1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-rq-qos.h" 15 16 static inline bool bio_will_gap(struct request_queue *q, 17 struct request *prev_rq, struct bio *prev, struct bio *next) 18 { 19 struct bio_vec pb, nb; 20 21 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 22 return false; 23 24 /* 25 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 26 * is quite difficult to respect the sg gap limit. We work hard to 27 * merge a huge number of small single bios in case of mkfs. 28 */ 29 if (prev_rq) 30 bio_get_first_bvec(prev_rq->bio, &pb); 31 else 32 bio_get_first_bvec(prev, &pb); 33 if (pb.bv_offset & queue_virt_boundary(q)) 34 return true; 35 36 /* 37 * We don't need to worry about the situation that the merged segment 38 * ends in unaligned virt boundary: 39 * 40 * - if 'pb' ends aligned, the merged segment ends aligned 41 * - if 'pb' ends unaligned, the next bio must include 42 * one single bvec of 'nb', otherwise the 'nb' can't 43 * merge with 'pb' 44 */ 45 bio_get_last_bvec(prev, &pb); 46 bio_get_first_bvec(next, &nb); 47 if (biovec_phys_mergeable(q, &pb, &nb)) 48 return false; 49 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 50 } 51 52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 53 { 54 return bio_will_gap(req->q, req, req->biotail, bio); 55 } 56 57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 58 { 59 return bio_will_gap(req->q, NULL, bio, req->bio); 60 } 61 62 static struct bio *blk_bio_discard_split(struct request_queue *q, 63 struct bio *bio, 64 struct bio_set *bs, 65 unsigned *nsegs) 66 { 67 unsigned int max_discard_sectors, granularity; 68 int alignment; 69 sector_t tmp; 70 unsigned split_sectors; 71 72 *nsegs = 1; 73 74 /* Zero-sector (unknown) and one-sector granularities are the same. */ 75 granularity = max(q->limits.discard_granularity >> 9, 1U); 76 77 max_discard_sectors = min(q->limits.max_discard_sectors, 78 bio_allowed_max_sectors(q)); 79 max_discard_sectors -= max_discard_sectors % granularity; 80 81 if (unlikely(!max_discard_sectors)) { 82 /* XXX: warn */ 83 return NULL; 84 } 85 86 if (bio_sectors(bio) <= max_discard_sectors) 87 return NULL; 88 89 split_sectors = max_discard_sectors; 90 91 /* 92 * If the next starting sector would be misaligned, stop the discard at 93 * the previous aligned sector. 94 */ 95 alignment = (q->limits.discard_alignment >> 9) % granularity; 96 97 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 98 tmp = sector_div(tmp, granularity); 99 100 if (split_sectors > tmp) 101 split_sectors -= tmp; 102 103 return bio_split(bio, split_sectors, GFP_NOIO, bs); 104 } 105 106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 107 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 108 { 109 *nsegs = 0; 110 111 if (!q->limits.max_write_zeroes_sectors) 112 return NULL; 113 114 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 115 return NULL; 116 117 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 118 } 119 120 static struct bio *blk_bio_write_same_split(struct request_queue *q, 121 struct bio *bio, 122 struct bio_set *bs, 123 unsigned *nsegs) 124 { 125 *nsegs = 1; 126 127 if (!q->limits.max_write_same_sectors) 128 return NULL; 129 130 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 131 return NULL; 132 133 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 134 } 135 136 /* 137 * Return the maximum number of sectors from the start of a bio that may be 138 * submitted as a single request to a block device. If enough sectors remain, 139 * align the end to the physical block size. Otherwise align the end to the 140 * logical block size. This approach minimizes the number of non-aligned 141 * requests that are submitted to a block device if the start of a bio is not 142 * aligned to a physical block boundary. 143 */ 144 static inline unsigned get_max_io_size(struct request_queue *q, 145 struct bio *bio) 146 { 147 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); 148 unsigned max_sectors = sectors; 149 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 150 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 151 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 152 153 max_sectors += start_offset; 154 max_sectors &= ~(pbs - 1); 155 if (max_sectors > start_offset) 156 return max_sectors - start_offset; 157 158 return sectors & ~(lbs - 1); 159 } 160 161 static inline unsigned get_max_segment_size(const struct request_queue *q, 162 struct page *start_page, 163 unsigned long offset) 164 { 165 unsigned long mask = queue_segment_boundary(q); 166 167 offset = mask & (page_to_phys(start_page) + offset); 168 169 /* 170 * overflow may be triggered in case of zero page physical address 171 * on 32bit arch, use queue's max segment size when that happens. 172 */ 173 return min_not_zero(mask - offset + 1, 174 (unsigned long)queue_max_segment_size(q)); 175 } 176 177 /** 178 * bvec_split_segs - verify whether or not a bvec should be split in the middle 179 * @q: [in] request queue associated with the bio associated with @bv 180 * @bv: [in] bvec to examine 181 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 182 * by the number of segments from @bv that may be appended to that 183 * bio without exceeding @max_segs 184 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 185 * by the number of sectors from @bv that may be appended to that 186 * bio without exceeding @max_sectors 187 * @max_segs: [in] upper bound for *@nsegs 188 * @max_sectors: [in] upper bound for *@sectors 189 * 190 * When splitting a bio, it can happen that a bvec is encountered that is too 191 * big to fit in a single segment and hence that it has to be split in the 192 * middle. This function verifies whether or not that should happen. The value 193 * %true is returned if and only if appending the entire @bv to a bio with 194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 195 * the block driver. 196 */ 197 static bool bvec_split_segs(const struct request_queue *q, 198 const struct bio_vec *bv, unsigned *nsegs, 199 unsigned *sectors, unsigned max_segs, 200 unsigned max_sectors) 201 { 202 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 203 unsigned len = min(bv->bv_len, max_len); 204 unsigned total_len = 0; 205 unsigned seg_size = 0; 206 207 while (len && *nsegs < max_segs) { 208 seg_size = get_max_segment_size(q, bv->bv_page, 209 bv->bv_offset + total_len); 210 seg_size = min(seg_size, len); 211 212 (*nsegs)++; 213 total_len += seg_size; 214 len -= seg_size; 215 216 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 217 break; 218 } 219 220 *sectors += total_len >> 9; 221 222 /* tell the caller to split the bvec if it is too big to fit */ 223 return len > 0 || bv->bv_len > max_len; 224 } 225 226 /** 227 * blk_bio_segment_split - split a bio in two bios 228 * @q: [in] request queue pointer 229 * @bio: [in] bio to be split 230 * @bs: [in] bio set to allocate the clone from 231 * @segs: [out] number of segments in the bio with the first half of the sectors 232 * 233 * Clone @bio, update the bi_iter of the clone to represent the first sectors 234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 235 * following is guaranteed for the cloned bio: 236 * - That it has at most get_max_io_size(@q, @bio) sectors. 237 * - That it has at most queue_max_segments(@q) segments. 238 * 239 * Except for discard requests the cloned bio will point at the bi_io_vec of 240 * the original bio. It is the responsibility of the caller to ensure that the 241 * original bio is not freed before the cloned bio. The caller is also 242 * responsible for ensuring that @bs is only destroyed after processing of the 243 * split bio has finished. 244 */ 245 static struct bio *blk_bio_segment_split(struct request_queue *q, 246 struct bio *bio, 247 struct bio_set *bs, 248 unsigned *segs) 249 { 250 struct bio_vec bv, bvprv, *bvprvp = NULL; 251 struct bvec_iter iter; 252 unsigned nsegs = 0, sectors = 0; 253 const unsigned max_sectors = get_max_io_size(q, bio); 254 const unsigned max_segs = queue_max_segments(q); 255 256 bio_for_each_bvec(bv, bio, iter) { 257 /* 258 * If the queue doesn't support SG gaps and adding this 259 * offset would create a gap, disallow it. 260 */ 261 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 262 goto split; 263 264 if (nsegs < max_segs && 265 sectors + (bv.bv_len >> 9) <= max_sectors && 266 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 267 nsegs++; 268 sectors += bv.bv_len >> 9; 269 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 270 max_sectors)) { 271 goto split; 272 } 273 274 bvprv = bv; 275 bvprvp = &bvprv; 276 } 277 278 *segs = nsegs; 279 return NULL; 280 split: 281 *segs = nsegs; 282 283 /* 284 * Bio splitting may cause subtle trouble such as hang when doing sync 285 * iopoll in direct IO routine. Given performance gain of iopoll for 286 * big IO can be trival, disable iopoll when split needed. 287 */ 288 bio->bi_opf &= ~REQ_HIPRI; 289 290 return bio_split(bio, sectors, GFP_NOIO, bs); 291 } 292 293 /** 294 * __blk_queue_split - split a bio and submit the second half 295 * @bio: [in, out] bio to be split 296 * @nr_segs: [out] number of segments in the first bio 297 * 298 * Split a bio into two bios, chain the two bios, submit the second half and 299 * store a pointer to the first half in *@bio. If the second bio is still too 300 * big it will be split by a recursive call to this function. Since this 301 * function may allocate a new bio from q->bio_split, it is the responsibility 302 * of the caller to ensure that q->bio_split is only released after processing 303 * of the split bio has finished. 304 */ 305 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs) 306 { 307 struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue; 308 struct bio *split = NULL; 309 310 switch (bio_op(*bio)) { 311 case REQ_OP_DISCARD: 312 case REQ_OP_SECURE_ERASE: 313 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 314 break; 315 case REQ_OP_WRITE_ZEROES: 316 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 317 nr_segs); 318 break; 319 case REQ_OP_WRITE_SAME: 320 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 321 nr_segs); 322 break; 323 default: 324 /* 325 * All drivers must accept single-segments bios that are <= 326 * PAGE_SIZE. This is a quick and dirty check that relies on 327 * the fact that bi_io_vec[0] is always valid if a bio has data. 328 * The check might lead to occasional false negatives when bios 329 * are cloned, but compared to the performance impact of cloned 330 * bios themselves the loop below doesn't matter anyway. 331 */ 332 if (!q->limits.chunk_sectors && 333 (*bio)->bi_vcnt == 1 && 334 ((*bio)->bi_io_vec[0].bv_len + 335 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { 336 *nr_segs = 1; 337 break; 338 } 339 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 340 break; 341 } 342 343 if (split) { 344 /* there isn't chance to merge the splitted bio */ 345 split->bi_opf |= REQ_NOMERGE; 346 347 bio_chain(split, *bio); 348 trace_block_split(split, (*bio)->bi_iter.bi_sector); 349 submit_bio_noacct(*bio); 350 *bio = split; 351 } 352 } 353 354 /** 355 * blk_queue_split - split a bio and submit the second half 356 * @bio: [in, out] bio to be split 357 * 358 * Split a bio into two bios, chains the two bios, submit the second half and 359 * store a pointer to the first half in *@bio. Since this function may allocate 360 * a new bio from q->bio_split, it is the responsibility of the caller to ensure 361 * that q->bio_split is only released after processing of the split bio has 362 * finished. 363 */ 364 void blk_queue_split(struct bio **bio) 365 { 366 unsigned int nr_segs; 367 368 __blk_queue_split(bio, &nr_segs); 369 } 370 EXPORT_SYMBOL(blk_queue_split); 371 372 unsigned int blk_recalc_rq_segments(struct request *rq) 373 { 374 unsigned int nr_phys_segs = 0; 375 unsigned int nr_sectors = 0; 376 struct req_iterator iter; 377 struct bio_vec bv; 378 379 if (!rq->bio) 380 return 0; 381 382 switch (bio_op(rq->bio)) { 383 case REQ_OP_DISCARD: 384 case REQ_OP_SECURE_ERASE: 385 case REQ_OP_WRITE_ZEROES: 386 return 0; 387 case REQ_OP_WRITE_SAME: 388 return 1; 389 } 390 391 rq_for_each_bvec(bv, rq, iter) 392 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 393 UINT_MAX, UINT_MAX); 394 return nr_phys_segs; 395 } 396 397 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 398 struct scatterlist *sglist) 399 { 400 if (!*sg) 401 return sglist; 402 403 /* 404 * If the driver previously mapped a shorter list, we could see a 405 * termination bit prematurely unless it fully inits the sg table 406 * on each mapping. We KNOW that there must be more entries here 407 * or the driver would be buggy, so force clear the termination bit 408 * to avoid doing a full sg_init_table() in drivers for each command. 409 */ 410 sg_unmark_end(*sg); 411 return sg_next(*sg); 412 } 413 414 static unsigned blk_bvec_map_sg(struct request_queue *q, 415 struct bio_vec *bvec, struct scatterlist *sglist, 416 struct scatterlist **sg) 417 { 418 unsigned nbytes = bvec->bv_len; 419 unsigned nsegs = 0, total = 0; 420 421 while (nbytes > 0) { 422 unsigned offset = bvec->bv_offset + total; 423 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 424 offset), nbytes); 425 struct page *page = bvec->bv_page; 426 427 /* 428 * Unfortunately a fair number of drivers barf on scatterlists 429 * that have an offset larger than PAGE_SIZE, despite other 430 * subsystems dealing with that invariant just fine. For now 431 * stick to the legacy format where we never present those from 432 * the block layer, but the code below should be removed once 433 * these offenders (mostly MMC/SD drivers) are fixed. 434 */ 435 page += (offset >> PAGE_SHIFT); 436 offset &= ~PAGE_MASK; 437 438 *sg = blk_next_sg(sg, sglist); 439 sg_set_page(*sg, page, len, offset); 440 441 total += len; 442 nbytes -= len; 443 nsegs++; 444 } 445 446 return nsegs; 447 } 448 449 static inline int __blk_bvec_map_sg(struct bio_vec bv, 450 struct scatterlist *sglist, struct scatterlist **sg) 451 { 452 *sg = blk_next_sg(sg, sglist); 453 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 454 return 1; 455 } 456 457 /* only try to merge bvecs into one sg if they are from two bios */ 458 static inline bool 459 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 460 struct bio_vec *bvprv, struct scatterlist **sg) 461 { 462 463 int nbytes = bvec->bv_len; 464 465 if (!*sg) 466 return false; 467 468 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 469 return false; 470 471 if (!biovec_phys_mergeable(q, bvprv, bvec)) 472 return false; 473 474 (*sg)->length += nbytes; 475 476 return true; 477 } 478 479 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 480 struct scatterlist *sglist, 481 struct scatterlist **sg) 482 { 483 struct bio_vec bvec, bvprv = { NULL }; 484 struct bvec_iter iter; 485 int nsegs = 0; 486 bool new_bio = false; 487 488 for_each_bio(bio) { 489 bio_for_each_bvec(bvec, bio, iter) { 490 /* 491 * Only try to merge bvecs from two bios given we 492 * have done bio internal merge when adding pages 493 * to bio 494 */ 495 if (new_bio && 496 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 497 goto next_bvec; 498 499 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 500 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 501 else 502 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 503 next_bvec: 504 new_bio = false; 505 } 506 if (likely(bio->bi_iter.bi_size)) { 507 bvprv = bvec; 508 new_bio = true; 509 } 510 } 511 512 return nsegs; 513 } 514 515 /* 516 * map a request to scatterlist, return number of sg entries setup. Caller 517 * must make sure sg can hold rq->nr_phys_segments entries 518 */ 519 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 520 struct scatterlist *sglist, struct scatterlist **last_sg) 521 { 522 int nsegs = 0; 523 524 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 525 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 526 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 527 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); 528 else if (rq->bio) 529 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 530 531 if (*last_sg) 532 sg_mark_end(*last_sg); 533 534 /* 535 * Something must have been wrong if the figured number of 536 * segment is bigger than number of req's physical segments 537 */ 538 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 539 540 return nsegs; 541 } 542 EXPORT_SYMBOL(__blk_rq_map_sg); 543 544 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 545 { 546 if (req_op(rq) == REQ_OP_DISCARD) 547 return queue_max_discard_segments(rq->q); 548 return queue_max_segments(rq->q); 549 } 550 551 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 552 unsigned int nr_phys_segs) 553 { 554 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 555 goto no_merge; 556 557 if (blk_integrity_merge_bio(req->q, req, bio) == false) 558 goto no_merge; 559 560 /* 561 * This will form the start of a new hw segment. Bump both 562 * counters. 563 */ 564 req->nr_phys_segments += nr_phys_segs; 565 return 1; 566 567 no_merge: 568 req_set_nomerge(req->q, req); 569 return 0; 570 } 571 572 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 573 { 574 if (req_gap_back_merge(req, bio)) 575 return 0; 576 if (blk_integrity_rq(req) && 577 integrity_req_gap_back_merge(req, bio)) 578 return 0; 579 if (!bio_crypt_ctx_back_mergeable(req, bio)) 580 return 0; 581 if (blk_rq_sectors(req) + bio_sectors(bio) > 582 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 583 req_set_nomerge(req->q, req); 584 return 0; 585 } 586 587 return ll_new_hw_segment(req, bio, nr_segs); 588 } 589 590 static int ll_front_merge_fn(struct request *req, struct bio *bio, 591 unsigned int nr_segs) 592 { 593 if (req_gap_front_merge(req, bio)) 594 return 0; 595 if (blk_integrity_rq(req) && 596 integrity_req_gap_front_merge(req, bio)) 597 return 0; 598 if (!bio_crypt_ctx_front_mergeable(req, bio)) 599 return 0; 600 if (blk_rq_sectors(req) + bio_sectors(bio) > 601 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 602 req_set_nomerge(req->q, req); 603 return 0; 604 } 605 606 return ll_new_hw_segment(req, bio, nr_segs); 607 } 608 609 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 610 struct request *next) 611 { 612 unsigned short segments = blk_rq_nr_discard_segments(req); 613 614 if (segments >= queue_max_discard_segments(q)) 615 goto no_merge; 616 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 617 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 618 goto no_merge; 619 620 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 621 return true; 622 no_merge: 623 req_set_nomerge(q, req); 624 return false; 625 } 626 627 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 628 struct request *next) 629 { 630 int total_phys_segments; 631 632 if (req_gap_back_merge(req, next->bio)) 633 return 0; 634 635 /* 636 * Will it become too large? 637 */ 638 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 639 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 640 return 0; 641 642 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 643 if (total_phys_segments > blk_rq_get_max_segments(req)) 644 return 0; 645 646 if (blk_integrity_merge_rq(q, req, next) == false) 647 return 0; 648 649 if (!bio_crypt_ctx_merge_rq(req, next)) 650 return 0; 651 652 /* Merge is OK... */ 653 req->nr_phys_segments = total_phys_segments; 654 return 1; 655 } 656 657 /** 658 * blk_rq_set_mixed_merge - mark a request as mixed merge 659 * @rq: request to mark as mixed merge 660 * 661 * Description: 662 * @rq is about to be mixed merged. Make sure the attributes 663 * which can be mixed are set in each bio and mark @rq as mixed 664 * merged. 665 */ 666 void blk_rq_set_mixed_merge(struct request *rq) 667 { 668 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 669 struct bio *bio; 670 671 if (rq->rq_flags & RQF_MIXED_MERGE) 672 return; 673 674 /* 675 * @rq will no longer represent mixable attributes for all the 676 * contained bios. It will just track those of the first one. 677 * Distributes the attributs to each bio. 678 */ 679 for (bio = rq->bio; bio; bio = bio->bi_next) { 680 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 681 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 682 bio->bi_opf |= ff; 683 } 684 rq->rq_flags |= RQF_MIXED_MERGE; 685 } 686 687 static void blk_account_io_merge_request(struct request *req) 688 { 689 if (blk_do_io_stat(req)) { 690 part_stat_lock(); 691 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 692 part_stat_unlock(); 693 } 694 } 695 696 /* 697 * Two cases of handling DISCARD merge: 698 * If max_discard_segments > 1, the driver takes every bio 699 * as a range and send them to controller together. The ranges 700 * needn't to be contiguous. 701 * Otherwise, the bios/requests will be handled as same as 702 * others which should be contiguous. 703 */ 704 static inline bool blk_discard_mergable(struct request *req) 705 { 706 if (req_op(req) == REQ_OP_DISCARD && 707 queue_max_discard_segments(req->q) > 1) 708 return true; 709 return false; 710 } 711 712 static enum elv_merge blk_try_req_merge(struct request *req, 713 struct request *next) 714 { 715 if (blk_discard_mergable(req)) 716 return ELEVATOR_DISCARD_MERGE; 717 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 718 return ELEVATOR_BACK_MERGE; 719 720 return ELEVATOR_NO_MERGE; 721 } 722 723 /* 724 * For non-mq, this has to be called with the request spinlock acquired. 725 * For mq with scheduling, the appropriate queue wide lock should be held. 726 */ 727 static struct request *attempt_merge(struct request_queue *q, 728 struct request *req, struct request *next) 729 { 730 if (!rq_mergeable(req) || !rq_mergeable(next)) 731 return NULL; 732 733 if (req_op(req) != req_op(next)) 734 return NULL; 735 736 if (rq_data_dir(req) != rq_data_dir(next) 737 || req->rq_disk != next->rq_disk) 738 return NULL; 739 740 if (req_op(req) == REQ_OP_WRITE_SAME && 741 !blk_write_same_mergeable(req->bio, next->bio)) 742 return NULL; 743 744 /* 745 * Don't allow merge of different write hints, or for a hint with 746 * non-hint IO. 747 */ 748 if (req->write_hint != next->write_hint) 749 return NULL; 750 751 if (req->ioprio != next->ioprio) 752 return NULL; 753 754 /* 755 * If we are allowed to merge, then append bio list 756 * from next to rq and release next. merge_requests_fn 757 * will have updated segment counts, update sector 758 * counts here. Handle DISCARDs separately, as they 759 * have separate settings. 760 */ 761 762 switch (blk_try_req_merge(req, next)) { 763 case ELEVATOR_DISCARD_MERGE: 764 if (!req_attempt_discard_merge(q, req, next)) 765 return NULL; 766 break; 767 case ELEVATOR_BACK_MERGE: 768 if (!ll_merge_requests_fn(q, req, next)) 769 return NULL; 770 break; 771 default: 772 return NULL; 773 } 774 775 /* 776 * If failfast settings disagree or any of the two is already 777 * a mixed merge, mark both as mixed before proceeding. This 778 * makes sure that all involved bios have mixable attributes 779 * set properly. 780 */ 781 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 782 (req->cmd_flags & REQ_FAILFAST_MASK) != 783 (next->cmd_flags & REQ_FAILFAST_MASK)) { 784 blk_rq_set_mixed_merge(req); 785 blk_rq_set_mixed_merge(next); 786 } 787 788 /* 789 * At this point we have either done a back merge or front merge. We 790 * need the smaller start_time_ns of the merged requests to be the 791 * current request for accounting purposes. 792 */ 793 if (next->start_time_ns < req->start_time_ns) 794 req->start_time_ns = next->start_time_ns; 795 796 req->biotail->bi_next = next->bio; 797 req->biotail = next->biotail; 798 799 req->__data_len += blk_rq_bytes(next); 800 801 if (!blk_discard_mergable(req)) 802 elv_merge_requests(q, req, next); 803 804 /* 805 * 'next' is going away, so update stats accordingly 806 */ 807 blk_account_io_merge_request(next); 808 809 trace_block_rq_merge(next); 810 811 /* 812 * ownership of bio passed from next to req, return 'next' for 813 * the caller to free 814 */ 815 next->bio = NULL; 816 return next; 817 } 818 819 static struct request *attempt_back_merge(struct request_queue *q, 820 struct request *rq) 821 { 822 struct request *next = elv_latter_request(q, rq); 823 824 if (next) 825 return attempt_merge(q, rq, next); 826 827 return NULL; 828 } 829 830 static struct request *attempt_front_merge(struct request_queue *q, 831 struct request *rq) 832 { 833 struct request *prev = elv_former_request(q, rq); 834 835 if (prev) 836 return attempt_merge(q, prev, rq); 837 838 return NULL; 839 } 840 841 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 842 struct request *next) 843 { 844 struct request *free; 845 846 free = attempt_merge(q, rq, next); 847 if (free) { 848 blk_put_request(free); 849 return 1; 850 } 851 852 return 0; 853 } 854 855 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 856 { 857 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 858 return false; 859 860 if (req_op(rq) != bio_op(bio)) 861 return false; 862 863 /* different data direction or already started, don't merge */ 864 if (bio_data_dir(bio) != rq_data_dir(rq)) 865 return false; 866 867 /* must be same device */ 868 if (rq->rq_disk != bio->bi_bdev->bd_disk) 869 return false; 870 871 /* only merge integrity protected bio into ditto rq */ 872 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 873 return false; 874 875 /* Only merge if the crypt contexts are compatible */ 876 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 877 return false; 878 879 /* must be using the same buffer */ 880 if (req_op(rq) == REQ_OP_WRITE_SAME && 881 !blk_write_same_mergeable(rq->bio, bio)) 882 return false; 883 884 /* 885 * Don't allow merge of different write hints, or for a hint with 886 * non-hint IO. 887 */ 888 if (rq->write_hint != bio->bi_write_hint) 889 return false; 890 891 if (rq->ioprio != bio_prio(bio)) 892 return false; 893 894 return true; 895 } 896 897 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 898 { 899 if (blk_discard_mergable(rq)) 900 return ELEVATOR_DISCARD_MERGE; 901 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 902 return ELEVATOR_BACK_MERGE; 903 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 904 return ELEVATOR_FRONT_MERGE; 905 return ELEVATOR_NO_MERGE; 906 } 907 908 static void blk_account_io_merge_bio(struct request *req) 909 { 910 if (!blk_do_io_stat(req)) 911 return; 912 913 part_stat_lock(); 914 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 915 part_stat_unlock(); 916 } 917 918 enum bio_merge_status { 919 BIO_MERGE_OK, 920 BIO_MERGE_NONE, 921 BIO_MERGE_FAILED, 922 }; 923 924 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 925 struct bio *bio, unsigned int nr_segs) 926 { 927 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 928 929 if (!ll_back_merge_fn(req, bio, nr_segs)) 930 return BIO_MERGE_FAILED; 931 932 trace_block_bio_backmerge(bio); 933 rq_qos_merge(req->q, req, bio); 934 935 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 936 blk_rq_set_mixed_merge(req); 937 938 req->biotail->bi_next = bio; 939 req->biotail = bio; 940 req->__data_len += bio->bi_iter.bi_size; 941 942 bio_crypt_free_ctx(bio); 943 944 blk_account_io_merge_bio(req); 945 return BIO_MERGE_OK; 946 } 947 948 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 949 struct bio *bio, unsigned int nr_segs) 950 { 951 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 952 953 if (!ll_front_merge_fn(req, bio, nr_segs)) 954 return BIO_MERGE_FAILED; 955 956 trace_block_bio_frontmerge(bio); 957 rq_qos_merge(req->q, req, bio); 958 959 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 960 blk_rq_set_mixed_merge(req); 961 962 bio->bi_next = req->bio; 963 req->bio = bio; 964 965 req->__sector = bio->bi_iter.bi_sector; 966 req->__data_len += bio->bi_iter.bi_size; 967 968 bio_crypt_do_front_merge(req, bio); 969 970 blk_account_io_merge_bio(req); 971 return BIO_MERGE_OK; 972 } 973 974 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 975 struct request *req, struct bio *bio) 976 { 977 unsigned short segments = blk_rq_nr_discard_segments(req); 978 979 if (segments >= queue_max_discard_segments(q)) 980 goto no_merge; 981 if (blk_rq_sectors(req) + bio_sectors(bio) > 982 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 983 goto no_merge; 984 985 rq_qos_merge(q, req, bio); 986 987 req->biotail->bi_next = bio; 988 req->biotail = bio; 989 req->__data_len += bio->bi_iter.bi_size; 990 req->nr_phys_segments = segments + 1; 991 992 blk_account_io_merge_bio(req); 993 return BIO_MERGE_OK; 994 no_merge: 995 req_set_nomerge(q, req); 996 return BIO_MERGE_FAILED; 997 } 998 999 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1000 struct request *rq, 1001 struct bio *bio, 1002 unsigned int nr_segs, 1003 bool sched_allow_merge) 1004 { 1005 if (!blk_rq_merge_ok(rq, bio)) 1006 return BIO_MERGE_NONE; 1007 1008 switch (blk_try_merge(rq, bio)) { 1009 case ELEVATOR_BACK_MERGE: 1010 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1011 return bio_attempt_back_merge(rq, bio, nr_segs); 1012 break; 1013 case ELEVATOR_FRONT_MERGE: 1014 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1015 return bio_attempt_front_merge(rq, bio, nr_segs); 1016 break; 1017 case ELEVATOR_DISCARD_MERGE: 1018 return bio_attempt_discard_merge(q, rq, bio); 1019 default: 1020 return BIO_MERGE_NONE; 1021 } 1022 1023 return BIO_MERGE_FAILED; 1024 } 1025 1026 /** 1027 * blk_attempt_plug_merge - try to merge with %current's plugged list 1028 * @q: request_queue new bio is being queued at 1029 * @bio: new bio being queued 1030 * @nr_segs: number of segments in @bio 1031 * @same_queue_rq: pointer to &struct request that gets filled in when 1032 * another request associated with @q is found on the plug list 1033 * (optional, may be %NULL) 1034 * 1035 * Determine whether @bio being queued on @q can be merged with a request 1036 * on %current's plugged list. Returns %true if merge was successful, 1037 * otherwise %false. 1038 * 1039 * Plugging coalesces IOs from the same issuer for the same purpose without 1040 * going through @q->queue_lock. As such it's more of an issuing mechanism 1041 * than scheduling, and the request, while may have elvpriv data, is not 1042 * added on the elevator at this point. In addition, we don't have 1043 * reliable access to the elevator outside queue lock. Only check basic 1044 * merging parameters without querying the elevator. 1045 * 1046 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1047 */ 1048 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1049 unsigned int nr_segs, struct request **same_queue_rq) 1050 { 1051 struct blk_plug *plug; 1052 struct request *rq; 1053 struct list_head *plug_list; 1054 1055 plug = blk_mq_plug(q, bio); 1056 if (!plug) 1057 return false; 1058 1059 plug_list = &plug->mq_list; 1060 1061 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1062 if (rq->q == q && same_queue_rq) { 1063 /* 1064 * Only blk-mq multiple hardware queues case checks the 1065 * rq in the same queue, there should be only one such 1066 * rq in a queue 1067 **/ 1068 *same_queue_rq = rq; 1069 } 1070 1071 if (rq->q != q) 1072 continue; 1073 1074 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1075 BIO_MERGE_OK) 1076 return true; 1077 } 1078 1079 return false; 1080 } 1081 1082 /* 1083 * Iterate list of requests and see if we can merge this bio with any 1084 * of them. 1085 */ 1086 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1087 struct bio *bio, unsigned int nr_segs) 1088 { 1089 struct request *rq; 1090 int checked = 8; 1091 1092 list_for_each_entry_reverse(rq, list, queuelist) { 1093 if (!checked--) 1094 break; 1095 1096 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1097 case BIO_MERGE_NONE: 1098 continue; 1099 case BIO_MERGE_OK: 1100 return true; 1101 case BIO_MERGE_FAILED: 1102 return false; 1103 } 1104 1105 } 1106 1107 return false; 1108 } 1109 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1110 1111 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1112 unsigned int nr_segs, struct request **merged_request) 1113 { 1114 struct request *rq; 1115 1116 switch (elv_merge(q, &rq, bio)) { 1117 case ELEVATOR_BACK_MERGE: 1118 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1119 return false; 1120 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1121 return false; 1122 *merged_request = attempt_back_merge(q, rq); 1123 if (!*merged_request) 1124 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1125 return true; 1126 case ELEVATOR_FRONT_MERGE: 1127 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1128 return false; 1129 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1130 return false; 1131 *merged_request = attempt_front_merge(q, rq); 1132 if (!*merged_request) 1133 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1134 return true; 1135 case ELEVATOR_DISCARD_MERGE: 1136 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1137 default: 1138 return false; 1139 } 1140 } 1141 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1142