xref: /openbmc/linux/block/blk-merge.c (revision fd7d8d42)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 
15 /*
16  * Check if the two bvecs from two bios can be merged to one segment.  If yes,
17  * no need to check gap between the two bios since the 1st bio and the 1st bvec
18  * in the 2nd bio can be handled in one segment.
19  */
20 static inline bool bios_segs_mergeable(struct request_queue *q,
21 		struct bio *prev, struct bio_vec *prev_last_bv,
22 		struct bio_vec *next_first_bv)
23 {
24 	if (!biovec_phys_mergeable(q, prev_last_bv, next_first_bv))
25 		return false;
26 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
27 			queue_max_segment_size(q))
28 		return false;
29 	return true;
30 }
31 
32 static inline bool bio_will_gap(struct request_queue *q,
33 		struct request *prev_rq, struct bio *prev, struct bio *next)
34 {
35 	struct bio_vec pb, nb;
36 
37 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
38 		return false;
39 
40 	/*
41 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
42 	 * is quite difficult to respect the sg gap limit.  We work hard to
43 	 * merge a huge number of small single bios in case of mkfs.
44 	 */
45 	if (prev_rq)
46 		bio_get_first_bvec(prev_rq->bio, &pb);
47 	else
48 		bio_get_first_bvec(prev, &pb);
49 	if (pb.bv_offset & queue_virt_boundary(q))
50 		return true;
51 
52 	/*
53 	 * We don't need to worry about the situation that the merged segment
54 	 * ends in unaligned virt boundary:
55 	 *
56 	 * - if 'pb' ends aligned, the merged segment ends aligned
57 	 * - if 'pb' ends unaligned, the next bio must include
58 	 *   one single bvec of 'nb', otherwise the 'nb' can't
59 	 *   merge with 'pb'
60 	 */
61 	bio_get_last_bvec(prev, &pb);
62 	bio_get_first_bvec(next, &nb);
63 	if (bios_segs_mergeable(q, prev, &pb, &nb))
64 		return false;
65 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
66 }
67 
68 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
69 {
70 	return bio_will_gap(req->q, req, req->biotail, bio);
71 }
72 
73 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
74 {
75 	return bio_will_gap(req->q, NULL, bio, req->bio);
76 }
77 
78 static struct bio *blk_bio_discard_split(struct request_queue *q,
79 					 struct bio *bio,
80 					 struct bio_set *bs,
81 					 unsigned *nsegs)
82 {
83 	unsigned int max_discard_sectors, granularity;
84 	int alignment;
85 	sector_t tmp;
86 	unsigned split_sectors;
87 
88 	*nsegs = 1;
89 
90 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
91 	granularity = max(q->limits.discard_granularity >> 9, 1U);
92 
93 	max_discard_sectors = min(q->limits.max_discard_sectors,
94 			bio_allowed_max_sectors(q));
95 	max_discard_sectors -= max_discard_sectors % granularity;
96 
97 	if (unlikely(!max_discard_sectors)) {
98 		/* XXX: warn */
99 		return NULL;
100 	}
101 
102 	if (bio_sectors(bio) <= max_discard_sectors)
103 		return NULL;
104 
105 	split_sectors = max_discard_sectors;
106 
107 	/*
108 	 * If the next starting sector would be misaligned, stop the discard at
109 	 * the previous aligned sector.
110 	 */
111 	alignment = (q->limits.discard_alignment >> 9) % granularity;
112 
113 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
114 	tmp = sector_div(tmp, granularity);
115 
116 	if (split_sectors > tmp)
117 		split_sectors -= tmp;
118 
119 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
120 }
121 
122 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
123 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
124 {
125 	*nsegs = 1;
126 
127 	if (!q->limits.max_write_zeroes_sectors)
128 		return NULL;
129 
130 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
131 		return NULL;
132 
133 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
134 }
135 
136 static struct bio *blk_bio_write_same_split(struct request_queue *q,
137 					    struct bio *bio,
138 					    struct bio_set *bs,
139 					    unsigned *nsegs)
140 {
141 	*nsegs = 1;
142 
143 	if (!q->limits.max_write_same_sectors)
144 		return NULL;
145 
146 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
147 		return NULL;
148 
149 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
150 }
151 
152 static inline unsigned get_max_io_size(struct request_queue *q,
153 				       struct bio *bio)
154 {
155 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
156 	unsigned mask = queue_logical_block_size(q) - 1;
157 
158 	/* aligned to logical block size */
159 	sectors &= ~(mask >> 9);
160 
161 	return sectors;
162 }
163 
164 static unsigned get_max_segment_size(struct request_queue *q,
165 				     unsigned offset)
166 {
167 	unsigned long mask = queue_segment_boundary(q);
168 
169 	/* default segment boundary mask means no boundary limit */
170 	if (mask == BLK_SEG_BOUNDARY_MASK)
171 		return queue_max_segment_size(q);
172 
173 	return min_t(unsigned long, mask - (mask & offset) + 1,
174 		     queue_max_segment_size(q));
175 }
176 
177 /*
178  * Split the bvec @bv into segments, and update all kinds of
179  * variables.
180  */
181 static bool bvec_split_segs(struct request_queue *q, struct bio_vec *bv,
182 		unsigned *nsegs, unsigned *last_seg_size,
183 		unsigned *front_seg_size, unsigned *sectors, unsigned max_segs)
184 {
185 	unsigned len = bv->bv_len;
186 	unsigned total_len = 0;
187 	unsigned new_nsegs = 0, seg_size = 0;
188 
189 	/*
190 	 * Multi-page bvec may be too big to hold in one segment, so the
191 	 * current bvec has to be splitted as multiple segments.
192 	 */
193 	while (len && new_nsegs + *nsegs < max_segs) {
194 		seg_size = get_max_segment_size(q, bv->bv_offset + total_len);
195 		seg_size = min(seg_size, len);
196 
197 		new_nsegs++;
198 		total_len += seg_size;
199 		len -= seg_size;
200 
201 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
202 			break;
203 	}
204 
205 	if (!new_nsegs)
206 		return !!len;
207 
208 	/* update front segment size */
209 	if (!*nsegs) {
210 		unsigned first_seg_size;
211 
212 		if (new_nsegs == 1)
213 			first_seg_size = get_max_segment_size(q, bv->bv_offset);
214 		else
215 			first_seg_size = queue_max_segment_size(q);
216 
217 		if (*front_seg_size < first_seg_size)
218 			*front_seg_size = first_seg_size;
219 	}
220 
221 	/* update other varibles */
222 	*last_seg_size = seg_size;
223 	*nsegs += new_nsegs;
224 	if (sectors)
225 		*sectors += total_len >> 9;
226 
227 	/* split in the middle of the bvec if len != 0 */
228 	return !!len;
229 }
230 
231 static struct bio *blk_bio_segment_split(struct request_queue *q,
232 					 struct bio *bio,
233 					 struct bio_set *bs,
234 					 unsigned *segs)
235 {
236 	struct bio_vec bv, bvprv, *bvprvp = NULL;
237 	struct bvec_iter iter;
238 	unsigned seg_size = 0, nsegs = 0, sectors = 0;
239 	unsigned front_seg_size = bio->bi_seg_front_size;
240 	bool do_split = true;
241 	struct bio *new = NULL;
242 	const unsigned max_sectors = get_max_io_size(q, bio);
243 	const unsigned max_segs = queue_max_segments(q);
244 
245 	bio_for_each_bvec(bv, bio, iter) {
246 		/*
247 		 * If the queue doesn't support SG gaps and adding this
248 		 * offset would create a gap, disallow it.
249 		 */
250 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
251 			goto split;
252 
253 		if (sectors + (bv.bv_len >> 9) > max_sectors) {
254 			/*
255 			 * Consider this a new segment if we're splitting in
256 			 * the middle of this vector.
257 			 */
258 			if (nsegs < max_segs &&
259 			    sectors < max_sectors) {
260 				/* split in the middle of bvec */
261 				bv.bv_len = (max_sectors - sectors) << 9;
262 				bvec_split_segs(q, &bv, &nsegs,
263 						&seg_size,
264 						&front_seg_size,
265 						&sectors, max_segs);
266 			}
267 			goto split;
268 		}
269 
270 		if (nsegs == max_segs)
271 			goto split;
272 
273 		bvprv = bv;
274 		bvprvp = &bvprv;
275 
276 		if (bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
277 			nsegs++;
278 			seg_size = bv.bv_len;
279 			sectors += bv.bv_len >> 9;
280 			if (nsegs == 1 && seg_size > front_seg_size)
281 				front_seg_size = seg_size;
282 		} else if (bvec_split_segs(q, &bv, &nsegs, &seg_size,
283 				    &front_seg_size, &sectors, max_segs)) {
284 			goto split;
285 		}
286 	}
287 
288 	do_split = false;
289 split:
290 	*segs = nsegs;
291 
292 	if (do_split) {
293 		new = bio_split(bio, sectors, GFP_NOIO, bs);
294 		if (new)
295 			bio = new;
296 	}
297 
298 	bio->bi_seg_front_size = front_seg_size;
299 	if (seg_size > bio->bi_seg_back_size)
300 		bio->bi_seg_back_size = seg_size;
301 
302 	return do_split ? new : NULL;
303 }
304 
305 void blk_queue_split(struct request_queue *q, struct bio **bio)
306 {
307 	struct bio *split, *res;
308 	unsigned nsegs;
309 
310 	switch (bio_op(*bio)) {
311 	case REQ_OP_DISCARD:
312 	case REQ_OP_SECURE_ERASE:
313 		split = blk_bio_discard_split(q, *bio, &q->bio_split, &nsegs);
314 		break;
315 	case REQ_OP_WRITE_ZEROES:
316 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, &nsegs);
317 		break;
318 	case REQ_OP_WRITE_SAME:
319 		split = blk_bio_write_same_split(q, *bio, &q->bio_split, &nsegs);
320 		break;
321 	default:
322 		split = blk_bio_segment_split(q, *bio, &q->bio_split, &nsegs);
323 		break;
324 	}
325 
326 	/* physical segments can be figured out during splitting */
327 	res = split ? split : *bio;
328 	res->bi_phys_segments = nsegs;
329 	bio_set_flag(res, BIO_SEG_VALID);
330 
331 	if (split) {
332 		/* there isn't chance to merge the splitted bio */
333 		split->bi_opf |= REQ_NOMERGE;
334 
335 		/*
336 		 * Since we're recursing into make_request here, ensure
337 		 * that we mark this bio as already having entered the queue.
338 		 * If not, and the queue is going away, we can get stuck
339 		 * forever on waiting for the queue reference to drop. But
340 		 * that will never happen, as we're already holding a
341 		 * reference to it.
342 		 */
343 		bio_set_flag(*bio, BIO_QUEUE_ENTERED);
344 
345 		bio_chain(split, *bio);
346 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
347 		generic_make_request(*bio);
348 		*bio = split;
349 	}
350 }
351 EXPORT_SYMBOL(blk_queue_split);
352 
353 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
354 					     struct bio *bio)
355 {
356 	struct bio_vec bv, bvprv = { NULL };
357 	int prev = 0;
358 	unsigned int seg_size, nr_phys_segs;
359 	unsigned front_seg_size;
360 	struct bio *fbio, *bbio;
361 	struct bvec_iter iter;
362 
363 	if (!bio)
364 		return 0;
365 
366 	front_seg_size = bio->bi_seg_front_size;
367 
368 	switch (bio_op(bio)) {
369 	case REQ_OP_DISCARD:
370 	case REQ_OP_SECURE_ERASE:
371 	case REQ_OP_WRITE_ZEROES:
372 		return 0;
373 	case REQ_OP_WRITE_SAME:
374 		return 1;
375 	}
376 
377 	fbio = bio;
378 	seg_size = 0;
379 	nr_phys_segs = 0;
380 	for_each_bio(bio) {
381 		bio_for_each_bvec(bv, bio, iter) {
382 			if (prev) {
383 				if (seg_size + bv.bv_len
384 				    > queue_max_segment_size(q))
385 					goto new_segment;
386 				if (!biovec_phys_mergeable(q, &bvprv, &bv))
387 					goto new_segment;
388 
389 				seg_size += bv.bv_len;
390 				bvprv = bv;
391 
392 				if (nr_phys_segs == 1 && seg_size >
393 						front_seg_size)
394 					front_seg_size = seg_size;
395 
396 				continue;
397 			}
398 new_segment:
399 			bvprv = bv;
400 			prev = 1;
401 			bvec_split_segs(q, &bv, &nr_phys_segs, &seg_size,
402 					&front_seg_size, NULL, UINT_MAX);
403 		}
404 		bbio = bio;
405 	}
406 
407 	fbio->bi_seg_front_size = front_seg_size;
408 	if (seg_size > bbio->bi_seg_back_size)
409 		bbio->bi_seg_back_size = seg_size;
410 
411 	return nr_phys_segs;
412 }
413 
414 void blk_recalc_rq_segments(struct request *rq)
415 {
416 	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio);
417 }
418 
419 void blk_recount_segments(struct request_queue *q, struct bio *bio)
420 {
421 	struct bio *nxt = bio->bi_next;
422 
423 	bio->bi_next = NULL;
424 	bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio);
425 	bio->bi_next = nxt;
426 
427 	bio_set_flag(bio, BIO_SEG_VALID);
428 }
429 
430 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
431 				   struct bio *nxt)
432 {
433 	struct bio_vec end_bv = { NULL }, nxt_bv;
434 
435 	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
436 	    queue_max_segment_size(q))
437 		return 0;
438 
439 	if (!bio_has_data(bio))
440 		return 1;
441 
442 	bio_get_last_bvec(bio, &end_bv);
443 	bio_get_first_bvec(nxt, &nxt_bv);
444 
445 	return biovec_phys_mergeable(q, &end_bv, &nxt_bv);
446 }
447 
448 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
449 		struct scatterlist *sglist)
450 {
451 	if (!*sg)
452 		return sglist;
453 
454 	/*
455 	 * If the driver previously mapped a shorter list, we could see a
456 	 * termination bit prematurely unless it fully inits the sg table
457 	 * on each mapping. We KNOW that there must be more entries here
458 	 * or the driver would be buggy, so force clear the termination bit
459 	 * to avoid doing a full sg_init_table() in drivers for each command.
460 	 */
461 	sg_unmark_end(*sg);
462 	return sg_next(*sg);
463 }
464 
465 static unsigned blk_bvec_map_sg(struct request_queue *q,
466 		struct bio_vec *bvec, struct scatterlist *sglist,
467 		struct scatterlist **sg)
468 {
469 	unsigned nbytes = bvec->bv_len;
470 	unsigned nsegs = 0, total = 0, offset = 0;
471 
472 	while (nbytes > 0) {
473 		unsigned seg_size;
474 		struct page *pg;
475 		unsigned idx;
476 
477 		*sg = blk_next_sg(sg, sglist);
478 
479 		seg_size = get_max_segment_size(q, bvec->bv_offset + total);
480 		seg_size = min(nbytes, seg_size);
481 
482 		offset = (total + bvec->bv_offset) % PAGE_SIZE;
483 		idx = (total + bvec->bv_offset) / PAGE_SIZE;
484 		pg = bvec_nth_page(bvec->bv_page, idx);
485 
486 		sg_set_page(*sg, pg, seg_size, offset);
487 
488 		total += seg_size;
489 		nbytes -= seg_size;
490 		nsegs++;
491 	}
492 
493 	return nsegs;
494 }
495 
496 static inline void
497 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
498 		     struct scatterlist *sglist, struct bio_vec *bvprv,
499 		     struct scatterlist **sg, int *nsegs)
500 {
501 
502 	int nbytes = bvec->bv_len;
503 
504 	if (*sg) {
505 		if ((*sg)->length + nbytes > queue_max_segment_size(q))
506 			goto new_segment;
507 		if (!biovec_phys_mergeable(q, bvprv, bvec))
508 			goto new_segment;
509 
510 		(*sg)->length += nbytes;
511 	} else {
512 new_segment:
513 		if (bvec->bv_offset + bvec->bv_len <= PAGE_SIZE) {
514 			*sg = blk_next_sg(sg, sglist);
515 			sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
516 			(*nsegs) += 1;
517 		} else
518 			(*nsegs) += blk_bvec_map_sg(q, bvec, sglist, sg);
519 	}
520 	*bvprv = *bvec;
521 }
522 
523 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
524 		struct scatterlist *sglist, struct scatterlist **sg)
525 {
526 	*sg = sglist;
527 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
528 	return 1;
529 }
530 
531 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
532 			     struct scatterlist *sglist,
533 			     struct scatterlist **sg)
534 {
535 	struct bio_vec bvec, bvprv = { NULL };
536 	struct bvec_iter iter;
537 	int nsegs = 0;
538 
539 	for_each_bio(bio)
540 		bio_for_each_bvec(bvec, bio, iter)
541 			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
542 					     &nsegs);
543 
544 	return nsegs;
545 }
546 
547 /*
548  * map a request to scatterlist, return number of sg entries setup. Caller
549  * must make sure sg can hold rq->nr_phys_segments entries
550  */
551 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
552 		  struct scatterlist *sglist)
553 {
554 	struct scatterlist *sg = NULL;
555 	int nsegs = 0;
556 
557 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
558 		nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
559 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
560 		nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
561 	else if (rq->bio)
562 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
563 
564 	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
565 	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
566 		unsigned int pad_len =
567 			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
568 
569 		sg->length += pad_len;
570 		rq->extra_len += pad_len;
571 	}
572 
573 	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
574 		if (op_is_write(req_op(rq)))
575 			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
576 
577 		sg_unmark_end(sg);
578 		sg = sg_next(sg);
579 		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
580 			    q->dma_drain_size,
581 			    ((unsigned long)q->dma_drain_buffer) &
582 			    (PAGE_SIZE - 1));
583 		nsegs++;
584 		rq->extra_len += q->dma_drain_size;
585 	}
586 
587 	if (sg)
588 		sg_mark_end(sg);
589 
590 	/*
591 	 * Something must have been wrong if the figured number of
592 	 * segment is bigger than number of req's physical segments
593 	 */
594 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
595 
596 	return nsegs;
597 }
598 EXPORT_SYMBOL(blk_rq_map_sg);
599 
600 static inline int ll_new_hw_segment(struct request_queue *q,
601 				    struct request *req,
602 				    struct bio *bio)
603 {
604 	int nr_phys_segs = bio_phys_segments(q, bio);
605 
606 	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
607 		goto no_merge;
608 
609 	if (blk_integrity_merge_bio(q, req, bio) == false)
610 		goto no_merge;
611 
612 	/*
613 	 * This will form the start of a new hw segment.  Bump both
614 	 * counters.
615 	 */
616 	req->nr_phys_segments += nr_phys_segs;
617 	return 1;
618 
619 no_merge:
620 	req_set_nomerge(q, req);
621 	return 0;
622 }
623 
624 int ll_back_merge_fn(struct request_queue *q, struct request *req,
625 		     struct bio *bio)
626 {
627 	if (req_gap_back_merge(req, bio))
628 		return 0;
629 	if (blk_integrity_rq(req) &&
630 	    integrity_req_gap_back_merge(req, bio))
631 		return 0;
632 	if (blk_rq_sectors(req) + bio_sectors(bio) >
633 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
634 		req_set_nomerge(q, req);
635 		return 0;
636 	}
637 	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
638 		blk_recount_segments(q, req->biotail);
639 	if (!bio_flagged(bio, BIO_SEG_VALID))
640 		blk_recount_segments(q, bio);
641 
642 	return ll_new_hw_segment(q, req, bio);
643 }
644 
645 int ll_front_merge_fn(struct request_queue *q, struct request *req,
646 		      struct bio *bio)
647 {
648 
649 	if (req_gap_front_merge(req, bio))
650 		return 0;
651 	if (blk_integrity_rq(req) &&
652 	    integrity_req_gap_front_merge(req, bio))
653 		return 0;
654 	if (blk_rq_sectors(req) + bio_sectors(bio) >
655 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
656 		req_set_nomerge(q, req);
657 		return 0;
658 	}
659 	if (!bio_flagged(bio, BIO_SEG_VALID))
660 		blk_recount_segments(q, bio);
661 	if (!bio_flagged(req->bio, BIO_SEG_VALID))
662 		blk_recount_segments(q, req->bio);
663 
664 	return ll_new_hw_segment(q, req, bio);
665 }
666 
667 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
668 		struct request *next)
669 {
670 	unsigned short segments = blk_rq_nr_discard_segments(req);
671 
672 	if (segments >= queue_max_discard_segments(q))
673 		goto no_merge;
674 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
675 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
676 		goto no_merge;
677 
678 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
679 	return true;
680 no_merge:
681 	req_set_nomerge(q, req);
682 	return false;
683 }
684 
685 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
686 				struct request *next)
687 {
688 	int total_phys_segments;
689 	unsigned int seg_size =
690 		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
691 
692 	if (req_gap_back_merge(req, next->bio))
693 		return 0;
694 
695 	/*
696 	 * Will it become too large?
697 	 */
698 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
699 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
700 		return 0;
701 
702 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
703 	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
704 		if (req->nr_phys_segments == 1)
705 			req->bio->bi_seg_front_size = seg_size;
706 		if (next->nr_phys_segments == 1)
707 			next->biotail->bi_seg_back_size = seg_size;
708 		total_phys_segments--;
709 	}
710 
711 	if (total_phys_segments > queue_max_segments(q))
712 		return 0;
713 
714 	if (blk_integrity_merge_rq(q, req, next) == false)
715 		return 0;
716 
717 	/* Merge is OK... */
718 	req->nr_phys_segments = total_phys_segments;
719 	return 1;
720 }
721 
722 /**
723  * blk_rq_set_mixed_merge - mark a request as mixed merge
724  * @rq: request to mark as mixed merge
725  *
726  * Description:
727  *     @rq is about to be mixed merged.  Make sure the attributes
728  *     which can be mixed are set in each bio and mark @rq as mixed
729  *     merged.
730  */
731 void blk_rq_set_mixed_merge(struct request *rq)
732 {
733 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
734 	struct bio *bio;
735 
736 	if (rq->rq_flags & RQF_MIXED_MERGE)
737 		return;
738 
739 	/*
740 	 * @rq will no longer represent mixable attributes for all the
741 	 * contained bios.  It will just track those of the first one.
742 	 * Distributes the attributs to each bio.
743 	 */
744 	for (bio = rq->bio; bio; bio = bio->bi_next) {
745 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
746 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
747 		bio->bi_opf |= ff;
748 	}
749 	rq->rq_flags |= RQF_MIXED_MERGE;
750 }
751 
752 static void blk_account_io_merge(struct request *req)
753 {
754 	if (blk_do_io_stat(req)) {
755 		struct hd_struct *part;
756 
757 		part_stat_lock();
758 		part = req->part;
759 
760 		part_dec_in_flight(req->q, part, rq_data_dir(req));
761 
762 		hd_struct_put(part);
763 		part_stat_unlock();
764 	}
765 }
766 /*
767  * Two cases of handling DISCARD merge:
768  * If max_discard_segments > 1, the driver takes every bio
769  * as a range and send them to controller together. The ranges
770  * needn't to be contiguous.
771  * Otherwise, the bios/requests will be handled as same as
772  * others which should be contiguous.
773  */
774 static inline bool blk_discard_mergable(struct request *req)
775 {
776 	if (req_op(req) == REQ_OP_DISCARD &&
777 	    queue_max_discard_segments(req->q) > 1)
778 		return true;
779 	return false;
780 }
781 
782 static enum elv_merge blk_try_req_merge(struct request *req,
783 					struct request *next)
784 {
785 	if (blk_discard_mergable(req))
786 		return ELEVATOR_DISCARD_MERGE;
787 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
788 		return ELEVATOR_BACK_MERGE;
789 
790 	return ELEVATOR_NO_MERGE;
791 }
792 
793 /*
794  * For non-mq, this has to be called with the request spinlock acquired.
795  * For mq with scheduling, the appropriate queue wide lock should be held.
796  */
797 static struct request *attempt_merge(struct request_queue *q,
798 				     struct request *req, struct request *next)
799 {
800 	if (!rq_mergeable(req) || !rq_mergeable(next))
801 		return NULL;
802 
803 	if (req_op(req) != req_op(next))
804 		return NULL;
805 
806 	if (rq_data_dir(req) != rq_data_dir(next)
807 	    || req->rq_disk != next->rq_disk)
808 		return NULL;
809 
810 	if (req_op(req) == REQ_OP_WRITE_SAME &&
811 	    !blk_write_same_mergeable(req->bio, next->bio))
812 		return NULL;
813 
814 	/*
815 	 * Don't allow merge of different write hints, or for a hint with
816 	 * non-hint IO.
817 	 */
818 	if (req->write_hint != next->write_hint)
819 		return NULL;
820 
821 	if (req->ioprio != next->ioprio)
822 		return NULL;
823 
824 	/*
825 	 * If we are allowed to merge, then append bio list
826 	 * from next to rq and release next. merge_requests_fn
827 	 * will have updated segment counts, update sector
828 	 * counts here. Handle DISCARDs separately, as they
829 	 * have separate settings.
830 	 */
831 
832 	switch (blk_try_req_merge(req, next)) {
833 	case ELEVATOR_DISCARD_MERGE:
834 		if (!req_attempt_discard_merge(q, req, next))
835 			return NULL;
836 		break;
837 	case ELEVATOR_BACK_MERGE:
838 		if (!ll_merge_requests_fn(q, req, next))
839 			return NULL;
840 		break;
841 	default:
842 		return NULL;
843 	}
844 
845 	/*
846 	 * If failfast settings disagree or any of the two is already
847 	 * a mixed merge, mark both as mixed before proceeding.  This
848 	 * makes sure that all involved bios have mixable attributes
849 	 * set properly.
850 	 */
851 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
852 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
853 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
854 		blk_rq_set_mixed_merge(req);
855 		blk_rq_set_mixed_merge(next);
856 	}
857 
858 	/*
859 	 * At this point we have either done a back merge or front merge. We
860 	 * need the smaller start_time_ns of the merged requests to be the
861 	 * current request for accounting purposes.
862 	 */
863 	if (next->start_time_ns < req->start_time_ns)
864 		req->start_time_ns = next->start_time_ns;
865 
866 	req->biotail->bi_next = next->bio;
867 	req->biotail = next->biotail;
868 
869 	req->__data_len += blk_rq_bytes(next);
870 
871 	if (!blk_discard_mergable(req))
872 		elv_merge_requests(q, req, next);
873 
874 	/*
875 	 * 'next' is going away, so update stats accordingly
876 	 */
877 	blk_account_io_merge(next);
878 
879 	/*
880 	 * ownership of bio passed from next to req, return 'next' for
881 	 * the caller to free
882 	 */
883 	next->bio = NULL;
884 	return next;
885 }
886 
887 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
888 {
889 	struct request *next = elv_latter_request(q, rq);
890 
891 	if (next)
892 		return attempt_merge(q, rq, next);
893 
894 	return NULL;
895 }
896 
897 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
898 {
899 	struct request *prev = elv_former_request(q, rq);
900 
901 	if (prev)
902 		return attempt_merge(q, prev, rq);
903 
904 	return NULL;
905 }
906 
907 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
908 			  struct request *next)
909 {
910 	struct request *free;
911 
912 	free = attempt_merge(q, rq, next);
913 	if (free) {
914 		blk_put_request(free);
915 		return 1;
916 	}
917 
918 	return 0;
919 }
920 
921 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
922 {
923 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
924 		return false;
925 
926 	if (req_op(rq) != bio_op(bio))
927 		return false;
928 
929 	/* different data direction or already started, don't merge */
930 	if (bio_data_dir(bio) != rq_data_dir(rq))
931 		return false;
932 
933 	/* must be same device */
934 	if (rq->rq_disk != bio->bi_disk)
935 		return false;
936 
937 	/* only merge integrity protected bio into ditto rq */
938 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
939 		return false;
940 
941 	/* must be using the same buffer */
942 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
943 	    !blk_write_same_mergeable(rq->bio, bio))
944 		return false;
945 
946 	/*
947 	 * Don't allow merge of different write hints, or for a hint with
948 	 * non-hint IO.
949 	 */
950 	if (rq->write_hint != bio->bi_write_hint)
951 		return false;
952 
953 	if (rq->ioprio != bio_prio(bio))
954 		return false;
955 
956 	return true;
957 }
958 
959 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
960 {
961 	if (blk_discard_mergable(rq))
962 		return ELEVATOR_DISCARD_MERGE;
963 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
964 		return ELEVATOR_BACK_MERGE;
965 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
966 		return ELEVATOR_FRONT_MERGE;
967 	return ELEVATOR_NO_MERGE;
968 }
969