1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_split_discard(struct bio *bio, 109 const struct queue_limits *lim, 110 unsigned *nsegs, struct bio_set *bs) 111 { 112 unsigned int max_discard_sectors, granularity; 113 sector_t tmp; 114 unsigned split_sectors; 115 116 *nsegs = 1; 117 118 /* Zero-sector (unknown) and one-sector granularities are the same. */ 119 granularity = max(lim->discard_granularity >> 9, 1U); 120 121 max_discard_sectors = 122 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 123 max_discard_sectors -= max_discard_sectors % granularity; 124 125 if (unlikely(!max_discard_sectors)) { 126 /* XXX: warn */ 127 return NULL; 128 } 129 130 if (bio_sectors(bio) <= max_discard_sectors) 131 return NULL; 132 133 split_sectors = max_discard_sectors; 134 135 /* 136 * If the next starting sector would be misaligned, stop the discard at 137 * the previous aligned sector. 138 */ 139 tmp = bio->bi_iter.bi_sector + split_sectors - 140 ((lim->discard_alignment >> 9) % granularity); 141 tmp = sector_div(tmp, granularity); 142 143 if (split_sectors > tmp) 144 split_sectors -= tmp; 145 146 return bio_split(bio, split_sectors, GFP_NOIO, bs); 147 } 148 149 static struct bio *bio_split_write_zeroes(struct bio *bio, 150 const struct queue_limits *lim, 151 unsigned *nsegs, struct bio_set *bs) 152 { 153 *nsegs = 0; 154 if (!lim->max_write_zeroes_sectors) 155 return NULL; 156 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors) 157 return NULL; 158 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs); 159 } 160 161 /* 162 * Return the maximum number of sectors from the start of a bio that may be 163 * submitted as a single request to a block device. If enough sectors remain, 164 * align the end to the physical block size. Otherwise align the end to the 165 * logical block size. This approach minimizes the number of non-aligned 166 * requests that are submitted to a block device if the start of a bio is not 167 * aligned to a physical block boundary. 168 */ 169 static inline unsigned get_max_io_size(struct bio *bio, 170 const struct queue_limits *lim) 171 { 172 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 173 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 174 unsigned max_sectors = lim->max_sectors, start, end; 175 176 if (lim->chunk_sectors) { 177 max_sectors = min(max_sectors, 178 blk_chunk_sectors_left(bio->bi_iter.bi_sector, 179 lim->chunk_sectors)); 180 } 181 182 start = bio->bi_iter.bi_sector & (pbs - 1); 183 end = (start + max_sectors) & ~(pbs - 1); 184 if (end > start) 185 return end - start; 186 return max_sectors & ~(lbs - 1); 187 } 188 189 /** 190 * get_max_segment_size() - maximum number of bytes to add as a single segment 191 * @lim: Request queue limits. 192 * @start_page: See below. 193 * @offset: Offset from @start_page where to add a segment. 194 * 195 * Returns the maximum number of bytes that can be added as a single segment. 196 */ 197 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 198 struct page *start_page, unsigned long offset) 199 { 200 unsigned long mask = lim->seg_boundary_mask; 201 202 offset = mask & (page_to_phys(start_page) + offset); 203 204 /* 205 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 206 * after having calculated the minimum. 207 */ 208 return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1; 209 } 210 211 /** 212 * bvec_split_segs - verify whether or not a bvec should be split in the middle 213 * @lim: [in] queue limits to split based on 214 * @bv: [in] bvec to examine 215 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 216 * by the number of segments from @bv that may be appended to that 217 * bio without exceeding @max_segs 218 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 219 * by the number of bytes from @bv that may be appended to that 220 * bio without exceeding @max_bytes 221 * @max_segs: [in] upper bound for *@nsegs 222 * @max_bytes: [in] upper bound for *@bytes 223 * 224 * When splitting a bio, it can happen that a bvec is encountered that is too 225 * big to fit in a single segment and hence that it has to be split in the 226 * middle. This function verifies whether or not that should happen. The value 227 * %true is returned if and only if appending the entire @bv to a bio with 228 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 229 * the block driver. 230 */ 231 static bool bvec_split_segs(const struct queue_limits *lim, 232 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, 233 unsigned max_segs, unsigned max_bytes) 234 { 235 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 236 unsigned len = min(bv->bv_len, max_len); 237 unsigned total_len = 0; 238 unsigned seg_size = 0; 239 240 while (len && *nsegs < max_segs) { 241 seg_size = get_max_segment_size(lim, bv->bv_page, 242 bv->bv_offset + total_len); 243 seg_size = min(seg_size, len); 244 245 (*nsegs)++; 246 total_len += seg_size; 247 len -= seg_size; 248 249 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 250 break; 251 } 252 253 *bytes += total_len; 254 255 /* tell the caller to split the bvec if it is too big to fit */ 256 return len > 0 || bv->bv_len > max_len; 257 } 258 259 /** 260 * bio_split_rw - split a bio in two bios 261 * @bio: [in] bio to be split 262 * @lim: [in] queue limits to split based on 263 * @segs: [out] number of segments in the bio with the first half of the sectors 264 * @bs: [in] bio set to allocate the clone from 265 * @max_bytes: [in] maximum number of bytes per bio 266 * 267 * Clone @bio, update the bi_iter of the clone to represent the first sectors 268 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 269 * following is guaranteed for the cloned bio: 270 * - That it has at most @max_bytes worth of data 271 * - That it has at most queue_max_segments(@q) segments. 272 * 273 * Except for discard requests the cloned bio will point at the bi_io_vec of 274 * the original bio. It is the responsibility of the caller to ensure that the 275 * original bio is not freed before the cloned bio. The caller is also 276 * responsible for ensuring that @bs is only destroyed after processing of the 277 * split bio has finished. 278 */ 279 static struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 280 unsigned *segs, struct bio_set *bs, unsigned max_bytes) 281 { 282 struct bio_vec bv, bvprv, *bvprvp = NULL; 283 struct bvec_iter iter; 284 unsigned nsegs = 0, bytes = 0; 285 286 bio_for_each_bvec(bv, bio, iter) { 287 /* 288 * If the queue doesn't support SG gaps and adding this 289 * offset would create a gap, disallow it. 290 */ 291 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 292 goto split; 293 294 if (nsegs < lim->max_segments && 295 bytes + bv.bv_len <= max_bytes && 296 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 297 nsegs++; 298 bytes += bv.bv_len; 299 } else { 300 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 301 lim->max_segments, max_bytes)) 302 goto split; 303 } 304 305 bvprv = bv; 306 bvprvp = &bvprv; 307 } 308 309 *segs = nsegs; 310 return NULL; 311 split: 312 /* 313 * We can't sanely support splitting for a REQ_NOWAIT bio. End it 314 * with EAGAIN if splitting is required and return an error pointer. 315 */ 316 if (bio->bi_opf & REQ_NOWAIT) { 317 bio->bi_status = BLK_STS_AGAIN; 318 bio_endio(bio); 319 return ERR_PTR(-EAGAIN); 320 } 321 322 *segs = nsegs; 323 324 /* 325 * Individual bvecs might not be logical block aligned. Round down the 326 * split size so that each bio is properly block size aligned, even if 327 * we do not use the full hardware limits. 328 */ 329 bytes = ALIGN_DOWN(bytes, lim->logical_block_size); 330 331 /* 332 * Bio splitting may cause subtle trouble such as hang when doing sync 333 * iopoll in direct IO routine. Given performance gain of iopoll for 334 * big IO can be trival, disable iopoll when split needed. 335 */ 336 bio_clear_polled(bio); 337 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs); 338 } 339 340 /** 341 * __bio_split_to_limits - split a bio to fit the queue limits 342 * @bio: bio to be split 343 * @lim: queue limits to split based on 344 * @nr_segs: returns the number of segments in the returned bio 345 * 346 * Check if @bio needs splitting based on the queue limits, and if so split off 347 * a bio fitting the limits from the beginning of @bio and return it. @bio is 348 * shortened to the remainder and re-submitted. 349 * 350 * The split bio is allocated from @q->bio_split, which is provided by the 351 * block layer. 352 */ 353 struct bio *__bio_split_to_limits(struct bio *bio, 354 const struct queue_limits *lim, 355 unsigned int *nr_segs) 356 { 357 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split; 358 struct bio *split; 359 360 switch (bio_op(bio)) { 361 case REQ_OP_DISCARD: 362 case REQ_OP_SECURE_ERASE: 363 split = bio_split_discard(bio, lim, nr_segs, bs); 364 break; 365 case REQ_OP_WRITE_ZEROES: 366 split = bio_split_write_zeroes(bio, lim, nr_segs, bs); 367 break; 368 default: 369 split = bio_split_rw(bio, lim, nr_segs, bs, 370 get_max_io_size(bio, lim) << SECTOR_SHIFT); 371 if (IS_ERR(split)) 372 return NULL; 373 break; 374 } 375 376 if (split) { 377 /* there isn't chance to merge the split bio */ 378 split->bi_opf |= REQ_NOMERGE; 379 380 blkcg_bio_issue_init(split); 381 bio_chain(split, bio); 382 trace_block_split(split, bio->bi_iter.bi_sector); 383 submit_bio_noacct(bio); 384 return split; 385 } 386 return bio; 387 } 388 389 /** 390 * bio_split_to_limits - split a bio to fit the queue limits 391 * @bio: bio to be split 392 * 393 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 394 * if so split off a bio fitting the limits from the beginning of @bio and 395 * return it. @bio is shortened to the remainder and re-submitted. 396 * 397 * The split bio is allocated from @q->bio_split, which is provided by the 398 * block layer. 399 */ 400 struct bio *bio_split_to_limits(struct bio *bio) 401 { 402 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits; 403 unsigned int nr_segs; 404 405 if (bio_may_exceed_limits(bio, lim)) 406 return __bio_split_to_limits(bio, lim, &nr_segs); 407 return bio; 408 } 409 EXPORT_SYMBOL(bio_split_to_limits); 410 411 unsigned int blk_recalc_rq_segments(struct request *rq) 412 { 413 unsigned int nr_phys_segs = 0; 414 unsigned int bytes = 0; 415 struct req_iterator iter; 416 struct bio_vec bv; 417 418 if (!rq->bio) 419 return 0; 420 421 switch (bio_op(rq->bio)) { 422 case REQ_OP_DISCARD: 423 case REQ_OP_SECURE_ERASE: 424 if (queue_max_discard_segments(rq->q) > 1) { 425 struct bio *bio = rq->bio; 426 427 for_each_bio(bio) 428 nr_phys_segs++; 429 return nr_phys_segs; 430 } 431 return 1; 432 case REQ_OP_WRITE_ZEROES: 433 return 0; 434 default: 435 break; 436 } 437 438 rq_for_each_bvec(bv, rq, iter) 439 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 440 UINT_MAX, UINT_MAX); 441 return nr_phys_segs; 442 } 443 444 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 445 struct scatterlist *sglist) 446 { 447 if (!*sg) 448 return sglist; 449 450 /* 451 * If the driver previously mapped a shorter list, we could see a 452 * termination bit prematurely unless it fully inits the sg table 453 * on each mapping. We KNOW that there must be more entries here 454 * or the driver would be buggy, so force clear the termination bit 455 * to avoid doing a full sg_init_table() in drivers for each command. 456 */ 457 sg_unmark_end(*sg); 458 return sg_next(*sg); 459 } 460 461 static unsigned blk_bvec_map_sg(struct request_queue *q, 462 struct bio_vec *bvec, struct scatterlist *sglist, 463 struct scatterlist **sg) 464 { 465 unsigned nbytes = bvec->bv_len; 466 unsigned nsegs = 0, total = 0; 467 468 while (nbytes > 0) { 469 unsigned offset = bvec->bv_offset + total; 470 unsigned len = min(get_max_segment_size(&q->limits, 471 bvec->bv_page, offset), nbytes); 472 struct page *page = bvec->bv_page; 473 474 /* 475 * Unfortunately a fair number of drivers barf on scatterlists 476 * that have an offset larger than PAGE_SIZE, despite other 477 * subsystems dealing with that invariant just fine. For now 478 * stick to the legacy format where we never present those from 479 * the block layer, but the code below should be removed once 480 * these offenders (mostly MMC/SD drivers) are fixed. 481 */ 482 page += (offset >> PAGE_SHIFT); 483 offset &= ~PAGE_MASK; 484 485 *sg = blk_next_sg(sg, sglist); 486 sg_set_page(*sg, page, len, offset); 487 488 total += len; 489 nbytes -= len; 490 nsegs++; 491 } 492 493 return nsegs; 494 } 495 496 static inline int __blk_bvec_map_sg(struct bio_vec bv, 497 struct scatterlist *sglist, struct scatterlist **sg) 498 { 499 *sg = blk_next_sg(sg, sglist); 500 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 501 return 1; 502 } 503 504 /* only try to merge bvecs into one sg if they are from two bios */ 505 static inline bool 506 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 507 struct bio_vec *bvprv, struct scatterlist **sg) 508 { 509 510 int nbytes = bvec->bv_len; 511 512 if (!*sg) 513 return false; 514 515 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 516 return false; 517 518 if (!biovec_phys_mergeable(q, bvprv, bvec)) 519 return false; 520 521 (*sg)->length += nbytes; 522 523 return true; 524 } 525 526 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 527 struct scatterlist *sglist, 528 struct scatterlist **sg) 529 { 530 struct bio_vec bvec, bvprv = { NULL }; 531 struct bvec_iter iter; 532 int nsegs = 0; 533 bool new_bio = false; 534 535 for_each_bio(bio) { 536 bio_for_each_bvec(bvec, bio, iter) { 537 /* 538 * Only try to merge bvecs from two bios given we 539 * have done bio internal merge when adding pages 540 * to bio 541 */ 542 if (new_bio && 543 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 544 goto next_bvec; 545 546 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 547 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 548 else 549 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 550 next_bvec: 551 new_bio = false; 552 } 553 if (likely(bio->bi_iter.bi_size)) { 554 bvprv = bvec; 555 new_bio = true; 556 } 557 } 558 559 return nsegs; 560 } 561 562 /* 563 * map a request to scatterlist, return number of sg entries setup. Caller 564 * must make sure sg can hold rq->nr_phys_segments entries 565 */ 566 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 567 struct scatterlist *sglist, struct scatterlist **last_sg) 568 { 569 int nsegs = 0; 570 571 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 572 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 573 else if (rq->bio) 574 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 575 576 if (*last_sg) 577 sg_mark_end(*last_sg); 578 579 /* 580 * Something must have been wrong if the figured number of 581 * segment is bigger than number of req's physical segments 582 */ 583 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 584 585 return nsegs; 586 } 587 EXPORT_SYMBOL(__blk_rq_map_sg); 588 589 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 590 { 591 if (req_op(rq) == REQ_OP_DISCARD) 592 return queue_max_discard_segments(rq->q); 593 return queue_max_segments(rq->q); 594 } 595 596 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 597 sector_t offset) 598 { 599 struct request_queue *q = rq->q; 600 unsigned int max_sectors; 601 602 if (blk_rq_is_passthrough(rq)) 603 return q->limits.max_hw_sectors; 604 605 max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 606 if (!q->limits.chunk_sectors || 607 req_op(rq) == REQ_OP_DISCARD || 608 req_op(rq) == REQ_OP_SECURE_ERASE) 609 return max_sectors; 610 return min(max_sectors, 611 blk_chunk_sectors_left(offset, q->limits.chunk_sectors)); 612 } 613 614 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 615 unsigned int nr_phys_segs) 616 { 617 if (!blk_cgroup_mergeable(req, bio)) 618 goto no_merge; 619 620 if (blk_integrity_merge_bio(req->q, req, bio) == false) 621 goto no_merge; 622 623 /* discard request merge won't add new segment */ 624 if (req_op(req) == REQ_OP_DISCARD) 625 return 1; 626 627 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 628 goto no_merge; 629 630 /* 631 * This will form the start of a new hw segment. Bump both 632 * counters. 633 */ 634 req->nr_phys_segments += nr_phys_segs; 635 return 1; 636 637 no_merge: 638 req_set_nomerge(req->q, req); 639 return 0; 640 } 641 642 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 643 { 644 if (req_gap_back_merge(req, bio)) 645 return 0; 646 if (blk_integrity_rq(req) && 647 integrity_req_gap_back_merge(req, bio)) 648 return 0; 649 if (!bio_crypt_ctx_back_mergeable(req, bio)) 650 return 0; 651 if (blk_rq_sectors(req) + bio_sectors(bio) > 652 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 653 req_set_nomerge(req->q, req); 654 return 0; 655 } 656 657 return ll_new_hw_segment(req, bio, nr_segs); 658 } 659 660 static int ll_front_merge_fn(struct request *req, struct bio *bio, 661 unsigned int nr_segs) 662 { 663 if (req_gap_front_merge(req, bio)) 664 return 0; 665 if (blk_integrity_rq(req) && 666 integrity_req_gap_front_merge(req, bio)) 667 return 0; 668 if (!bio_crypt_ctx_front_mergeable(req, bio)) 669 return 0; 670 if (blk_rq_sectors(req) + bio_sectors(bio) > 671 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 672 req_set_nomerge(req->q, req); 673 return 0; 674 } 675 676 return ll_new_hw_segment(req, bio, nr_segs); 677 } 678 679 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 680 struct request *next) 681 { 682 unsigned short segments = blk_rq_nr_discard_segments(req); 683 684 if (segments >= queue_max_discard_segments(q)) 685 goto no_merge; 686 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 687 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 688 goto no_merge; 689 690 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 691 return true; 692 no_merge: 693 req_set_nomerge(q, req); 694 return false; 695 } 696 697 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 698 struct request *next) 699 { 700 int total_phys_segments; 701 702 if (req_gap_back_merge(req, next->bio)) 703 return 0; 704 705 /* 706 * Will it become too large? 707 */ 708 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 709 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 710 return 0; 711 712 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 713 if (total_phys_segments > blk_rq_get_max_segments(req)) 714 return 0; 715 716 if (!blk_cgroup_mergeable(req, next->bio)) 717 return 0; 718 719 if (blk_integrity_merge_rq(q, req, next) == false) 720 return 0; 721 722 if (!bio_crypt_ctx_merge_rq(req, next)) 723 return 0; 724 725 /* Merge is OK... */ 726 req->nr_phys_segments = total_phys_segments; 727 return 1; 728 } 729 730 /** 731 * blk_rq_set_mixed_merge - mark a request as mixed merge 732 * @rq: request to mark as mixed merge 733 * 734 * Description: 735 * @rq is about to be mixed merged. Make sure the attributes 736 * which can be mixed are set in each bio and mark @rq as mixed 737 * merged. 738 */ 739 void blk_rq_set_mixed_merge(struct request *rq) 740 { 741 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 742 struct bio *bio; 743 744 if (rq->rq_flags & RQF_MIXED_MERGE) 745 return; 746 747 /* 748 * @rq will no longer represent mixable attributes for all the 749 * contained bios. It will just track those of the first one. 750 * Distributes the attributs to each bio. 751 */ 752 for (bio = rq->bio; bio; bio = bio->bi_next) { 753 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 754 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 755 bio->bi_opf |= ff; 756 } 757 rq->rq_flags |= RQF_MIXED_MERGE; 758 } 759 760 static void blk_account_io_merge_request(struct request *req) 761 { 762 if (blk_do_io_stat(req)) { 763 part_stat_lock(); 764 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 765 part_stat_unlock(); 766 } 767 } 768 769 static enum elv_merge blk_try_req_merge(struct request *req, 770 struct request *next) 771 { 772 if (blk_discard_mergable(req)) 773 return ELEVATOR_DISCARD_MERGE; 774 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 775 return ELEVATOR_BACK_MERGE; 776 777 return ELEVATOR_NO_MERGE; 778 } 779 780 /* 781 * For non-mq, this has to be called with the request spinlock acquired. 782 * For mq with scheduling, the appropriate queue wide lock should be held. 783 */ 784 static struct request *attempt_merge(struct request_queue *q, 785 struct request *req, struct request *next) 786 { 787 if (!rq_mergeable(req) || !rq_mergeable(next)) 788 return NULL; 789 790 if (req_op(req) != req_op(next)) 791 return NULL; 792 793 if (rq_data_dir(req) != rq_data_dir(next)) 794 return NULL; 795 796 if (req->ioprio != next->ioprio) 797 return NULL; 798 799 /* 800 * If we are allowed to merge, then append bio list 801 * from next to rq and release next. merge_requests_fn 802 * will have updated segment counts, update sector 803 * counts here. Handle DISCARDs separately, as they 804 * have separate settings. 805 */ 806 807 switch (blk_try_req_merge(req, next)) { 808 case ELEVATOR_DISCARD_MERGE: 809 if (!req_attempt_discard_merge(q, req, next)) 810 return NULL; 811 break; 812 case ELEVATOR_BACK_MERGE: 813 if (!ll_merge_requests_fn(q, req, next)) 814 return NULL; 815 break; 816 default: 817 return NULL; 818 } 819 820 /* 821 * If failfast settings disagree or any of the two is already 822 * a mixed merge, mark both as mixed before proceeding. This 823 * makes sure that all involved bios have mixable attributes 824 * set properly. 825 */ 826 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 827 (req->cmd_flags & REQ_FAILFAST_MASK) != 828 (next->cmd_flags & REQ_FAILFAST_MASK)) { 829 blk_rq_set_mixed_merge(req); 830 blk_rq_set_mixed_merge(next); 831 } 832 833 /* 834 * At this point we have either done a back merge or front merge. We 835 * need the smaller start_time_ns of the merged requests to be the 836 * current request for accounting purposes. 837 */ 838 if (next->start_time_ns < req->start_time_ns) 839 req->start_time_ns = next->start_time_ns; 840 841 req->biotail->bi_next = next->bio; 842 req->biotail = next->biotail; 843 844 req->__data_len += blk_rq_bytes(next); 845 846 if (!blk_discard_mergable(req)) 847 elv_merge_requests(q, req, next); 848 849 /* 850 * 'next' is going away, so update stats accordingly 851 */ 852 blk_account_io_merge_request(next); 853 854 trace_block_rq_merge(next); 855 856 /* 857 * ownership of bio passed from next to req, return 'next' for 858 * the caller to free 859 */ 860 next->bio = NULL; 861 return next; 862 } 863 864 static struct request *attempt_back_merge(struct request_queue *q, 865 struct request *rq) 866 { 867 struct request *next = elv_latter_request(q, rq); 868 869 if (next) 870 return attempt_merge(q, rq, next); 871 872 return NULL; 873 } 874 875 static struct request *attempt_front_merge(struct request_queue *q, 876 struct request *rq) 877 { 878 struct request *prev = elv_former_request(q, rq); 879 880 if (prev) 881 return attempt_merge(q, prev, rq); 882 883 return NULL; 884 } 885 886 /* 887 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 888 * otherwise. The caller is responsible for freeing 'next' if the merge 889 * happened. 890 */ 891 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 892 struct request *next) 893 { 894 return attempt_merge(q, rq, next); 895 } 896 897 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 898 { 899 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 900 return false; 901 902 if (req_op(rq) != bio_op(bio)) 903 return false; 904 905 /* different data direction or already started, don't merge */ 906 if (bio_data_dir(bio) != rq_data_dir(rq)) 907 return false; 908 909 /* don't merge across cgroup boundaries */ 910 if (!blk_cgroup_mergeable(rq, bio)) 911 return false; 912 913 /* only merge integrity protected bio into ditto rq */ 914 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 915 return false; 916 917 /* Only merge if the crypt contexts are compatible */ 918 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 919 return false; 920 921 if (rq->ioprio != bio_prio(bio)) 922 return false; 923 924 return true; 925 } 926 927 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 928 { 929 if (blk_discard_mergable(rq)) 930 return ELEVATOR_DISCARD_MERGE; 931 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 932 return ELEVATOR_BACK_MERGE; 933 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 934 return ELEVATOR_FRONT_MERGE; 935 return ELEVATOR_NO_MERGE; 936 } 937 938 static void blk_account_io_merge_bio(struct request *req) 939 { 940 if (!blk_do_io_stat(req)) 941 return; 942 943 part_stat_lock(); 944 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 945 part_stat_unlock(); 946 } 947 948 enum bio_merge_status { 949 BIO_MERGE_OK, 950 BIO_MERGE_NONE, 951 BIO_MERGE_FAILED, 952 }; 953 954 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 955 struct bio *bio, unsigned int nr_segs) 956 { 957 const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK; 958 959 if (!ll_back_merge_fn(req, bio, nr_segs)) 960 return BIO_MERGE_FAILED; 961 962 trace_block_bio_backmerge(bio); 963 rq_qos_merge(req->q, req, bio); 964 965 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 966 blk_rq_set_mixed_merge(req); 967 968 req->biotail->bi_next = bio; 969 req->biotail = bio; 970 req->__data_len += bio->bi_iter.bi_size; 971 972 bio_crypt_free_ctx(bio); 973 974 blk_account_io_merge_bio(req); 975 return BIO_MERGE_OK; 976 } 977 978 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 979 struct bio *bio, unsigned int nr_segs) 980 { 981 const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK; 982 983 if (!ll_front_merge_fn(req, bio, nr_segs)) 984 return BIO_MERGE_FAILED; 985 986 trace_block_bio_frontmerge(bio); 987 rq_qos_merge(req->q, req, bio); 988 989 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 990 blk_rq_set_mixed_merge(req); 991 992 bio->bi_next = req->bio; 993 req->bio = bio; 994 995 req->__sector = bio->bi_iter.bi_sector; 996 req->__data_len += bio->bi_iter.bi_size; 997 998 bio_crypt_do_front_merge(req, bio); 999 1000 blk_account_io_merge_bio(req); 1001 return BIO_MERGE_OK; 1002 } 1003 1004 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1005 struct request *req, struct bio *bio) 1006 { 1007 unsigned short segments = blk_rq_nr_discard_segments(req); 1008 1009 if (segments >= queue_max_discard_segments(q)) 1010 goto no_merge; 1011 if (blk_rq_sectors(req) + bio_sectors(bio) > 1012 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1013 goto no_merge; 1014 1015 rq_qos_merge(q, req, bio); 1016 1017 req->biotail->bi_next = bio; 1018 req->biotail = bio; 1019 req->__data_len += bio->bi_iter.bi_size; 1020 req->nr_phys_segments = segments + 1; 1021 1022 blk_account_io_merge_bio(req); 1023 return BIO_MERGE_OK; 1024 no_merge: 1025 req_set_nomerge(q, req); 1026 return BIO_MERGE_FAILED; 1027 } 1028 1029 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1030 struct request *rq, 1031 struct bio *bio, 1032 unsigned int nr_segs, 1033 bool sched_allow_merge) 1034 { 1035 if (!blk_rq_merge_ok(rq, bio)) 1036 return BIO_MERGE_NONE; 1037 1038 switch (blk_try_merge(rq, bio)) { 1039 case ELEVATOR_BACK_MERGE: 1040 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1041 return bio_attempt_back_merge(rq, bio, nr_segs); 1042 break; 1043 case ELEVATOR_FRONT_MERGE: 1044 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1045 return bio_attempt_front_merge(rq, bio, nr_segs); 1046 break; 1047 case ELEVATOR_DISCARD_MERGE: 1048 return bio_attempt_discard_merge(q, rq, bio); 1049 default: 1050 return BIO_MERGE_NONE; 1051 } 1052 1053 return BIO_MERGE_FAILED; 1054 } 1055 1056 /** 1057 * blk_attempt_plug_merge - try to merge with %current's plugged list 1058 * @q: request_queue new bio is being queued at 1059 * @bio: new bio being queued 1060 * @nr_segs: number of segments in @bio 1061 * from the passed in @q already in the plug list 1062 * 1063 * Determine whether @bio being queued on @q can be merged with the previous 1064 * request on %current's plugged list. Returns %true if merge was successful, 1065 * otherwise %false. 1066 * 1067 * Plugging coalesces IOs from the same issuer for the same purpose without 1068 * going through @q->queue_lock. As such it's more of an issuing mechanism 1069 * than scheduling, and the request, while may have elvpriv data, is not 1070 * added on the elevator at this point. In addition, we don't have 1071 * reliable access to the elevator outside queue lock. Only check basic 1072 * merging parameters without querying the elevator. 1073 * 1074 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1075 */ 1076 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1077 unsigned int nr_segs) 1078 { 1079 struct blk_plug *plug; 1080 struct request *rq; 1081 1082 plug = blk_mq_plug(bio); 1083 if (!plug || rq_list_empty(plug->mq_list)) 1084 return false; 1085 1086 rq_list_for_each(&plug->mq_list, rq) { 1087 if (rq->q == q) { 1088 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1089 BIO_MERGE_OK) 1090 return true; 1091 break; 1092 } 1093 1094 /* 1095 * Only keep iterating plug list for merges if we have multiple 1096 * queues 1097 */ 1098 if (!plug->multiple_queues) 1099 break; 1100 } 1101 return false; 1102 } 1103 1104 /* 1105 * Iterate list of requests and see if we can merge this bio with any 1106 * of them. 1107 */ 1108 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1109 struct bio *bio, unsigned int nr_segs) 1110 { 1111 struct request *rq; 1112 int checked = 8; 1113 1114 list_for_each_entry_reverse(rq, list, queuelist) { 1115 if (!checked--) 1116 break; 1117 1118 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1119 case BIO_MERGE_NONE: 1120 continue; 1121 case BIO_MERGE_OK: 1122 return true; 1123 case BIO_MERGE_FAILED: 1124 return false; 1125 } 1126 1127 } 1128 1129 return false; 1130 } 1131 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1132 1133 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1134 unsigned int nr_segs, struct request **merged_request) 1135 { 1136 struct request *rq; 1137 1138 switch (elv_merge(q, &rq, bio)) { 1139 case ELEVATOR_BACK_MERGE: 1140 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1141 return false; 1142 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1143 return false; 1144 *merged_request = attempt_back_merge(q, rq); 1145 if (!*merged_request) 1146 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1147 return true; 1148 case ELEVATOR_FRONT_MERGE: 1149 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1150 return false; 1151 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1152 return false; 1153 *merged_request = attempt_front_merge(q, rq); 1154 if (!*merged_request) 1155 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1156 return true; 1157 case ELEVATOR_DISCARD_MERGE: 1158 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1159 default: 1160 return false; 1161 } 1162 } 1163 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1164