	 * blk_mq_sched_insert_requests() is called from flush plug
421 	 * context only, and hold one usage counter to prevent queue
422 	 * from being released.
423 	 */
424 	percpu_ref_get(&q->q_usage_counter);
425 
426 	e = hctx->queue->elevator;
427 	if (e && e->type->ops.insert_requests)
428 		e->type->ops.insert_requests(hctx, list, false);
429 	else {
430 		/*
431 		 * try to issue requests directly if the hw queue isn't
432 		 * busy in case of 'none' scheduler, and this way may save
433 		 * us one extra enqueue & dequeue to sw queue.
434 		 */
435 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
436 			blk_mq_try_issue_list_directly(hctx, list);
437 			if (list_empty(list))
438 				goto out;
439 		}
440 		blk_mq_insert_requests(hctx, ctx, list);
441 	}
442 
443 	blk_mq_run_hw_queue(hctx, run_queue_async);
444  out:
445 	percpu_ref_put(&q->q_usage_counter);
446 }
447 
448 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
449 				   struct blk_mq_hw_ctx *hctx,
450 				   unsigned int hctx_idx)
451 {
452 	if (hctx->sched_tags) {
453 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
454 		blk_mq_free_rq_map(hctx->sched_tags);
455 		hctx->sched_tags = NULL;
456 	}
457 }
458 
459 static int blk_mq_sched_alloc_tags(struct request_queue *q,
460 				   struct blk_mq_hw_ctx *hctx,
461 				   unsigned int hctx_idx)
462 {
463 	struct blk_mq_tag_set *set = q->tag_set;
464 	int ret;
465 
466 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
467 					       set->reserved_tags);
468 	if (!hctx->sched_tags)
469 		return -ENOMEM;
470 
471 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
472 	if (ret)
473 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
474 
475 	return ret;
476 }
477 
478 static void blk_mq_sched_tags_teardown(struct request_queue *q)
479 {
480 	struct blk_mq_tag_set *set = q->tag_set;
481 	struct blk_mq_hw_ctx *hctx;
482 	int i;
483 
484 	queue_for_each_hw_ctx(q, hctx, i)
485 		blk_mq_sched_free_tags(set, hctx, i);
486 }
487 
488 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
489 {
490 	struct blk_mq_hw_ctx *hctx;
491 	struct elevator_queue *eq;
492 	unsigned int i;
493 	int ret;
494 
495 	if (!e) {
496 		q->elevator = NULL;
497 		q->nr_requests = q->tag_set->queue_depth;
498 		return 0;
499 	}
500 
501 	/*
502 	 * Default to double of smaller one between hw queue_depth and 128,
503 	 * since we don't split into sync/async like the old code did.
504 	 * Additionally, this is a per-hw queue depth.
505 	 */
506 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
507 				   BLKDEV_MAX_RQ);
508 
509 	queue_for_each_hw_ctx(q, hctx, i) {
510 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
511 		if (ret)
512 			goto err;
513 	}
514 
515 	ret = e->ops.init_sched(q, e);
516 	if (ret)
517 		goto err;
518 
519 	blk_mq_debugfs_register_sched(q);
520 
521 	queue_for_each_hw_ctx(q, hctx, i) {
522 		if (e->ops.init_hctx) {
523 			ret = e->ops.init_hctx(hctx, i);
524 			if (ret) {
525 				eq = q->elevator;
526 				blk_mq_exit_sched(q, eq);
527 				kobject_put(&eq->kobj);
528 				return ret;
529 			}
530 		}
531 		blk_mq_debugfs_register_sched_hctx(q, hctx);
532 	}
533 
534 	return 0;
535 
536 err:
537 	blk_mq_sched_tags_teardown(q);
538 	q->elevator = NULL;
539 	return ret;
540 }
541 
542 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
543 {
544 	struct blk_mq_hw_ctx *hctx;
545 	unsigned int i;
546 
547 	queue_for_each_hw_ctx(q, hctx, i) {
548 		blk_mq_debugfs_unregister_sched_hctx(hctx);
549 		if (e->type->ops.exit_hctx && hctx->sched_data) {
550 			e->type->ops.exit_hctx(hctx, i);
551 			hctx->sched_data = NULL;
552 		}
553 	}
554 	blk_mq_debugfs_unregister_sched(q);
555 	if (e->type->ops.exit_sched)
556 		e->type->ops.exit_sched(e);
557 	blk_mq_sched_tags_teardown(q);
558 	q->elevator = NULL;
559 }
560