1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 15 static inline bool bio_will_gap(struct request_queue *q, 16 struct request *prev_rq, struct bio *prev, struct bio *next) 17 { 18 struct bio_vec pb, nb; 19 20 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 21 return false; 22 23 /* 24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 25 * is quite difficult to respect the sg gap limit. We work hard to 26 * merge a huge number of small single bios in case of mkfs. 27 */ 28 if (prev_rq) 29 bio_get_first_bvec(prev_rq->bio, &pb); 30 else 31 bio_get_first_bvec(prev, &pb); 32 if (pb.bv_offset & queue_virt_boundary(q)) 33 return true; 34 35 /* 36 * We don't need to worry about the situation that the merged segment 37 * ends in unaligned virt boundary: 38 * 39 * - if 'pb' ends aligned, the merged segment ends aligned 40 * - if 'pb' ends unaligned, the next bio must include 41 * one single bvec of 'nb', otherwise the 'nb' can't 42 * merge with 'pb' 43 */ 44 bio_get_last_bvec(prev, &pb); 45 bio_get_first_bvec(next, &nb); 46 if (biovec_phys_mergeable(q, &pb, &nb)) 47 return false; 48 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 49 } 50 51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 52 { 53 return bio_will_gap(req->q, req, req->biotail, bio); 54 } 55 56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 57 { 58 return bio_will_gap(req->q, NULL, bio, req->bio); 59 } 60 61 static struct bio *blk_bio_discard_split(struct request_queue *q, 62 struct bio *bio, 63 struct bio_set *bs, 64 unsigned *nsegs) 65 { 66 unsigned int max_discard_sectors, granularity; 67 int alignment; 68 sector_t tmp; 69 unsigned split_sectors; 70 71 *nsegs = 1; 72 73 /* Zero-sector (unknown) and one-sector granularities are the same. */ 74 granularity = max(q->limits.discard_granularity >> 9, 1U); 75 76 max_discard_sectors = min(q->limits.max_discard_sectors, 77 bio_allowed_max_sectors(q)); 78 max_discard_sectors -= max_discard_sectors % granularity; 79 80 if (unlikely(!max_discard_sectors)) { 81 /* XXX: warn */ 82 return NULL; 83 } 84 85 if (bio_sectors(bio) <= max_discard_sectors) 86 return NULL; 87 88 split_sectors = max_discard_sectors; 89 90 /* 91 * If the next starting sector would be misaligned, stop the discard at 92 * the previous aligned sector. 93 */ 94 alignment = (q->limits.discard_alignment >> 9) % granularity; 95 96 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 97 tmp = sector_div(tmp, granularity); 98 99 if (split_sectors > tmp) 100 split_sectors -= tmp; 101 102 return bio_split(bio, split_sectors, GFP_NOIO, bs); 103 } 104 105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 106 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 107 { 108 *nsegs = 0; 109 110 if (!q->limits.max_write_zeroes_sectors) 111 return NULL; 112 113 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 114 return NULL; 115 116 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 117 } 118 119 static struct bio *blk_bio_write_same_split(struct request_queue *q, 120 struct bio *bio, 121 struct bio_set *bs, 122 unsigned *nsegs) 123 { 124 *nsegs = 1; 125 126 if (!q->limits.max_write_same_sectors) 127 return NULL; 128 129 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 130 return NULL; 131 132 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 133 } 134 135 /* 136 * Return the maximum number of sectors from the start of a bio that may be 137 * submitted as a single request to a block device. If enough sectors remain, 138 * align the end to the physical block size. Otherwise align the end to the 139 * logical block size. This approach minimizes the number of non-aligned 140 * requests that are submitted to a block device if the start of a bio is not 141 * aligned to a physical block boundary. 142 */ 143 static inline unsigned get_max_io_size(struct request_queue *q, 144 struct bio *bio) 145 { 146 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 147 unsigned max_sectors = sectors; 148 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 149 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 150 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 151 152 max_sectors += start_offset; 153 max_sectors &= ~(pbs - 1); 154 if (max_sectors > start_offset) 155 return max_sectors - start_offset; 156 157 return sectors & (lbs - 1); 158 } 159 160 static inline unsigned get_max_segment_size(const struct request_queue *q, 161 struct page *start_page, 162 unsigned long offset) 163 { 164 unsigned long mask = queue_segment_boundary(q); 165 166 offset = mask & (page_to_phys(start_page) + offset); 167 168 /* 169 * overflow may be triggered in case of zero page physical address 170 * on 32bit arch, use queue's max segment size when that happens. 171 */ 172 return min_not_zero(mask - offset + 1, 173 (unsigned long)queue_max_segment_size(q)); 174 } 175 176 /** 177 * bvec_split_segs - verify whether or not a bvec should be split in the middle 178 * @q: [in] request queue associated with the bio associated with @bv 179 * @bv: [in] bvec to examine 180 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 181 * by the number of segments from @bv that may be appended to that 182 * bio without exceeding @max_segs 183 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 184 * by the number of sectors from @bv that may be appended to that 185 * bio without exceeding @max_sectors 186 * @max_segs: [in] upper bound for *@nsegs 187 * @max_sectors: [in] upper bound for *@sectors 188 * 189 * When splitting a bio, it can happen that a bvec is encountered that is too 190 * big to fit in a single segment and hence that it has to be split in the 191 * middle. This function verifies whether or not that should happen. The value 192 * %true is returned if and only if appending the entire @bv to a bio with 193 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 194 * the block driver. 195 */ 196 static bool bvec_split_segs(const struct request_queue *q, 197 const struct bio_vec *bv, unsigned *nsegs, 198 unsigned *sectors, unsigned max_segs, 199 unsigned max_sectors) 200 { 201 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 202 unsigned len = min(bv->bv_len, max_len); 203 unsigned total_len = 0; 204 unsigned seg_size = 0; 205 206 while (len && *nsegs < max_segs) { 207 seg_size = get_max_segment_size(q, bv->bv_page, 208 bv->bv_offset + total_len); 209 seg_size = min(seg_size, len); 210 211 (*nsegs)++; 212 total_len += seg_size; 213 len -= seg_size; 214 215 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 216 break; 217 } 218 219 *sectors += total_len >> 9; 220 221 /* tell the caller to split the bvec if it is too big to fit */ 222 return len > 0 || bv->bv_len > max_len; 223 } 224 225 /** 226 * blk_bio_segment_split - split a bio in two bios 227 * @q: [in] request queue pointer 228 * @bio: [in] bio to be split 229 * @bs: [in] bio set to allocate the clone from 230 * @segs: [out] number of segments in the bio with the first half of the sectors 231 * 232 * Clone @bio, update the bi_iter of the clone to represent the first sectors 233 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 234 * following is guaranteed for the cloned bio: 235 * - That it has at most get_max_io_size(@q, @bio) sectors. 236 * - That it has at most queue_max_segments(@q) segments. 237 * 238 * Except for discard requests the cloned bio will point at the bi_io_vec of 239 * the original bio. It is the responsibility of the caller to ensure that the 240 * original bio is not freed before the cloned bio. The caller is also 241 * responsible for ensuring that @bs is only destroyed after processing of the 242 * split bio has finished. 243 */ 244 static struct bio *blk_bio_segment_split(struct request_queue *q, 245 struct bio *bio, 246 struct bio_set *bs, 247 unsigned *segs) 248 { 249 struct bio_vec bv, bvprv, *bvprvp = NULL; 250 struct bvec_iter iter; 251 unsigned nsegs = 0, sectors = 0; 252 const unsigned max_sectors = get_max_io_size(q, bio); 253 const unsigned max_segs = queue_max_segments(q); 254 255 bio_for_each_bvec(bv, bio, iter) { 256 /* 257 * If the queue doesn't support SG gaps and adding this 258 * offset would create a gap, disallow it. 259 */ 260 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 261 goto split; 262 263 if (nsegs < max_segs && 264 sectors + (bv.bv_len >> 9) <= max_sectors && 265 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 266 nsegs++; 267 sectors += bv.bv_len >> 9; 268 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 269 max_sectors)) { 270 goto split; 271 } 272 273 bvprv = bv; 274 bvprvp = &bvprv; 275 } 276 277 *segs = nsegs; 278 return NULL; 279 split: 280 *segs = nsegs; 281 return bio_split(bio, sectors, GFP_NOIO, bs); 282 } 283 284 /** 285 * __blk_queue_split - split a bio and submit the second half 286 * @q: [in] request queue pointer 287 * @bio: [in, out] bio to be split 288 * @nr_segs: [out] number of segments in the first bio 289 * 290 * Split a bio into two bios, chain the two bios, submit the second half and 291 * store a pointer to the first half in *@bio. If the second bio is still too 292 * big it will be split by a recursive call to this function. Since this 293 * function may allocate a new bio from @q->bio_split, it is the responsibility 294 * of the caller to ensure that @q is only released after processing of the 295 * split bio has finished. 296 */ 297 void __blk_queue_split(struct request_queue *q, struct bio **bio, 298 unsigned int *nr_segs) 299 { 300 struct bio *split = NULL; 301 302 switch (bio_op(*bio)) { 303 case REQ_OP_DISCARD: 304 case REQ_OP_SECURE_ERASE: 305 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 306 break; 307 case REQ_OP_WRITE_ZEROES: 308 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 309 nr_segs); 310 break; 311 case REQ_OP_WRITE_SAME: 312 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 313 nr_segs); 314 break; 315 default: 316 /* 317 * All drivers must accept single-segments bios that are <= 318 * PAGE_SIZE. This is a quick and dirty check that relies on 319 * the fact that bi_io_vec[0] is always valid if a bio has data. 320 * The check might lead to occasional false negatives when bios 321 * are cloned, but compared to the performance impact of cloned 322 * bios themselves the loop below doesn't matter anyway. 323 */ 324 if (!q->limits.chunk_sectors && 325 (*bio)->bi_vcnt == 1 && 326 ((*bio)->bi_io_vec[0].bv_len + 327 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { 328 *nr_segs = 1; 329 break; 330 } 331 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 332 break; 333 } 334 335 if (split) { 336 /* there isn't chance to merge the splitted bio */ 337 split->bi_opf |= REQ_NOMERGE; 338 339 bio_chain(split, *bio); 340 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 341 generic_make_request(*bio); 342 *bio = split; 343 } 344 } 345 346 /** 347 * blk_queue_split - split a bio and submit the second half 348 * @q: [in] request queue pointer 349 * @bio: [in, out] bio to be split 350 * 351 * Split a bio into two bios, chains the two bios, submit the second half and 352 * store a pointer to the first half in *@bio. Since this function may allocate 353 * a new bio from @q->bio_split, it is the responsibility of the caller to 354 * ensure that @q is only released after processing of the split bio has 355 * finished. 356 */ 357 void blk_queue_split(struct request_queue *q, struct bio **bio) 358 { 359 unsigned int nr_segs; 360 361 __blk_queue_split(q, bio, &nr_segs); 362 } 363 EXPORT_SYMBOL(blk_queue_split); 364 365 unsigned int blk_recalc_rq_segments(struct request *rq) 366 { 367 unsigned int nr_phys_segs = 0; 368 unsigned int nr_sectors = 0; 369 struct req_iterator iter; 370 struct bio_vec bv; 371 372 if (!rq->bio) 373 return 0; 374 375 switch (bio_op(rq->bio)) { 376 case REQ_OP_DISCARD: 377 case REQ_OP_SECURE_ERASE: 378 case REQ_OP_WRITE_ZEROES: 379 return 0; 380 case REQ_OP_WRITE_SAME: 381 return 1; 382 } 383 384 rq_for_each_bvec(bv, rq, iter) 385 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 386 UINT_MAX, UINT_MAX); 387 return nr_phys_segs; 388 } 389 390 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 391 struct scatterlist *sglist) 392 { 393 if (!*sg) 394 return sglist; 395 396 /* 397 * If the driver previously mapped a shorter list, we could see a 398 * termination bit prematurely unless it fully inits the sg table 399 * on each mapping. We KNOW that there must be more entries here 400 * or the driver would be buggy, so force clear the termination bit 401 * to avoid doing a full sg_init_table() in drivers for each command. 402 */ 403 sg_unmark_end(*sg); 404 return sg_next(*sg); 405 } 406 407 static unsigned blk_bvec_map_sg(struct request_queue *q, 408 struct bio_vec *bvec, struct scatterlist *sglist, 409 struct scatterlist **sg) 410 { 411 unsigned nbytes = bvec->bv_len; 412 unsigned nsegs = 0, total = 0; 413 414 while (nbytes > 0) { 415 unsigned offset = bvec->bv_offset + total; 416 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 417 offset), nbytes); 418 struct page *page = bvec->bv_page; 419 420 /* 421 * Unfortunately a fair number of drivers barf on scatterlists 422 * that have an offset larger than PAGE_SIZE, despite other 423 * subsystems dealing with that invariant just fine. For now 424 * stick to the legacy format where we never present those from 425 * the block layer, but the code below should be removed once 426 * these offenders (mostly MMC/SD drivers) are fixed. 427 */ 428 page += (offset >> PAGE_SHIFT); 429 offset &= ~PAGE_MASK; 430 431 *sg = blk_next_sg(sg, sglist); 432 sg_set_page(*sg, page, len, offset); 433 434 total += len; 435 nbytes -= len; 436 nsegs++; 437 } 438 439 return nsegs; 440 } 441 442 static inline int __blk_bvec_map_sg(struct bio_vec bv, 443 struct scatterlist *sglist, struct scatterlist **sg) 444 { 445 *sg = blk_next_sg(sg, sglist); 446 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 447 return 1; 448 } 449 450 /* only try to merge bvecs into one sg if they are from two bios */ 451 static inline bool 452 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 453 struct bio_vec *bvprv, struct scatterlist **sg) 454 { 455 456 int nbytes = bvec->bv_len; 457 458 if (!*sg) 459 return false; 460 461 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 462 return false; 463 464 if (!biovec_phys_mergeable(q, bvprv, bvec)) 465 return false; 466 467 (*sg)->length += nbytes; 468 469 return true; 470 } 471 472 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 473 struct scatterlist *sglist, 474 struct scatterlist **sg) 475 { 476 struct bio_vec uninitialized_var(bvec), bvprv = { NULL }; 477 struct bvec_iter iter; 478 int nsegs = 0; 479 bool new_bio = false; 480 481 for_each_bio(bio) { 482 bio_for_each_bvec(bvec, bio, iter) { 483 /* 484 * Only try to merge bvecs from two bios given we 485 * have done bio internal merge when adding pages 486 * to bio 487 */ 488 if (new_bio && 489 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 490 goto next_bvec; 491 492 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 493 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 494 else 495 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 496 next_bvec: 497 new_bio = false; 498 } 499 if (likely(bio->bi_iter.bi_size)) { 500 bvprv = bvec; 501 new_bio = true; 502 } 503 } 504 505 return nsegs; 506 } 507 508 /* 509 * map a request to scatterlist, return number of sg entries setup. Caller 510 * must make sure sg can hold rq->nr_phys_segments entries 511 */ 512 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 513 struct scatterlist *sglist, struct scatterlist **last_sg) 514 { 515 int nsegs = 0; 516 517 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 518 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 519 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 520 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); 521 else if (rq->bio) 522 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 523 524 if (*last_sg) 525 sg_mark_end(*last_sg); 526 527 /* 528 * Something must have been wrong if the figured number of 529 * segment is bigger than number of req's physical segments 530 */ 531 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 532 533 return nsegs; 534 } 535 EXPORT_SYMBOL(__blk_rq_map_sg); 536 537 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 538 unsigned int nr_phys_segs) 539 { 540 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q)) 541 goto no_merge; 542 543 if (blk_integrity_merge_bio(req->q, req, bio) == false) 544 goto no_merge; 545 546 /* 547 * This will form the start of a new hw segment. Bump both 548 * counters. 549 */ 550 req->nr_phys_segments += nr_phys_segs; 551 return 1; 552 553 no_merge: 554 req_set_nomerge(req->q, req); 555 return 0; 556 } 557 558 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 559 { 560 if (req_gap_back_merge(req, bio)) 561 return 0; 562 if (blk_integrity_rq(req) && 563 integrity_req_gap_back_merge(req, bio)) 564 return 0; 565 if (!bio_crypt_ctx_back_mergeable(req, bio)) 566 return 0; 567 if (blk_rq_sectors(req) + bio_sectors(bio) > 568 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 569 req_set_nomerge(req->q, req); 570 return 0; 571 } 572 573 return ll_new_hw_segment(req, bio, nr_segs); 574 } 575 576 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 577 { 578 if (req_gap_front_merge(req, bio)) 579 return 0; 580 if (blk_integrity_rq(req) && 581 integrity_req_gap_front_merge(req, bio)) 582 return 0; 583 if (!bio_crypt_ctx_front_mergeable(req, bio)) 584 return 0; 585 if (blk_rq_sectors(req) + bio_sectors(bio) > 586 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 587 req_set_nomerge(req->q, req); 588 return 0; 589 } 590 591 return ll_new_hw_segment(req, bio, nr_segs); 592 } 593 594 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 595 struct request *next) 596 { 597 unsigned short segments = blk_rq_nr_discard_segments(req); 598 599 if (segments >= queue_max_discard_segments(q)) 600 goto no_merge; 601 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 602 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 603 goto no_merge; 604 605 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 606 return true; 607 no_merge: 608 req_set_nomerge(q, req); 609 return false; 610 } 611 612 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 613 struct request *next) 614 { 615 int total_phys_segments; 616 617 if (req_gap_back_merge(req, next->bio)) 618 return 0; 619 620 /* 621 * Will it become too large? 622 */ 623 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 624 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 625 return 0; 626 627 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 628 if (total_phys_segments > queue_max_segments(q)) 629 return 0; 630 631 if (blk_integrity_merge_rq(q, req, next) == false) 632 return 0; 633 634 if (!bio_crypt_ctx_merge_rq(req, next)) 635 return 0; 636 637 /* Merge is OK... */ 638 req->nr_phys_segments = total_phys_segments; 639 return 1; 640 } 641 642 /** 643 * blk_rq_set_mixed_merge - mark a request as mixed merge 644 * @rq: request to mark as mixed merge 645 * 646 * Description: 647 * @rq is about to be mixed merged. Make sure the attributes 648 * which can be mixed are set in each bio and mark @rq as mixed 649 * merged. 650 */ 651 void blk_rq_set_mixed_merge(struct request *rq) 652 { 653 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 654 struct bio *bio; 655 656 if (rq->rq_flags & RQF_MIXED_MERGE) 657 return; 658 659 /* 660 * @rq will no longer represent mixable attributes for all the 661 * contained bios. It will just track those of the first one. 662 * Distributes the attributs to each bio. 663 */ 664 for (bio = rq->bio; bio; bio = bio->bi_next) { 665 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 666 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 667 bio->bi_opf |= ff; 668 } 669 rq->rq_flags |= RQF_MIXED_MERGE; 670 } 671 672 static void blk_account_io_merge_request(struct request *req) 673 { 674 if (blk_do_io_stat(req)) { 675 part_stat_lock(); 676 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 677 part_stat_unlock(); 678 679 hd_struct_put(req->part); 680 } 681 } 682 683 /* 684 * Two cases of handling DISCARD merge: 685 * If max_discard_segments > 1, the driver takes every bio 686 * as a range and send them to controller together. The ranges 687 * needn't to be contiguous. 688 * Otherwise, the bios/requests will be handled as same as 689 * others which should be contiguous. 690 */ 691 static inline bool blk_discard_mergable(struct request *req) 692 { 693 if (req_op(req) == REQ_OP_DISCARD && 694 queue_max_discard_segments(req->q) > 1) 695 return true; 696 return false; 697 } 698 699 static enum elv_merge blk_try_req_merge(struct request *req, 700 struct request *next) 701 { 702 if (blk_discard_mergable(req)) 703 return ELEVATOR_DISCARD_MERGE; 704 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 705 return ELEVATOR_BACK_MERGE; 706 707 return ELEVATOR_NO_MERGE; 708 } 709 710 /* 711 * For non-mq, this has to be called with the request spinlock acquired. 712 * For mq with scheduling, the appropriate queue wide lock should be held. 713 */ 714 static struct request *attempt_merge(struct request_queue *q, 715 struct request *req, struct request *next) 716 { 717 if (!rq_mergeable(req) || !rq_mergeable(next)) 718 return NULL; 719 720 if (req_op(req) != req_op(next)) 721 return NULL; 722 723 if (rq_data_dir(req) != rq_data_dir(next) 724 || req->rq_disk != next->rq_disk) 725 return NULL; 726 727 if (req_op(req) == REQ_OP_WRITE_SAME && 728 !blk_write_same_mergeable(req->bio, next->bio)) 729 return NULL; 730 731 /* 732 * Don't allow merge of different write hints, or for a hint with 733 * non-hint IO. 734 */ 735 if (req->write_hint != next->write_hint) 736 return NULL; 737 738 if (req->ioprio != next->ioprio) 739 return NULL; 740 741 /* 742 * If we are allowed to merge, then append bio list 743 * from next to rq and release next. merge_requests_fn 744 * will have updated segment counts, update sector 745 * counts here. Handle DISCARDs separately, as they 746 * have separate settings. 747 */ 748 749 switch (blk_try_req_merge(req, next)) { 750 case ELEVATOR_DISCARD_MERGE: 751 if (!req_attempt_discard_merge(q, req, next)) 752 return NULL; 753 break; 754 case ELEVATOR_BACK_MERGE: 755 if (!ll_merge_requests_fn(q, req, next)) 756 return NULL; 757 break; 758 default: 759 return NULL; 760 } 761 762 /* 763 * If failfast settings disagree or any of the two is already 764 * a mixed merge, mark both as mixed before proceeding. This 765 * makes sure that all involved bios have mixable attributes 766 * set properly. 767 */ 768 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 769 (req->cmd_flags & REQ_FAILFAST_MASK) != 770 (next->cmd_flags & REQ_FAILFAST_MASK)) { 771 blk_rq_set_mixed_merge(req); 772 blk_rq_set_mixed_merge(next); 773 } 774 775 /* 776 * At this point we have either done a back merge or front merge. We 777 * need the smaller start_time_ns of the merged requests to be the 778 * current request for accounting purposes. 779 */ 780 if (next->start_time_ns < req->start_time_ns) 781 req->start_time_ns = next->start_time_ns; 782 783 req->biotail->bi_next = next->bio; 784 req->biotail = next->biotail; 785 786 req->__data_len += blk_rq_bytes(next); 787 788 if (!blk_discard_mergable(req)) 789 elv_merge_requests(q, req, next); 790 791 /* 792 * 'next' is going away, so update stats accordingly 793 */ 794 blk_account_io_merge_request(next); 795 796 /* 797 * ownership of bio passed from next to req, return 'next' for 798 * the caller to free 799 */ 800 next->bio = NULL; 801 return next; 802 } 803 804 struct request *attempt_back_merge(struct request_queue *q, struct request *rq) 805 { 806 struct request *next = elv_latter_request(q, rq); 807 808 if (next) 809 return attempt_merge(q, rq, next); 810 811 return NULL; 812 } 813 814 struct request *attempt_front_merge(struct request_queue *q, struct request *rq) 815 { 816 struct request *prev = elv_former_request(q, rq); 817 818 if (prev) 819 return attempt_merge(q, prev, rq); 820 821 return NULL; 822 } 823 824 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 825 struct request *next) 826 { 827 struct request *free; 828 829 free = attempt_merge(q, rq, next); 830 if (free) { 831 blk_put_request(free); 832 return 1; 833 } 834 835 return 0; 836 } 837 838 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 839 { 840 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 841 return false; 842 843 if (req_op(rq) != bio_op(bio)) 844 return false; 845 846 /* different data direction or already started, don't merge */ 847 if (bio_data_dir(bio) != rq_data_dir(rq)) 848 return false; 849 850 /* must be same device */ 851 if (rq->rq_disk != bio->bi_disk) 852 return false; 853 854 /* only merge integrity protected bio into ditto rq */ 855 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 856 return false; 857 858 /* Only merge if the crypt contexts are compatible */ 859 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 860 return false; 861 862 /* must be using the same buffer */ 863 if (req_op(rq) == REQ_OP_WRITE_SAME && 864 !blk_write_same_mergeable(rq->bio, bio)) 865 return false; 866 867 /* 868 * Don't allow merge of different write hints, or for a hint with 869 * non-hint IO. 870 */ 871 if (rq->write_hint != bio->bi_write_hint) 872 return false; 873 874 if (rq->ioprio != bio_prio(bio)) 875 return false; 876 877 return true; 878 } 879 880 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 881 { 882 if (blk_discard_mergable(rq)) 883 return ELEVATOR_DISCARD_MERGE; 884 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 885 return ELEVATOR_BACK_MERGE; 886 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 887 return ELEVATOR_FRONT_MERGE; 888 return ELEVATOR_NO_MERGE; 889 } 890