xref: /openbmc/linux/block/blk-merge.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-rq-qos.h"
16 #include "blk-throttle.h"
17 
18 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
19 {
20 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
21 }
22 
23 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
24 {
25 	struct bvec_iter iter = bio->bi_iter;
26 	int idx;
27 
28 	bio_get_first_bvec(bio, bv);
29 	if (bv->bv_len == bio->bi_iter.bi_size)
30 		return;		/* this bio only has a single bvec */
31 
32 	bio_advance_iter(bio, &iter, iter.bi_size);
33 
34 	if (!iter.bi_bvec_done)
35 		idx = iter.bi_idx - 1;
36 	else	/* in the middle of bvec */
37 		idx = iter.bi_idx;
38 
39 	*bv = bio->bi_io_vec[idx];
40 
41 	/*
42 	 * iter.bi_bvec_done records actual length of the last bvec
43 	 * if this bio ends in the middle of one io vector
44 	 */
45 	if (iter.bi_bvec_done)
46 		bv->bv_len = iter.bi_bvec_done;
47 }
48 
49 static inline bool bio_will_gap(struct request_queue *q,
50 		struct request *prev_rq, struct bio *prev, struct bio *next)
51 {
52 	struct bio_vec pb, nb;
53 
54 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
55 		return false;
56 
57 	/*
58 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
59 	 * is quite difficult to respect the sg gap limit.  We work hard to
60 	 * merge a huge number of small single bios in case of mkfs.
61 	 */
62 	if (prev_rq)
63 		bio_get_first_bvec(prev_rq->bio, &pb);
64 	else
65 		bio_get_first_bvec(prev, &pb);
66 	if (pb.bv_offset & queue_virt_boundary(q))
67 		return true;
68 
69 	/*
70 	 * We don't need to worry about the situation that the merged segment
71 	 * ends in unaligned virt boundary:
72 	 *
73 	 * - if 'pb' ends aligned, the merged segment ends aligned
74 	 * - if 'pb' ends unaligned, the next bio must include
75 	 *   one single bvec of 'nb', otherwise the 'nb' can't
76 	 *   merge with 'pb'
77 	 */
78 	bio_get_last_bvec(prev, &pb);
79 	bio_get_first_bvec(next, &nb);
80 	if (biovec_phys_mergeable(q, &pb, &nb))
81 		return false;
82 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
83 }
84 
85 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
86 {
87 	return bio_will_gap(req->q, req, req->biotail, bio);
88 }
89 
90 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
91 {
92 	return bio_will_gap(req->q, NULL, bio, req->bio);
93 }
94 
95 static struct bio *blk_bio_discard_split(struct request_queue *q,
96 					 struct bio *bio,
97 					 struct bio_set *bs,
98 					 unsigned *nsegs)
99 {
100 	unsigned int max_discard_sectors, granularity;
101 	int alignment;
102 	sector_t tmp;
103 	unsigned split_sectors;
104 
105 	*nsegs = 1;
106 
107 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
108 	granularity = max(q->limits.discard_granularity >> 9, 1U);
109 
110 	max_discard_sectors = min(q->limits.max_discard_sectors,
111 			bio_allowed_max_sectors(q));
112 	max_discard_sectors -= max_discard_sectors % granularity;
113 
114 	if (unlikely(!max_discard_sectors)) {
115 		/* XXX: warn */
116 		return NULL;
117 	}
118 
119 	if (bio_sectors(bio) <= max_discard_sectors)
120 		return NULL;
121 
122 	split_sectors = max_discard_sectors;
123 
124 	/*
125 	 * If the next starting sector would be misaligned, stop the discard at
126 	 * the previous aligned sector.
127 	 */
128 	alignment = (q->limits.discard_alignment >> 9) % granularity;
129 
130 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
131 	tmp = sector_div(tmp, granularity);
132 
133 	if (split_sectors > tmp)
134 		split_sectors -= tmp;
135 
136 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
137 }
138 
139 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
140 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
141 {
142 	*nsegs = 0;
143 
144 	if (!q->limits.max_write_zeroes_sectors)
145 		return NULL;
146 
147 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
148 		return NULL;
149 
150 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
151 }
152 
153 static struct bio *blk_bio_write_same_split(struct request_queue *q,
154 					    struct bio *bio,
155 					    struct bio_set *bs,
156 					    unsigned *nsegs)
157 {
158 	*nsegs = 1;
159 
160 	if (!q->limits.max_write_same_sectors)
161 		return NULL;
162 
163 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
164 		return NULL;
165 
166 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
167 }
168 
169 /*
170  * Return the maximum number of sectors from the start of a bio that may be
171  * submitted as a single request to a block device. If enough sectors remain,
172  * align the end to the physical block size. Otherwise align the end to the
173  * logical block size. This approach minimizes the number of non-aligned
174  * requests that are submitted to a block device if the start of a bio is not
175  * aligned to a physical block boundary.
176  */
177 static inline unsigned get_max_io_size(struct request_queue *q,
178 				       struct bio *bio)
179 {
180 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
181 	unsigned max_sectors = sectors;
182 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
183 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
184 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
185 
186 	max_sectors += start_offset;
187 	max_sectors &= ~(pbs - 1);
188 	if (max_sectors > start_offset)
189 		return max_sectors - start_offset;
190 
191 	return sectors & ~(lbs - 1);
192 }
193 
194 static inline unsigned get_max_segment_size(const struct request_queue *q,
195 					    struct page *start_page,
196 					    unsigned long offset)
197 {
198 	unsigned long mask = queue_segment_boundary(q);
199 
200 	offset = mask & (page_to_phys(start_page) + offset);
201 
202 	/*
203 	 * overflow may be triggered in case of zero page physical address
204 	 * on 32bit arch, use queue's max segment size when that happens.
205 	 */
206 	return min_not_zero(mask - offset + 1,
207 			(unsigned long)queue_max_segment_size(q));
208 }
209 
210 /**
211  * bvec_split_segs - verify whether or not a bvec should be split in the middle
212  * @q:        [in] request queue associated with the bio associated with @bv
213  * @bv:       [in] bvec to examine
214  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
215  *            by the number of segments from @bv that may be appended to that
216  *            bio without exceeding @max_segs
217  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
218  *            by the number of sectors from @bv that may be appended to that
219  *            bio without exceeding @max_sectors
220  * @max_segs: [in] upper bound for *@nsegs
221  * @max_sectors: [in] upper bound for *@sectors
222  *
223  * When splitting a bio, it can happen that a bvec is encountered that is too
224  * big to fit in a single segment and hence that it has to be split in the
225  * middle. This function verifies whether or not that should happen. The value
226  * %true is returned if and only if appending the entire @bv to a bio with
227  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
228  * the block driver.
229  */
230 static bool bvec_split_segs(const struct request_queue *q,
231 			    const struct bio_vec *bv, unsigned *nsegs,
232 			    unsigned *sectors, unsigned max_segs,
233 			    unsigned max_sectors)
234 {
235 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
236 	unsigned len = min(bv->bv_len, max_len);
237 	unsigned total_len = 0;
238 	unsigned seg_size = 0;
239 
240 	while (len && *nsegs < max_segs) {
241 		seg_size = get_max_segment_size(q, bv->bv_page,
242 						bv->bv_offset + total_len);
243 		seg_size = min(seg_size, len);
244 
245 		(*nsegs)++;
246 		total_len += seg_size;
247 		len -= seg_size;
248 
249 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
250 			break;
251 	}
252 
253 	*sectors += total_len >> 9;
254 
255 	/* tell the caller to split the bvec if it is too big to fit */
256 	return len > 0 || bv->bv_len > max_len;
257 }
258 
259 /**
260  * blk_bio_segment_split - split a bio in two bios
261  * @q:    [in] request queue pointer
262  * @bio:  [in] bio to be split
263  * @bs:	  [in] bio set to allocate the clone from
264  * @segs: [out] number of segments in the bio with the first half of the sectors
265  *
266  * Clone @bio, update the bi_iter of the clone to represent the first sectors
267  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
268  * following is guaranteed for the cloned bio:
269  * - That it has at most get_max_io_size(@q, @bio) sectors.
270  * - That it has at most queue_max_segments(@q) segments.
271  *
272  * Except for discard requests the cloned bio will point at the bi_io_vec of
273  * the original bio. It is the responsibility of the caller to ensure that the
274  * original bio is not freed before the cloned bio. The caller is also
275  * responsible for ensuring that @bs is only destroyed after processing of the
276  * split bio has finished.
277  */
278 static struct bio *blk_bio_segment_split(struct request_queue *q,
279 					 struct bio *bio,
280 					 struct bio_set *bs,
281 					 unsigned *segs)
282 {
283 	struct bio_vec bv, bvprv, *bvprvp = NULL;
284 	struct bvec_iter iter;
285 	unsigned nsegs = 0, sectors = 0;
286 	const unsigned max_sectors = get_max_io_size(q, bio);
287 	const unsigned max_segs = queue_max_segments(q);
288 
289 	bio_for_each_bvec(bv, bio, iter) {
290 		/*
291 		 * If the queue doesn't support SG gaps and adding this
292 		 * offset would create a gap, disallow it.
293 		 */
294 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
295 			goto split;
296 
297 		if (nsegs < max_segs &&
298 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
299 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
300 			nsegs++;
301 			sectors += bv.bv_len >> 9;
302 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
303 					 max_sectors)) {
304 			goto split;
305 		}
306 
307 		bvprv = bv;
308 		bvprvp = &bvprv;
309 	}
310 
311 	*segs = nsegs;
312 	return NULL;
313 split:
314 	*segs = nsegs;
315 
316 	/*
317 	 * Bio splitting may cause subtle trouble such as hang when doing sync
318 	 * iopoll in direct IO routine. Given performance gain of iopoll for
319 	 * big IO can be trival, disable iopoll when split needed.
320 	 */
321 	bio_clear_polled(bio);
322 	return bio_split(bio, sectors, GFP_NOIO, bs);
323 }
324 
325 /**
326  * __blk_queue_split - split a bio and submit the second half
327  * @q:       [in] request_queue new bio is being queued at
328  * @bio:     [in, out] bio to be split
329  * @nr_segs: [out] number of segments in the first bio
330  *
331  * Split a bio into two bios, chain the two bios, submit the second half and
332  * store a pointer to the first half in *@bio. If the second bio is still too
333  * big it will be split by a recursive call to this function. Since this
334  * function may allocate a new bio from q->bio_split, it is the responsibility
335  * of the caller to ensure that q->bio_split is only released after processing
336  * of the split bio has finished.
337  */
338 void __blk_queue_split(struct request_queue *q, struct bio **bio,
339 		       unsigned int *nr_segs)
340 {
341 	struct bio *split = NULL;
342 
343 	switch (bio_op(*bio)) {
344 	case REQ_OP_DISCARD:
345 	case REQ_OP_SECURE_ERASE:
346 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
347 		break;
348 	case REQ_OP_WRITE_ZEROES:
349 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
350 				nr_segs);
351 		break;
352 	case REQ_OP_WRITE_SAME:
353 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
354 				nr_segs);
355 		break;
356 	default:
357 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
358 		break;
359 	}
360 
361 	if (split) {
362 		/* there isn't chance to merge the splitted bio */
363 		split->bi_opf |= REQ_NOMERGE;
364 
365 		bio_chain(split, *bio);
366 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
367 		submit_bio_noacct(*bio);
368 		*bio = split;
369 
370 		blk_throtl_charge_bio_split(*bio);
371 	}
372 }
373 
374 /**
375  * blk_queue_split - split a bio and submit the second half
376  * @bio: [in, out] bio to be split
377  *
378  * Split a bio into two bios, chains the two bios, submit the second half and
379  * store a pointer to the first half in *@bio. Since this function may allocate
380  * a new bio from q->bio_split, it is the responsibility of the caller to ensure
381  * that q->bio_split is only released after processing of the split bio has
382  * finished.
383  */
384 void blk_queue_split(struct bio **bio)
385 {
386 	struct request_queue *q = bdev_get_queue((*bio)->bi_bdev);
387 	unsigned int nr_segs;
388 
389 	if (blk_may_split(q, *bio))
390 		__blk_queue_split(q, bio, &nr_segs);
391 }
392 EXPORT_SYMBOL(blk_queue_split);
393 
394 unsigned int blk_recalc_rq_segments(struct request *rq)
395 {
396 	unsigned int nr_phys_segs = 0;
397 	unsigned int nr_sectors = 0;
398 	struct req_iterator iter;
399 	struct bio_vec bv;
400 
401 	if (!rq->bio)
402 		return 0;
403 
404 	switch (bio_op(rq->bio)) {
405 	case REQ_OP_DISCARD:
406 	case REQ_OP_SECURE_ERASE:
407 		if (queue_max_discard_segments(rq->q) > 1) {
408 			struct bio *bio = rq->bio;
409 
410 			for_each_bio(bio)
411 				nr_phys_segs++;
412 			return nr_phys_segs;
413 		}
414 		return 1;
415 	case REQ_OP_WRITE_ZEROES:
416 		return 0;
417 	case REQ_OP_WRITE_SAME:
418 		return 1;
419 	}
420 
421 	rq_for_each_bvec(bv, rq, iter)
422 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
423 				UINT_MAX, UINT_MAX);
424 	return nr_phys_segs;
425 }
426 
427 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
428 		struct scatterlist *sglist)
429 {
430 	if (!*sg)
431 		return sglist;
432 
433 	/*
434 	 * If the driver previously mapped a shorter list, we could see a
435 	 * termination bit prematurely unless it fully inits the sg table
436 	 * on each mapping. We KNOW that there must be more entries here
437 	 * or the driver would be buggy, so force clear the termination bit
438 	 * to avoid doing a full sg_init_table() in drivers for each command.
439 	 */
440 	sg_unmark_end(*sg);
441 	return sg_next(*sg);
442 }
443 
444 static unsigned blk_bvec_map_sg(struct request_queue *q,
445 		struct bio_vec *bvec, struct scatterlist *sglist,
446 		struct scatterlist **sg)
447 {
448 	unsigned nbytes = bvec->bv_len;
449 	unsigned nsegs = 0, total = 0;
450 
451 	while (nbytes > 0) {
452 		unsigned offset = bvec->bv_offset + total;
453 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
454 					offset), nbytes);
455 		struct page *page = bvec->bv_page;
456 
457 		/*
458 		 * Unfortunately a fair number of drivers barf on scatterlists
459 		 * that have an offset larger than PAGE_SIZE, despite other
460 		 * subsystems dealing with that invariant just fine.  For now
461 		 * stick to the legacy format where we never present those from
462 		 * the block layer, but the code below should be removed once
463 		 * these offenders (mostly MMC/SD drivers) are fixed.
464 		 */
465 		page += (offset >> PAGE_SHIFT);
466 		offset &= ~PAGE_MASK;
467 
468 		*sg = blk_next_sg(sg, sglist);
469 		sg_set_page(*sg, page, len, offset);
470 
471 		total += len;
472 		nbytes -= len;
473 		nsegs++;
474 	}
475 
476 	return nsegs;
477 }
478 
479 static inline int __blk_bvec_map_sg(struct bio_vec bv,
480 		struct scatterlist *sglist, struct scatterlist **sg)
481 {
482 	*sg = blk_next_sg(sg, sglist);
483 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
484 	return 1;
485 }
486 
487 /* only try to merge bvecs into one sg if they are from two bios */
488 static inline bool
489 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
490 			   struct bio_vec *bvprv, struct scatterlist **sg)
491 {
492 
493 	int nbytes = bvec->bv_len;
494 
495 	if (!*sg)
496 		return false;
497 
498 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
499 		return false;
500 
501 	if (!biovec_phys_mergeable(q, bvprv, bvec))
502 		return false;
503 
504 	(*sg)->length += nbytes;
505 
506 	return true;
507 }
508 
509 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
510 			     struct scatterlist *sglist,
511 			     struct scatterlist **sg)
512 {
513 	struct bio_vec bvec, bvprv = { NULL };
514 	struct bvec_iter iter;
515 	int nsegs = 0;
516 	bool new_bio = false;
517 
518 	for_each_bio(bio) {
519 		bio_for_each_bvec(bvec, bio, iter) {
520 			/*
521 			 * Only try to merge bvecs from two bios given we
522 			 * have done bio internal merge when adding pages
523 			 * to bio
524 			 */
525 			if (new_bio &&
526 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
527 				goto next_bvec;
528 
529 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
530 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
531 			else
532 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
533  next_bvec:
534 			new_bio = false;
535 		}
536 		if (likely(bio->bi_iter.bi_size)) {
537 			bvprv = bvec;
538 			new_bio = true;
539 		}
540 	}
541 
542 	return nsegs;
543 }
544 
545 /*
546  * map a request to scatterlist, return number of sg entries setup. Caller
547  * must make sure sg can hold rq->nr_phys_segments entries
548  */
549 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
550 		struct scatterlist *sglist, struct scatterlist **last_sg)
551 {
552 	int nsegs = 0;
553 
554 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
555 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
556 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
557 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
558 	else if (rq->bio)
559 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
560 
561 	if (*last_sg)
562 		sg_mark_end(*last_sg);
563 
564 	/*
565 	 * Something must have been wrong if the figured number of
566 	 * segment is bigger than number of req's physical segments
567 	 */
568 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
569 
570 	return nsegs;
571 }
572 EXPORT_SYMBOL(__blk_rq_map_sg);
573 
574 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
575 {
576 	if (req_op(rq) == REQ_OP_DISCARD)
577 		return queue_max_discard_segments(rq->q);
578 	return queue_max_segments(rq->q);
579 }
580 
581 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
582 						  sector_t offset)
583 {
584 	struct request_queue *q = rq->q;
585 
586 	if (blk_rq_is_passthrough(rq))
587 		return q->limits.max_hw_sectors;
588 
589 	if (!q->limits.chunk_sectors ||
590 	    req_op(rq) == REQ_OP_DISCARD ||
591 	    req_op(rq) == REQ_OP_SECURE_ERASE)
592 		return blk_queue_get_max_sectors(q, req_op(rq));
593 
594 	return min(blk_max_size_offset(q, offset, 0),
595 			blk_queue_get_max_sectors(q, req_op(rq)));
596 }
597 
598 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
599 		unsigned int nr_phys_segs)
600 {
601 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
602 		goto no_merge;
603 
604 	/* discard request merge won't add new segment */
605 	if (req_op(req) == REQ_OP_DISCARD)
606 		return 1;
607 
608 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
609 		goto no_merge;
610 
611 	/*
612 	 * This will form the start of a new hw segment.  Bump both
613 	 * counters.
614 	 */
615 	req->nr_phys_segments += nr_phys_segs;
616 	return 1;
617 
618 no_merge:
619 	req_set_nomerge(req->q, req);
620 	return 0;
621 }
622 
623 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
624 {
625 	if (req_gap_back_merge(req, bio))
626 		return 0;
627 	if (blk_integrity_rq(req) &&
628 	    integrity_req_gap_back_merge(req, bio))
629 		return 0;
630 	if (!bio_crypt_ctx_back_mergeable(req, bio))
631 		return 0;
632 	if (blk_rq_sectors(req) + bio_sectors(bio) >
633 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
634 		req_set_nomerge(req->q, req);
635 		return 0;
636 	}
637 
638 	return ll_new_hw_segment(req, bio, nr_segs);
639 }
640 
641 static int ll_front_merge_fn(struct request *req, struct bio *bio,
642 		unsigned int nr_segs)
643 {
644 	if (req_gap_front_merge(req, bio))
645 		return 0;
646 	if (blk_integrity_rq(req) &&
647 	    integrity_req_gap_front_merge(req, bio))
648 		return 0;
649 	if (!bio_crypt_ctx_front_mergeable(req, bio))
650 		return 0;
651 	if (blk_rq_sectors(req) + bio_sectors(bio) >
652 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
653 		req_set_nomerge(req->q, req);
654 		return 0;
655 	}
656 
657 	return ll_new_hw_segment(req, bio, nr_segs);
658 }
659 
660 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
661 		struct request *next)
662 {
663 	unsigned short segments = blk_rq_nr_discard_segments(req);
664 
665 	if (segments >= queue_max_discard_segments(q))
666 		goto no_merge;
667 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
668 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
669 		goto no_merge;
670 
671 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
672 	return true;
673 no_merge:
674 	req_set_nomerge(q, req);
675 	return false;
676 }
677 
678 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
679 				struct request *next)
680 {
681 	int total_phys_segments;
682 
683 	if (req_gap_back_merge(req, next->bio))
684 		return 0;
685 
686 	/*
687 	 * Will it become too large?
688 	 */
689 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
690 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
691 		return 0;
692 
693 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
694 	if (total_phys_segments > blk_rq_get_max_segments(req))
695 		return 0;
696 
697 	if (blk_integrity_merge_rq(q, req, next) == false)
698 		return 0;
699 
700 	if (!bio_crypt_ctx_merge_rq(req, next))
701 		return 0;
702 
703 	/* Merge is OK... */
704 	req->nr_phys_segments = total_phys_segments;
705 	return 1;
706 }
707 
708 /**
709  * blk_rq_set_mixed_merge - mark a request as mixed merge
710  * @rq: request to mark as mixed merge
711  *
712  * Description:
713  *     @rq is about to be mixed merged.  Make sure the attributes
714  *     which can be mixed are set in each bio and mark @rq as mixed
715  *     merged.
716  */
717 void blk_rq_set_mixed_merge(struct request *rq)
718 {
719 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
720 	struct bio *bio;
721 
722 	if (rq->rq_flags & RQF_MIXED_MERGE)
723 		return;
724 
725 	/*
726 	 * @rq will no longer represent mixable attributes for all the
727 	 * contained bios.  It will just track those of the first one.
728 	 * Distributes the attributs to each bio.
729 	 */
730 	for (bio = rq->bio; bio; bio = bio->bi_next) {
731 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
732 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
733 		bio->bi_opf |= ff;
734 	}
735 	rq->rq_flags |= RQF_MIXED_MERGE;
736 }
737 
738 static void blk_account_io_merge_request(struct request *req)
739 {
740 	if (blk_do_io_stat(req)) {
741 		part_stat_lock();
742 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
743 		part_stat_unlock();
744 	}
745 }
746 
747 static enum elv_merge blk_try_req_merge(struct request *req,
748 					struct request *next)
749 {
750 	if (blk_discard_mergable(req))
751 		return ELEVATOR_DISCARD_MERGE;
752 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
753 		return ELEVATOR_BACK_MERGE;
754 
755 	return ELEVATOR_NO_MERGE;
756 }
757 
758 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
759 {
760 	if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b))
761 		return true;
762 	return false;
763 }
764 
765 /*
766  * For non-mq, this has to be called with the request spinlock acquired.
767  * For mq with scheduling, the appropriate queue wide lock should be held.
768  */
769 static struct request *attempt_merge(struct request_queue *q,
770 				     struct request *req, struct request *next)
771 {
772 	if (!rq_mergeable(req) || !rq_mergeable(next))
773 		return NULL;
774 
775 	if (req_op(req) != req_op(next))
776 		return NULL;
777 
778 	if (rq_data_dir(req) != rq_data_dir(next)
779 	    || req->rq_disk != next->rq_disk)
780 		return NULL;
781 
782 	if (req_op(req) == REQ_OP_WRITE_SAME &&
783 	    !blk_write_same_mergeable(req->bio, next->bio))
784 		return NULL;
785 
786 	/*
787 	 * Don't allow merge of different write hints, or for a hint with
788 	 * non-hint IO.
789 	 */
790 	if (req->write_hint != next->write_hint)
791 		return NULL;
792 
793 	if (req->ioprio != next->ioprio)
794 		return NULL;
795 
796 	/*
797 	 * If we are allowed to merge, then append bio list
798 	 * from next to rq and release next. merge_requests_fn
799 	 * will have updated segment counts, update sector
800 	 * counts here. Handle DISCARDs separately, as they
801 	 * have separate settings.
802 	 */
803 
804 	switch (blk_try_req_merge(req, next)) {
805 	case ELEVATOR_DISCARD_MERGE:
806 		if (!req_attempt_discard_merge(q, req, next))
807 			return NULL;
808 		break;
809 	case ELEVATOR_BACK_MERGE:
810 		if (!ll_merge_requests_fn(q, req, next))
811 			return NULL;
812 		break;
813 	default:
814 		return NULL;
815 	}
816 
817 	/*
818 	 * If failfast settings disagree or any of the two is already
819 	 * a mixed merge, mark both as mixed before proceeding.  This
820 	 * makes sure that all involved bios have mixable attributes
821 	 * set properly.
822 	 */
823 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
824 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
825 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
826 		blk_rq_set_mixed_merge(req);
827 		blk_rq_set_mixed_merge(next);
828 	}
829 
830 	/*
831 	 * At this point we have either done a back merge or front merge. We
832 	 * need the smaller start_time_ns of the merged requests to be the
833 	 * current request for accounting purposes.
834 	 */
835 	if (next->start_time_ns < req->start_time_ns)
836 		req->start_time_ns = next->start_time_ns;
837 
838 	req->biotail->bi_next = next->bio;
839 	req->biotail = next->biotail;
840 
841 	req->__data_len += blk_rq_bytes(next);
842 
843 	if (!blk_discard_mergable(req))
844 		elv_merge_requests(q, req, next);
845 
846 	/*
847 	 * 'next' is going away, so update stats accordingly
848 	 */
849 	blk_account_io_merge_request(next);
850 
851 	trace_block_rq_merge(next);
852 
853 	/*
854 	 * ownership of bio passed from next to req, return 'next' for
855 	 * the caller to free
856 	 */
857 	next->bio = NULL;
858 	return next;
859 }
860 
861 static struct request *attempt_back_merge(struct request_queue *q,
862 		struct request *rq)
863 {
864 	struct request *next = elv_latter_request(q, rq);
865 
866 	if (next)
867 		return attempt_merge(q, rq, next);
868 
869 	return NULL;
870 }
871 
872 static struct request *attempt_front_merge(struct request_queue *q,
873 		struct request *rq)
874 {
875 	struct request *prev = elv_former_request(q, rq);
876 
877 	if (prev)
878 		return attempt_merge(q, prev, rq);
879 
880 	return NULL;
881 }
882 
883 /*
884  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
885  * otherwise. The caller is responsible for freeing 'next' if the merge
886  * happened.
887  */
888 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
889 			   struct request *next)
890 {
891 	return attempt_merge(q, rq, next);
892 }
893 
894 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
895 {
896 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
897 		return false;
898 
899 	if (req_op(rq) != bio_op(bio))
900 		return false;
901 
902 	/* different data direction or already started, don't merge */
903 	if (bio_data_dir(bio) != rq_data_dir(rq))
904 		return false;
905 
906 	/* must be same device */
907 	if (rq->rq_disk != bio->bi_bdev->bd_disk)
908 		return false;
909 
910 	/* only merge integrity protected bio into ditto rq */
911 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
912 		return false;
913 
914 	/* Only merge if the crypt contexts are compatible */
915 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
916 		return false;
917 
918 	/* must be using the same buffer */
919 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
920 	    !blk_write_same_mergeable(rq->bio, bio))
921 		return false;
922 
923 	/*
924 	 * Don't allow merge of different write hints, or for a hint with
925 	 * non-hint IO.
926 	 */
927 	if (rq->write_hint != bio->bi_write_hint)
928 		return false;
929 
930 	if (rq->ioprio != bio_prio(bio))
931 		return false;
932 
933 	return true;
934 }
935 
936 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
937 {
938 	if (blk_discard_mergable(rq))
939 		return ELEVATOR_DISCARD_MERGE;
940 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
941 		return ELEVATOR_BACK_MERGE;
942 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
943 		return ELEVATOR_FRONT_MERGE;
944 	return ELEVATOR_NO_MERGE;
945 }
946 
947 static void blk_account_io_merge_bio(struct request *req)
948 {
949 	if (!blk_do_io_stat(req))
950 		return;
951 
952 	part_stat_lock();
953 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
954 	part_stat_unlock();
955 }
956 
957 enum bio_merge_status {
958 	BIO_MERGE_OK,
959 	BIO_MERGE_NONE,
960 	BIO_MERGE_FAILED,
961 };
962 
963 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
964 		struct bio *bio, unsigned int nr_segs)
965 {
966 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
967 
968 	if (!ll_back_merge_fn(req, bio, nr_segs))
969 		return BIO_MERGE_FAILED;
970 
971 	trace_block_bio_backmerge(bio);
972 	rq_qos_merge(req->q, req, bio);
973 
974 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
975 		blk_rq_set_mixed_merge(req);
976 
977 	req->biotail->bi_next = bio;
978 	req->biotail = bio;
979 	req->__data_len += bio->bi_iter.bi_size;
980 
981 	bio_crypt_free_ctx(bio);
982 
983 	blk_account_io_merge_bio(req);
984 	return BIO_MERGE_OK;
985 }
986 
987 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
988 		struct bio *bio, unsigned int nr_segs)
989 {
990 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
991 
992 	if (!ll_front_merge_fn(req, bio, nr_segs))
993 		return BIO_MERGE_FAILED;
994 
995 	trace_block_bio_frontmerge(bio);
996 	rq_qos_merge(req->q, req, bio);
997 
998 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
999 		blk_rq_set_mixed_merge(req);
1000 
1001 	bio->bi_next = req->bio;
1002 	req->bio = bio;
1003 
1004 	req->__sector = bio->bi_iter.bi_sector;
1005 	req->__data_len += bio->bi_iter.bi_size;
1006 
1007 	bio_crypt_do_front_merge(req, bio);
1008 
1009 	blk_account_io_merge_bio(req);
1010 	return BIO_MERGE_OK;
1011 }
1012 
1013 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1014 		struct request *req, struct bio *bio)
1015 {
1016 	unsigned short segments = blk_rq_nr_discard_segments(req);
1017 
1018 	if (segments >= queue_max_discard_segments(q))
1019 		goto no_merge;
1020 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1021 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1022 		goto no_merge;
1023 
1024 	rq_qos_merge(q, req, bio);
1025 
1026 	req->biotail->bi_next = bio;
1027 	req->biotail = bio;
1028 	req->__data_len += bio->bi_iter.bi_size;
1029 	req->nr_phys_segments = segments + 1;
1030 
1031 	blk_account_io_merge_bio(req);
1032 	return BIO_MERGE_OK;
1033 no_merge:
1034 	req_set_nomerge(q, req);
1035 	return BIO_MERGE_FAILED;
1036 }
1037 
1038 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1039 						   struct request *rq,
1040 						   struct bio *bio,
1041 						   unsigned int nr_segs,
1042 						   bool sched_allow_merge)
1043 {
1044 	if (!blk_rq_merge_ok(rq, bio))
1045 		return BIO_MERGE_NONE;
1046 
1047 	switch (blk_try_merge(rq, bio)) {
1048 	case ELEVATOR_BACK_MERGE:
1049 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1050 			return bio_attempt_back_merge(rq, bio, nr_segs);
1051 		break;
1052 	case ELEVATOR_FRONT_MERGE:
1053 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1054 			return bio_attempt_front_merge(rq, bio, nr_segs);
1055 		break;
1056 	case ELEVATOR_DISCARD_MERGE:
1057 		return bio_attempt_discard_merge(q, rq, bio);
1058 	default:
1059 		return BIO_MERGE_NONE;
1060 	}
1061 
1062 	return BIO_MERGE_FAILED;
1063 }
1064 
1065 /**
1066  * blk_attempt_plug_merge - try to merge with %current's plugged list
1067  * @q: request_queue new bio is being queued at
1068  * @bio: new bio being queued
1069  * @nr_segs: number of segments in @bio
1070  * @same_queue_rq: output value, will be true if there's an existing request
1071  * from the passed in @q already in the plug list
1072  *
1073  * Determine whether @bio being queued on @q can be merged with the previous
1074  * request on %current's plugged list.  Returns %true if merge was successful,
1075  * otherwise %false.
1076  *
1077  * Plugging coalesces IOs from the same issuer for the same purpose without
1078  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1079  * than scheduling, and the request, while may have elvpriv data, is not
1080  * added on the elevator at this point.  In addition, we don't have
1081  * reliable access to the elevator outside queue lock.  Only check basic
1082  * merging parameters without querying the elevator.
1083  *
1084  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1085  */
1086 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1087 		unsigned int nr_segs, bool *same_queue_rq)
1088 {
1089 	struct blk_plug *plug;
1090 	struct request *rq;
1091 
1092 	plug = blk_mq_plug(q, bio);
1093 	if (!plug || rq_list_empty(plug->mq_list))
1094 		return false;
1095 
1096 	/* check the previously added entry for a quick merge attempt */
1097 	rq = rq_list_peek(&plug->mq_list);
1098 	if (rq->q == q) {
1099 		/*
1100 		 * Only blk-mq multiple hardware queues case checks the rq in
1101 		 * the same queue, there should be only one such rq in a queue
1102 		 */
1103 		*same_queue_rq = true;
1104 
1105 		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1106 				BIO_MERGE_OK)
1107 			return true;
1108 	}
1109 	return false;
1110 }
1111 
1112 /*
1113  * Iterate list of requests and see if we can merge this bio with any
1114  * of them.
1115  */
1116 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1117 			struct bio *bio, unsigned int nr_segs)
1118 {
1119 	struct request *rq;
1120 	int checked = 8;
1121 
1122 	list_for_each_entry_reverse(rq, list, queuelist) {
1123 		if (!checked--)
1124 			break;
1125 
1126 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1127 		case BIO_MERGE_NONE:
1128 			continue;
1129 		case BIO_MERGE_OK:
1130 			return true;
1131 		case BIO_MERGE_FAILED:
1132 			return false;
1133 		}
1134 
1135 	}
1136 
1137 	return false;
1138 }
1139 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1140 
1141 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1142 		unsigned int nr_segs, struct request **merged_request)
1143 {
1144 	struct request *rq;
1145 
1146 	switch (elv_merge(q, &rq, bio)) {
1147 	case ELEVATOR_BACK_MERGE:
1148 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1149 			return false;
1150 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1151 			return false;
1152 		*merged_request = attempt_back_merge(q, rq);
1153 		if (!*merged_request)
1154 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1155 		return true;
1156 	case ELEVATOR_FRONT_MERGE:
1157 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1158 			return false;
1159 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1160 			return false;
1161 		*merged_request = attempt_front_merge(q, rq);
1162 		if (!*merged_request)
1163 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1164 		return true;
1165 	case ELEVATOR_DISCARD_MERGE:
1166 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1167 	default:
1168 		return false;
1169 	}
1170 }
1171 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1172