xref: /openbmc/linux/block/blk-merge.c (revision c65176fd49f45bd5a5ffaa1790109745d1fa462c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 
15 static inline bool bio_will_gap(struct request_queue *q,
16 		struct request *prev_rq, struct bio *prev, struct bio *next)
17 {
18 	struct bio_vec pb, nb;
19 
20 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
21 		return false;
22 
23 	/*
24 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
25 	 * is quite difficult to respect the sg gap limit.  We work hard to
26 	 * merge a huge number of small single bios in case of mkfs.
27 	 */
28 	if (prev_rq)
29 		bio_get_first_bvec(prev_rq->bio, &pb);
30 	else
31 		bio_get_first_bvec(prev, &pb);
32 	if (pb.bv_offset & queue_virt_boundary(q))
33 		return true;
34 
35 	/*
36 	 * We don't need to worry about the situation that the merged segment
37 	 * ends in unaligned virt boundary:
38 	 *
39 	 * - if 'pb' ends aligned, the merged segment ends aligned
40 	 * - if 'pb' ends unaligned, the next bio must include
41 	 *   one single bvec of 'nb', otherwise the 'nb' can't
42 	 *   merge with 'pb'
43 	 */
44 	bio_get_last_bvec(prev, &pb);
45 	bio_get_first_bvec(next, &nb);
46 	if (biovec_phys_mergeable(q, &pb, &nb))
47 		return false;
48 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
49 }
50 
51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
52 {
53 	return bio_will_gap(req->q, req, req->biotail, bio);
54 }
55 
56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
57 {
58 	return bio_will_gap(req->q, NULL, bio, req->bio);
59 }
60 
61 static struct bio *blk_bio_discard_split(struct request_queue *q,
62 					 struct bio *bio,
63 					 struct bio_set *bs,
64 					 unsigned *nsegs)
65 {
66 	unsigned int max_discard_sectors, granularity;
67 	int alignment;
68 	sector_t tmp;
69 	unsigned split_sectors;
70 
71 	*nsegs = 1;
72 
73 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
74 	granularity = max(q->limits.discard_granularity >> 9, 1U);
75 
76 	max_discard_sectors = min(q->limits.max_discard_sectors,
77 			bio_allowed_max_sectors(q));
78 	max_discard_sectors -= max_discard_sectors % granularity;
79 
80 	if (unlikely(!max_discard_sectors)) {
81 		/* XXX: warn */
82 		return NULL;
83 	}
84 
85 	if (bio_sectors(bio) <= max_discard_sectors)
86 		return NULL;
87 
88 	split_sectors = max_discard_sectors;
89 
90 	/*
91 	 * If the next starting sector would be misaligned, stop the discard at
92 	 * the previous aligned sector.
93 	 */
94 	alignment = (q->limits.discard_alignment >> 9) % granularity;
95 
96 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
97 	tmp = sector_div(tmp, granularity);
98 
99 	if (split_sectors > tmp)
100 		split_sectors -= tmp;
101 
102 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
103 }
104 
105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
106 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
107 {
108 	*nsegs = 0;
109 
110 	if (!q->limits.max_write_zeroes_sectors)
111 		return NULL;
112 
113 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
114 		return NULL;
115 
116 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
117 }
118 
119 static struct bio *blk_bio_write_same_split(struct request_queue *q,
120 					    struct bio *bio,
121 					    struct bio_set *bs,
122 					    unsigned *nsegs)
123 {
124 	*nsegs = 1;
125 
126 	if (!q->limits.max_write_same_sectors)
127 		return NULL;
128 
129 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
130 		return NULL;
131 
132 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
133 }
134 
135 /*
136  * Return the maximum number of sectors from the start of a bio that may be
137  * submitted as a single request to a block device. If enough sectors remain,
138  * align the end to the physical block size. Otherwise align the end to the
139  * logical block size. This approach minimizes the number of non-aligned
140  * requests that are submitted to a block device if the start of a bio is not
141  * aligned to a physical block boundary.
142  */
143 static inline unsigned get_max_io_size(struct request_queue *q,
144 				       struct bio *bio)
145 {
146 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
147 	unsigned max_sectors = sectors;
148 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
149 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
150 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
151 
152 	max_sectors += start_offset;
153 	max_sectors &= ~(pbs - 1);
154 	if (max_sectors > start_offset)
155 		return max_sectors - start_offset;
156 
157 	return sectors & ~(lbs - 1);
158 }
159 
160 static inline unsigned get_max_segment_size(const struct request_queue *q,
161 					    struct page *start_page,
162 					    unsigned long offset)
163 {
164 	unsigned long mask = queue_segment_boundary(q);
165 
166 	offset = mask & (page_to_phys(start_page) + offset);
167 
168 	/*
169 	 * overflow may be triggered in case of zero page physical address
170 	 * on 32bit arch, use queue's max segment size when that happens.
171 	 */
172 	return min_not_zero(mask - offset + 1,
173 			(unsigned long)queue_max_segment_size(q));
174 }
175 
176 /**
177  * bvec_split_segs - verify whether or not a bvec should be split in the middle
178  * @q:        [in] request queue associated with the bio associated with @bv
179  * @bv:       [in] bvec to examine
180  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
181  *            by the number of segments from @bv that may be appended to that
182  *            bio without exceeding @max_segs
183  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
184  *            by the number of sectors from @bv that may be appended to that
185  *            bio without exceeding @max_sectors
186  * @max_segs: [in] upper bound for *@nsegs
187  * @max_sectors: [in] upper bound for *@sectors
188  *
189  * When splitting a bio, it can happen that a bvec is encountered that is too
190  * big to fit in a single segment and hence that it has to be split in the
191  * middle. This function verifies whether or not that should happen. The value
192  * %true is returned if and only if appending the entire @bv to a bio with
193  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
194  * the block driver.
195  */
196 static bool bvec_split_segs(const struct request_queue *q,
197 			    const struct bio_vec *bv, unsigned *nsegs,
198 			    unsigned *sectors, unsigned max_segs,
199 			    unsigned max_sectors)
200 {
201 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
202 	unsigned len = min(bv->bv_len, max_len);
203 	unsigned total_len = 0;
204 	unsigned seg_size = 0;
205 
206 	while (len && *nsegs < max_segs) {
207 		seg_size = get_max_segment_size(q, bv->bv_page,
208 						bv->bv_offset + total_len);
209 		seg_size = min(seg_size, len);
210 
211 		(*nsegs)++;
212 		total_len += seg_size;
213 		len -= seg_size;
214 
215 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
216 			break;
217 	}
218 
219 	*sectors += total_len >> 9;
220 
221 	/* tell the caller to split the bvec if it is too big to fit */
222 	return len > 0 || bv->bv_len > max_len;
223 }
224 
225 /**
226  * blk_bio_segment_split - split a bio in two bios
227  * @q:    [in] request queue pointer
228  * @bio:  [in] bio to be split
229  * @bs:	  [in] bio set to allocate the clone from
230  * @segs: [out] number of segments in the bio with the first half of the sectors
231  *
232  * Clone @bio, update the bi_iter of the clone to represent the first sectors
233  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
234  * following is guaranteed for the cloned bio:
235  * - That it has at most get_max_io_size(@q, @bio) sectors.
236  * - That it has at most queue_max_segments(@q) segments.
237  *
238  * Except for discard requests the cloned bio will point at the bi_io_vec of
239  * the original bio. It is the responsibility of the caller to ensure that the
240  * original bio is not freed before the cloned bio. The caller is also
241  * responsible for ensuring that @bs is only destroyed after processing of the
242  * split bio has finished.
243  */
244 static struct bio *blk_bio_segment_split(struct request_queue *q,
245 					 struct bio *bio,
246 					 struct bio_set *bs,
247 					 unsigned *segs)
248 {
249 	struct bio_vec bv, bvprv, *bvprvp = NULL;
250 	struct bvec_iter iter;
251 	unsigned nsegs = 0, sectors = 0;
252 	const unsigned max_sectors = get_max_io_size(q, bio);
253 	const unsigned max_segs = queue_max_segments(q);
254 
255 	bio_for_each_bvec(bv, bio, iter) {
256 		/*
257 		 * If the queue doesn't support SG gaps and adding this
258 		 * offset would create a gap, disallow it.
259 		 */
260 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
261 			goto split;
262 
263 		if (nsegs < max_segs &&
264 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
265 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
266 			nsegs++;
267 			sectors += bv.bv_len >> 9;
268 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
269 					 max_sectors)) {
270 			goto split;
271 		}
272 
273 		bvprv = bv;
274 		bvprvp = &bvprv;
275 	}
276 
277 	*segs = nsegs;
278 	return NULL;
279 split:
280 	*segs = nsegs;
281 	return bio_split(bio, sectors, GFP_NOIO, bs);
282 }
283 
284 /**
285  * __blk_queue_split - split a bio and submit the second half
286  * @bio:     [in, out] bio to be split
287  * @nr_segs: [out] number of segments in the first bio
288  *
289  * Split a bio into two bios, chain the two bios, submit the second half and
290  * store a pointer to the first half in *@bio. If the second bio is still too
291  * big it will be split by a recursive call to this function. Since this
292  * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
293  * the responsibility of the caller to ensure that
294  * @bio->bi_disk->queue->bio_split is only released after processing of the
295  * split bio has finished.
296  */
297 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
298 {
299 	struct request_queue *q = (*bio)->bi_disk->queue;
300 	struct bio *split = NULL;
301 
302 	switch (bio_op(*bio)) {
303 	case REQ_OP_DISCARD:
304 	case REQ_OP_SECURE_ERASE:
305 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
306 		break;
307 	case REQ_OP_WRITE_ZEROES:
308 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
309 				nr_segs);
310 		break;
311 	case REQ_OP_WRITE_SAME:
312 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
313 				nr_segs);
314 		break;
315 	default:
316 		/*
317 		 * All drivers must accept single-segments bios that are <=
318 		 * PAGE_SIZE.  This is a quick and dirty check that relies on
319 		 * the fact that bi_io_vec[0] is always valid if a bio has data.
320 		 * The check might lead to occasional false negatives when bios
321 		 * are cloned, but compared to the performance impact of cloned
322 		 * bios themselves the loop below doesn't matter anyway.
323 		 */
324 		if (!q->limits.chunk_sectors &&
325 		    (*bio)->bi_vcnt == 1 &&
326 		    ((*bio)->bi_io_vec[0].bv_len +
327 		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
328 			*nr_segs = 1;
329 			break;
330 		}
331 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
332 		break;
333 	}
334 
335 	if (split) {
336 		/* there isn't chance to merge the splitted bio */
337 		split->bi_opf |= REQ_NOMERGE;
338 
339 		bio_chain(split, *bio);
340 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
341 		submit_bio_noacct(*bio);
342 		*bio = split;
343 	}
344 }
345 
346 /**
347  * blk_queue_split - split a bio and submit the second half
348  * @bio: [in, out] bio to be split
349  *
350  * Split a bio into two bios, chains the two bios, submit the second half and
351  * store a pointer to the first half in *@bio. Since this function may allocate
352  * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
353  * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
354  * after processing of the split bio has finished.
355  */
356 void blk_queue_split(struct bio **bio)
357 {
358 	unsigned int nr_segs;
359 
360 	__blk_queue_split(bio, &nr_segs);
361 }
362 EXPORT_SYMBOL(blk_queue_split);
363 
364 unsigned int blk_recalc_rq_segments(struct request *rq)
365 {
366 	unsigned int nr_phys_segs = 0;
367 	unsigned int nr_sectors = 0;
368 	struct req_iterator iter;
369 	struct bio_vec bv;
370 
371 	if (!rq->bio)
372 		return 0;
373 
374 	switch (bio_op(rq->bio)) {
375 	case REQ_OP_DISCARD:
376 	case REQ_OP_SECURE_ERASE:
377 	case REQ_OP_WRITE_ZEROES:
378 		return 0;
379 	case REQ_OP_WRITE_SAME:
380 		return 1;
381 	}
382 
383 	rq_for_each_bvec(bv, rq, iter)
384 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
385 				UINT_MAX, UINT_MAX);
386 	return nr_phys_segs;
387 }
388 
389 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
390 		struct scatterlist *sglist)
391 {
392 	if (!*sg)
393 		return sglist;
394 
395 	/*
396 	 * If the driver previously mapped a shorter list, we could see a
397 	 * termination bit prematurely unless it fully inits the sg table
398 	 * on each mapping. We KNOW that there must be more entries here
399 	 * or the driver would be buggy, so force clear the termination bit
400 	 * to avoid doing a full sg_init_table() in drivers for each command.
401 	 */
402 	sg_unmark_end(*sg);
403 	return sg_next(*sg);
404 }
405 
406 static unsigned blk_bvec_map_sg(struct request_queue *q,
407 		struct bio_vec *bvec, struct scatterlist *sglist,
408 		struct scatterlist **sg)
409 {
410 	unsigned nbytes = bvec->bv_len;
411 	unsigned nsegs = 0, total = 0;
412 
413 	while (nbytes > 0) {
414 		unsigned offset = bvec->bv_offset + total;
415 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
416 					offset), nbytes);
417 		struct page *page = bvec->bv_page;
418 
419 		/*
420 		 * Unfortunately a fair number of drivers barf on scatterlists
421 		 * that have an offset larger than PAGE_SIZE, despite other
422 		 * subsystems dealing with that invariant just fine.  For now
423 		 * stick to the legacy format where we never present those from
424 		 * the block layer, but the code below should be removed once
425 		 * these offenders (mostly MMC/SD drivers) are fixed.
426 		 */
427 		page += (offset >> PAGE_SHIFT);
428 		offset &= ~PAGE_MASK;
429 
430 		*sg = blk_next_sg(sg, sglist);
431 		sg_set_page(*sg, page, len, offset);
432 
433 		total += len;
434 		nbytes -= len;
435 		nsegs++;
436 	}
437 
438 	return nsegs;
439 }
440 
441 static inline int __blk_bvec_map_sg(struct bio_vec bv,
442 		struct scatterlist *sglist, struct scatterlist **sg)
443 {
444 	*sg = blk_next_sg(sg, sglist);
445 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
446 	return 1;
447 }
448 
449 /* only try to merge bvecs into one sg if they are from two bios */
450 static inline bool
451 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
452 			   struct bio_vec *bvprv, struct scatterlist **sg)
453 {
454 
455 	int nbytes = bvec->bv_len;
456 
457 	if (!*sg)
458 		return false;
459 
460 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
461 		return false;
462 
463 	if (!biovec_phys_mergeable(q, bvprv, bvec))
464 		return false;
465 
466 	(*sg)->length += nbytes;
467 
468 	return true;
469 }
470 
471 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
472 			     struct scatterlist *sglist,
473 			     struct scatterlist **sg)
474 {
475 	struct bio_vec bvec, bvprv = { NULL };
476 	struct bvec_iter iter;
477 	int nsegs = 0;
478 	bool new_bio = false;
479 
480 	for_each_bio(bio) {
481 		bio_for_each_bvec(bvec, bio, iter) {
482 			/*
483 			 * Only try to merge bvecs from two bios given we
484 			 * have done bio internal merge when adding pages
485 			 * to bio
486 			 */
487 			if (new_bio &&
488 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
489 				goto next_bvec;
490 
491 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
492 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
493 			else
494 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
495  next_bvec:
496 			new_bio = false;
497 		}
498 		if (likely(bio->bi_iter.bi_size)) {
499 			bvprv = bvec;
500 			new_bio = true;
501 		}
502 	}
503 
504 	return nsegs;
505 }
506 
507 /*
508  * map a request to scatterlist, return number of sg entries setup. Caller
509  * must make sure sg can hold rq->nr_phys_segments entries
510  */
511 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
512 		struct scatterlist *sglist, struct scatterlist **last_sg)
513 {
514 	int nsegs = 0;
515 
516 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
517 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
518 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
519 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
520 	else if (rq->bio)
521 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
522 
523 	if (*last_sg)
524 		sg_mark_end(*last_sg);
525 
526 	/*
527 	 * Something must have been wrong if the figured number of
528 	 * segment is bigger than number of req's physical segments
529 	 */
530 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
531 
532 	return nsegs;
533 }
534 EXPORT_SYMBOL(__blk_rq_map_sg);
535 
536 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
537 {
538 	if (req_op(rq) == REQ_OP_DISCARD)
539 		return queue_max_discard_segments(rq->q);
540 	return queue_max_segments(rq->q);
541 }
542 
543 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
544 		unsigned int nr_phys_segs)
545 {
546 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
547 		goto no_merge;
548 
549 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
550 		goto no_merge;
551 
552 	/*
553 	 * This will form the start of a new hw segment.  Bump both
554 	 * counters.
555 	 */
556 	req->nr_phys_segments += nr_phys_segs;
557 	return 1;
558 
559 no_merge:
560 	req_set_nomerge(req->q, req);
561 	return 0;
562 }
563 
564 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
565 {
566 	if (req_gap_back_merge(req, bio))
567 		return 0;
568 	if (blk_integrity_rq(req) &&
569 	    integrity_req_gap_back_merge(req, bio))
570 		return 0;
571 	if (!bio_crypt_ctx_back_mergeable(req, bio))
572 		return 0;
573 	if (blk_rq_sectors(req) + bio_sectors(bio) >
574 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
575 		req_set_nomerge(req->q, req);
576 		return 0;
577 	}
578 
579 	return ll_new_hw_segment(req, bio, nr_segs);
580 }
581 
582 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
583 {
584 	if (req_gap_front_merge(req, bio))
585 		return 0;
586 	if (blk_integrity_rq(req) &&
587 	    integrity_req_gap_front_merge(req, bio))
588 		return 0;
589 	if (!bio_crypt_ctx_front_mergeable(req, bio))
590 		return 0;
591 	if (blk_rq_sectors(req) + bio_sectors(bio) >
592 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
593 		req_set_nomerge(req->q, req);
594 		return 0;
595 	}
596 
597 	return ll_new_hw_segment(req, bio, nr_segs);
598 }
599 
600 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
601 		struct request *next)
602 {
603 	unsigned short segments = blk_rq_nr_discard_segments(req);
604 
605 	if (segments >= queue_max_discard_segments(q))
606 		goto no_merge;
607 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
608 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
609 		goto no_merge;
610 
611 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
612 	return true;
613 no_merge:
614 	req_set_nomerge(q, req);
615 	return false;
616 }
617 
618 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
619 				struct request *next)
620 {
621 	int total_phys_segments;
622 
623 	if (req_gap_back_merge(req, next->bio))
624 		return 0;
625 
626 	/*
627 	 * Will it become too large?
628 	 */
629 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
630 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
631 		return 0;
632 
633 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
634 	if (total_phys_segments > blk_rq_get_max_segments(req))
635 		return 0;
636 
637 	if (blk_integrity_merge_rq(q, req, next) == false)
638 		return 0;
639 
640 	if (!bio_crypt_ctx_merge_rq(req, next))
641 		return 0;
642 
643 	/* Merge is OK... */
644 	req->nr_phys_segments = total_phys_segments;
645 	return 1;
646 }
647 
648 /**
649  * blk_rq_set_mixed_merge - mark a request as mixed merge
650  * @rq: request to mark as mixed merge
651  *
652  * Description:
653  *     @rq is about to be mixed merged.  Make sure the attributes
654  *     which can be mixed are set in each bio and mark @rq as mixed
655  *     merged.
656  */
657 void blk_rq_set_mixed_merge(struct request *rq)
658 {
659 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
660 	struct bio *bio;
661 
662 	if (rq->rq_flags & RQF_MIXED_MERGE)
663 		return;
664 
665 	/*
666 	 * @rq will no longer represent mixable attributes for all the
667 	 * contained bios.  It will just track those of the first one.
668 	 * Distributes the attributs to each bio.
669 	 */
670 	for (bio = rq->bio; bio; bio = bio->bi_next) {
671 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
672 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
673 		bio->bi_opf |= ff;
674 	}
675 	rq->rq_flags |= RQF_MIXED_MERGE;
676 }
677 
678 static void blk_account_io_merge_request(struct request *req)
679 {
680 	if (blk_do_io_stat(req)) {
681 		part_stat_lock();
682 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
683 		part_stat_unlock();
684 
685 		hd_struct_put(req->part);
686 	}
687 }
688 
689 /*
690  * Two cases of handling DISCARD merge:
691  * If max_discard_segments > 1, the driver takes every bio
692  * as a range and send them to controller together. The ranges
693  * needn't to be contiguous.
694  * Otherwise, the bios/requests will be handled as same as
695  * others which should be contiguous.
696  */
697 static inline bool blk_discard_mergable(struct request *req)
698 {
699 	if (req_op(req) == REQ_OP_DISCARD &&
700 	    queue_max_discard_segments(req->q) > 1)
701 		return true;
702 	return false;
703 }
704 
705 static enum elv_merge blk_try_req_merge(struct request *req,
706 					struct request *next)
707 {
708 	if (blk_discard_mergable(req))
709 		return ELEVATOR_DISCARD_MERGE;
710 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
711 		return ELEVATOR_BACK_MERGE;
712 
713 	return ELEVATOR_NO_MERGE;
714 }
715 
716 /*
717  * For non-mq, this has to be called with the request spinlock acquired.
718  * For mq with scheduling, the appropriate queue wide lock should be held.
719  */
720 static struct request *attempt_merge(struct request_queue *q,
721 				     struct request *req, struct request *next)
722 {
723 	if (!rq_mergeable(req) || !rq_mergeable(next))
724 		return NULL;
725 
726 	if (req_op(req) != req_op(next))
727 		return NULL;
728 
729 	if (rq_data_dir(req) != rq_data_dir(next)
730 	    || req->rq_disk != next->rq_disk)
731 		return NULL;
732 
733 	if (req_op(req) == REQ_OP_WRITE_SAME &&
734 	    !blk_write_same_mergeable(req->bio, next->bio))
735 		return NULL;
736 
737 	/*
738 	 * Don't allow merge of different write hints, or for a hint with
739 	 * non-hint IO.
740 	 */
741 	if (req->write_hint != next->write_hint)
742 		return NULL;
743 
744 	if (req->ioprio != next->ioprio)
745 		return NULL;
746 
747 	/*
748 	 * If we are allowed to merge, then append bio list
749 	 * from next to rq and release next. merge_requests_fn
750 	 * will have updated segment counts, update sector
751 	 * counts here. Handle DISCARDs separately, as they
752 	 * have separate settings.
753 	 */
754 
755 	switch (blk_try_req_merge(req, next)) {
756 	case ELEVATOR_DISCARD_MERGE:
757 		if (!req_attempt_discard_merge(q, req, next))
758 			return NULL;
759 		break;
760 	case ELEVATOR_BACK_MERGE:
761 		if (!ll_merge_requests_fn(q, req, next))
762 			return NULL;
763 		break;
764 	default:
765 		return NULL;
766 	}
767 
768 	/*
769 	 * If failfast settings disagree or any of the two is already
770 	 * a mixed merge, mark both as mixed before proceeding.  This
771 	 * makes sure that all involved bios have mixable attributes
772 	 * set properly.
773 	 */
774 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
775 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
776 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
777 		blk_rq_set_mixed_merge(req);
778 		blk_rq_set_mixed_merge(next);
779 	}
780 
781 	/*
782 	 * At this point we have either done a back merge or front merge. We
783 	 * need the smaller start_time_ns of the merged requests to be the
784 	 * current request for accounting purposes.
785 	 */
786 	if (next->start_time_ns < req->start_time_ns)
787 		req->start_time_ns = next->start_time_ns;
788 
789 	req->biotail->bi_next = next->bio;
790 	req->biotail = next->biotail;
791 
792 	req->__data_len += blk_rq_bytes(next);
793 
794 	if (!blk_discard_mergable(req))
795 		elv_merge_requests(q, req, next);
796 
797 	/*
798 	 * 'next' is going away, so update stats accordingly
799 	 */
800 	blk_account_io_merge_request(next);
801 
802 	trace_block_rq_merge(q, next);
803 
804 	/*
805 	 * ownership of bio passed from next to req, return 'next' for
806 	 * the caller to free
807 	 */
808 	next->bio = NULL;
809 	return next;
810 }
811 
812 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
813 {
814 	struct request *next = elv_latter_request(q, rq);
815 
816 	if (next)
817 		return attempt_merge(q, rq, next);
818 
819 	return NULL;
820 }
821 
822 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
823 {
824 	struct request *prev = elv_former_request(q, rq);
825 
826 	if (prev)
827 		return attempt_merge(q, prev, rq);
828 
829 	return NULL;
830 }
831 
832 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
833 			  struct request *next)
834 {
835 	struct request *free;
836 
837 	free = attempt_merge(q, rq, next);
838 	if (free) {
839 		blk_put_request(free);
840 		return 1;
841 	}
842 
843 	return 0;
844 }
845 
846 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
847 {
848 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
849 		return false;
850 
851 	if (req_op(rq) != bio_op(bio))
852 		return false;
853 
854 	/* different data direction or already started, don't merge */
855 	if (bio_data_dir(bio) != rq_data_dir(rq))
856 		return false;
857 
858 	/* must be same device */
859 	if (rq->rq_disk != bio->bi_disk)
860 		return false;
861 
862 	/* only merge integrity protected bio into ditto rq */
863 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
864 		return false;
865 
866 	/* Only merge if the crypt contexts are compatible */
867 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
868 		return false;
869 
870 	/* must be using the same buffer */
871 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
872 	    !blk_write_same_mergeable(rq->bio, bio))
873 		return false;
874 
875 	/*
876 	 * Don't allow merge of different write hints, or for a hint with
877 	 * non-hint IO.
878 	 */
879 	if (rq->write_hint != bio->bi_write_hint)
880 		return false;
881 
882 	if (rq->ioprio != bio_prio(bio))
883 		return false;
884 
885 	return true;
886 }
887 
888 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
889 {
890 	if (blk_discard_mergable(rq))
891 		return ELEVATOR_DISCARD_MERGE;
892 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
893 		return ELEVATOR_BACK_MERGE;
894 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
895 		return ELEVATOR_FRONT_MERGE;
896 	return ELEVATOR_NO_MERGE;
897 }
898