1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 13 #include <trace/events/block.h> 14 15 #include "blk.h" 16 #include "blk-mq-sched.h" 17 #include "blk-rq-qos.h" 18 #include "blk-throttle.h" 19 20 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 21 { 22 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 23 } 24 25 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 26 { 27 struct bvec_iter iter = bio->bi_iter; 28 int idx; 29 30 bio_get_first_bvec(bio, bv); 31 if (bv->bv_len == bio->bi_iter.bi_size) 32 return; /* this bio only has a single bvec */ 33 34 bio_advance_iter(bio, &iter, iter.bi_size); 35 36 if (!iter.bi_bvec_done) 37 idx = iter.bi_idx - 1; 38 else /* in the middle of bvec */ 39 idx = iter.bi_idx; 40 41 *bv = bio->bi_io_vec[idx]; 42 43 /* 44 * iter.bi_bvec_done records actual length of the last bvec 45 * if this bio ends in the middle of one io vector 46 */ 47 if (iter.bi_bvec_done) 48 bv->bv_len = iter.bi_bvec_done; 49 } 50 51 static inline bool bio_will_gap(struct request_queue *q, 52 struct request *prev_rq, struct bio *prev, struct bio *next) 53 { 54 struct bio_vec pb, nb; 55 56 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 57 return false; 58 59 /* 60 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 61 * is quite difficult to respect the sg gap limit. We work hard to 62 * merge a huge number of small single bios in case of mkfs. 63 */ 64 if (prev_rq) 65 bio_get_first_bvec(prev_rq->bio, &pb); 66 else 67 bio_get_first_bvec(prev, &pb); 68 if (pb.bv_offset & queue_virt_boundary(q)) 69 return true; 70 71 /* 72 * We don't need to worry about the situation that the merged segment 73 * ends in unaligned virt boundary: 74 * 75 * - if 'pb' ends aligned, the merged segment ends aligned 76 * - if 'pb' ends unaligned, the next bio must include 77 * one single bvec of 'nb', otherwise the 'nb' can't 78 * merge with 'pb' 79 */ 80 bio_get_last_bvec(prev, &pb); 81 bio_get_first_bvec(next, &nb); 82 if (biovec_phys_mergeable(q, &pb, &nb)) 83 return false; 84 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 85 } 86 87 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 88 { 89 return bio_will_gap(req->q, req, req->biotail, bio); 90 } 91 92 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 93 { 94 return bio_will_gap(req->q, NULL, bio, req->bio); 95 } 96 97 static struct bio *blk_bio_discard_split(struct request_queue *q, 98 struct bio *bio, 99 struct bio_set *bs, 100 unsigned *nsegs) 101 { 102 unsigned int max_discard_sectors, granularity; 103 int alignment; 104 sector_t tmp; 105 unsigned split_sectors; 106 107 *nsegs = 1; 108 109 /* Zero-sector (unknown) and one-sector granularities are the same. */ 110 granularity = max(q->limits.discard_granularity >> 9, 1U); 111 112 max_discard_sectors = min(q->limits.max_discard_sectors, 113 bio_allowed_max_sectors(q)); 114 max_discard_sectors -= max_discard_sectors % granularity; 115 116 if (unlikely(!max_discard_sectors)) { 117 /* XXX: warn */ 118 return NULL; 119 } 120 121 if (bio_sectors(bio) <= max_discard_sectors) 122 return NULL; 123 124 split_sectors = max_discard_sectors; 125 126 /* 127 * If the next starting sector would be misaligned, stop the discard at 128 * the previous aligned sector. 129 */ 130 alignment = (q->limits.discard_alignment >> 9) % granularity; 131 132 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 133 tmp = sector_div(tmp, granularity); 134 135 if (split_sectors > tmp) 136 split_sectors -= tmp; 137 138 return bio_split(bio, split_sectors, GFP_NOIO, bs); 139 } 140 141 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 142 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 143 { 144 *nsegs = 0; 145 146 if (!q->limits.max_write_zeroes_sectors) 147 return NULL; 148 149 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 150 return NULL; 151 152 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 153 } 154 155 static struct bio *blk_bio_write_same_split(struct request_queue *q, 156 struct bio *bio, 157 struct bio_set *bs, 158 unsigned *nsegs) 159 { 160 *nsegs = 1; 161 162 if (!q->limits.max_write_same_sectors) 163 return NULL; 164 165 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 166 return NULL; 167 168 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 169 } 170 171 /* 172 * Return the maximum number of sectors from the start of a bio that may be 173 * submitted as a single request to a block device. If enough sectors remain, 174 * align the end to the physical block size. Otherwise align the end to the 175 * logical block size. This approach minimizes the number of non-aligned 176 * requests that are submitted to a block device if the start of a bio is not 177 * aligned to a physical block boundary. 178 */ 179 static inline unsigned get_max_io_size(struct request_queue *q, 180 struct bio *bio) 181 { 182 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); 183 unsigned max_sectors = sectors; 184 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 185 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 186 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 187 188 max_sectors += start_offset; 189 max_sectors &= ~(pbs - 1); 190 if (max_sectors > start_offset) 191 return max_sectors - start_offset; 192 193 return sectors & ~(lbs - 1); 194 } 195 196 static inline unsigned get_max_segment_size(const struct request_queue *q, 197 struct page *start_page, 198 unsigned long offset) 199 { 200 unsigned long mask = queue_segment_boundary(q); 201 202 offset = mask & (page_to_phys(start_page) + offset); 203 204 /* 205 * overflow may be triggered in case of zero page physical address 206 * on 32bit arch, use queue's max segment size when that happens. 207 */ 208 return min_not_zero(mask - offset + 1, 209 (unsigned long)queue_max_segment_size(q)); 210 } 211 212 /** 213 * bvec_split_segs - verify whether or not a bvec should be split in the middle 214 * @q: [in] request queue associated with the bio associated with @bv 215 * @bv: [in] bvec to examine 216 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 217 * by the number of segments from @bv that may be appended to that 218 * bio without exceeding @max_segs 219 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 220 * by the number of sectors from @bv that may be appended to that 221 * bio without exceeding @max_sectors 222 * @max_segs: [in] upper bound for *@nsegs 223 * @max_sectors: [in] upper bound for *@sectors 224 * 225 * When splitting a bio, it can happen that a bvec is encountered that is too 226 * big to fit in a single segment and hence that it has to be split in the 227 * middle. This function verifies whether or not that should happen. The value 228 * %true is returned if and only if appending the entire @bv to a bio with 229 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 230 * the block driver. 231 */ 232 static bool bvec_split_segs(const struct request_queue *q, 233 const struct bio_vec *bv, unsigned *nsegs, 234 unsigned *sectors, unsigned max_segs, 235 unsigned max_sectors) 236 { 237 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 238 unsigned len = min(bv->bv_len, max_len); 239 unsigned total_len = 0; 240 unsigned seg_size = 0; 241 242 while (len && *nsegs < max_segs) { 243 seg_size = get_max_segment_size(q, bv->bv_page, 244 bv->bv_offset + total_len); 245 seg_size = min(seg_size, len); 246 247 (*nsegs)++; 248 total_len += seg_size; 249 len -= seg_size; 250 251 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 252 break; 253 } 254 255 *sectors += total_len >> 9; 256 257 /* tell the caller to split the bvec if it is too big to fit */ 258 return len > 0 || bv->bv_len > max_len; 259 } 260 261 /** 262 * blk_bio_segment_split - split a bio in two bios 263 * @q: [in] request queue pointer 264 * @bio: [in] bio to be split 265 * @bs: [in] bio set to allocate the clone from 266 * @segs: [out] number of segments in the bio with the first half of the sectors 267 * 268 * Clone @bio, update the bi_iter of the clone to represent the first sectors 269 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 270 * following is guaranteed for the cloned bio: 271 * - That it has at most get_max_io_size(@q, @bio) sectors. 272 * - That it has at most queue_max_segments(@q) segments. 273 * 274 * Except for discard requests the cloned bio will point at the bi_io_vec of 275 * the original bio. It is the responsibility of the caller to ensure that the 276 * original bio is not freed before the cloned bio. The caller is also 277 * responsible for ensuring that @bs is only destroyed after processing of the 278 * split bio has finished. 279 */ 280 static struct bio *blk_bio_segment_split(struct request_queue *q, 281 struct bio *bio, 282 struct bio_set *bs, 283 unsigned *segs) 284 { 285 struct bio_vec bv, bvprv, *bvprvp = NULL; 286 struct bvec_iter iter; 287 unsigned nsegs = 0, sectors = 0; 288 const unsigned max_sectors = get_max_io_size(q, bio); 289 const unsigned max_segs = queue_max_segments(q); 290 291 bio_for_each_bvec(bv, bio, iter) { 292 /* 293 * If the queue doesn't support SG gaps and adding this 294 * offset would create a gap, disallow it. 295 */ 296 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 297 goto split; 298 299 if (nsegs < max_segs && 300 sectors + (bv.bv_len >> 9) <= max_sectors && 301 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 302 nsegs++; 303 sectors += bv.bv_len >> 9; 304 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 305 max_sectors)) { 306 goto split; 307 } 308 309 bvprv = bv; 310 bvprvp = &bvprv; 311 } 312 313 *segs = nsegs; 314 return NULL; 315 split: 316 *segs = nsegs; 317 318 /* 319 * Bio splitting may cause subtle trouble such as hang when doing sync 320 * iopoll in direct IO routine. Given performance gain of iopoll for 321 * big IO can be trival, disable iopoll when split needed. 322 */ 323 bio_clear_polled(bio); 324 return bio_split(bio, sectors, GFP_NOIO, bs); 325 } 326 327 /** 328 * __blk_queue_split - split a bio and submit the second half 329 * @q: [in] request_queue new bio is being queued at 330 * @bio: [in, out] bio to be split 331 * @nr_segs: [out] number of segments in the first bio 332 * 333 * Split a bio into two bios, chain the two bios, submit the second half and 334 * store a pointer to the first half in *@bio. If the second bio is still too 335 * big it will be split by a recursive call to this function. Since this 336 * function may allocate a new bio from q->bio_split, it is the responsibility 337 * of the caller to ensure that q->bio_split is only released after processing 338 * of the split bio has finished. 339 */ 340 void __blk_queue_split(struct request_queue *q, struct bio **bio, 341 unsigned int *nr_segs) 342 { 343 struct bio *split = NULL; 344 345 switch (bio_op(*bio)) { 346 case REQ_OP_DISCARD: 347 case REQ_OP_SECURE_ERASE: 348 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 349 break; 350 case REQ_OP_WRITE_ZEROES: 351 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 352 nr_segs); 353 break; 354 case REQ_OP_WRITE_SAME: 355 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 356 nr_segs); 357 break; 358 default: 359 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 360 break; 361 } 362 363 if (split) { 364 /* there isn't chance to merge the splitted bio */ 365 split->bi_opf |= REQ_NOMERGE; 366 367 bio_chain(split, *bio); 368 trace_block_split(split, (*bio)->bi_iter.bi_sector); 369 submit_bio_noacct(*bio); 370 *bio = split; 371 372 blk_throtl_charge_bio_split(*bio); 373 } 374 } 375 376 /** 377 * blk_queue_split - split a bio and submit the second half 378 * @bio: [in, out] bio to be split 379 * 380 * Split a bio into two bios, chains the two bios, submit the second half and 381 * store a pointer to the first half in *@bio. Since this function may allocate 382 * a new bio from q->bio_split, it is the responsibility of the caller to ensure 383 * that q->bio_split is only released after processing of the split bio has 384 * finished. 385 */ 386 void blk_queue_split(struct bio **bio) 387 { 388 struct request_queue *q = bdev_get_queue((*bio)->bi_bdev); 389 unsigned int nr_segs; 390 391 if (blk_may_split(q, *bio)) 392 __blk_queue_split(q, bio, &nr_segs); 393 } 394 EXPORT_SYMBOL(blk_queue_split); 395 396 unsigned int blk_recalc_rq_segments(struct request *rq) 397 { 398 unsigned int nr_phys_segs = 0; 399 unsigned int nr_sectors = 0; 400 struct req_iterator iter; 401 struct bio_vec bv; 402 403 if (!rq->bio) 404 return 0; 405 406 switch (bio_op(rq->bio)) { 407 case REQ_OP_DISCARD: 408 case REQ_OP_SECURE_ERASE: 409 if (queue_max_discard_segments(rq->q) > 1) { 410 struct bio *bio = rq->bio; 411 412 for_each_bio(bio) 413 nr_phys_segs++; 414 return nr_phys_segs; 415 } 416 return 1; 417 case REQ_OP_WRITE_ZEROES: 418 return 0; 419 case REQ_OP_WRITE_SAME: 420 return 1; 421 } 422 423 rq_for_each_bvec(bv, rq, iter) 424 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 425 UINT_MAX, UINT_MAX); 426 return nr_phys_segs; 427 } 428 429 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 430 struct scatterlist *sglist) 431 { 432 if (!*sg) 433 return sglist; 434 435 /* 436 * If the driver previously mapped a shorter list, we could see a 437 * termination bit prematurely unless it fully inits the sg table 438 * on each mapping. We KNOW that there must be more entries here 439 * or the driver would be buggy, so force clear the termination bit 440 * to avoid doing a full sg_init_table() in drivers for each command. 441 */ 442 sg_unmark_end(*sg); 443 return sg_next(*sg); 444 } 445 446 static unsigned blk_bvec_map_sg(struct request_queue *q, 447 struct bio_vec *bvec, struct scatterlist *sglist, 448 struct scatterlist **sg) 449 { 450 unsigned nbytes = bvec->bv_len; 451 unsigned nsegs = 0, total = 0; 452 453 while (nbytes > 0) { 454 unsigned offset = bvec->bv_offset + total; 455 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 456 offset), nbytes); 457 struct page *page = bvec->bv_page; 458 459 /* 460 * Unfortunately a fair number of drivers barf on scatterlists 461 * that have an offset larger than PAGE_SIZE, despite other 462 * subsystems dealing with that invariant just fine. For now 463 * stick to the legacy format where we never present those from 464 * the block layer, but the code below should be removed once 465 * these offenders (mostly MMC/SD drivers) are fixed. 466 */ 467 page += (offset >> PAGE_SHIFT); 468 offset &= ~PAGE_MASK; 469 470 *sg = blk_next_sg(sg, sglist); 471 sg_set_page(*sg, page, len, offset); 472 473 total += len; 474 nbytes -= len; 475 nsegs++; 476 } 477 478 return nsegs; 479 } 480 481 static inline int __blk_bvec_map_sg(struct bio_vec bv, 482 struct scatterlist *sglist, struct scatterlist **sg) 483 { 484 *sg = blk_next_sg(sg, sglist); 485 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 486 return 1; 487 } 488 489 /* only try to merge bvecs into one sg if they are from two bios */ 490 static inline bool 491 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 492 struct bio_vec *bvprv, struct scatterlist **sg) 493 { 494 495 int nbytes = bvec->bv_len; 496 497 if (!*sg) 498 return false; 499 500 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 501 return false; 502 503 if (!biovec_phys_mergeable(q, bvprv, bvec)) 504 return false; 505 506 (*sg)->length += nbytes; 507 508 return true; 509 } 510 511 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 512 struct scatterlist *sglist, 513 struct scatterlist **sg) 514 { 515 struct bio_vec bvec, bvprv = { NULL }; 516 struct bvec_iter iter; 517 int nsegs = 0; 518 bool new_bio = false; 519 520 for_each_bio(bio) { 521 bio_for_each_bvec(bvec, bio, iter) { 522 /* 523 * Only try to merge bvecs from two bios given we 524 * have done bio internal merge when adding pages 525 * to bio 526 */ 527 if (new_bio && 528 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 529 goto next_bvec; 530 531 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 532 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 533 else 534 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 535 next_bvec: 536 new_bio = false; 537 } 538 if (likely(bio->bi_iter.bi_size)) { 539 bvprv = bvec; 540 new_bio = true; 541 } 542 } 543 544 return nsegs; 545 } 546 547 /* 548 * map a request to scatterlist, return number of sg entries setup. Caller 549 * must make sure sg can hold rq->nr_phys_segments entries 550 */ 551 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 552 struct scatterlist *sglist, struct scatterlist **last_sg) 553 { 554 int nsegs = 0; 555 556 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 557 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 558 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 559 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); 560 else if (rq->bio) 561 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 562 563 if (*last_sg) 564 sg_mark_end(*last_sg); 565 566 /* 567 * Something must have been wrong if the figured number of 568 * segment is bigger than number of req's physical segments 569 */ 570 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 571 572 return nsegs; 573 } 574 EXPORT_SYMBOL(__blk_rq_map_sg); 575 576 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 577 { 578 if (req_op(rq) == REQ_OP_DISCARD) 579 return queue_max_discard_segments(rq->q); 580 return queue_max_segments(rq->q); 581 } 582 583 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 584 sector_t offset) 585 { 586 struct request_queue *q = rq->q; 587 588 if (blk_rq_is_passthrough(rq)) 589 return q->limits.max_hw_sectors; 590 591 if (!q->limits.chunk_sectors || 592 req_op(rq) == REQ_OP_DISCARD || 593 req_op(rq) == REQ_OP_SECURE_ERASE) 594 return blk_queue_get_max_sectors(q, req_op(rq)); 595 596 return min(blk_max_size_offset(q, offset, 0), 597 blk_queue_get_max_sectors(q, req_op(rq))); 598 } 599 600 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 601 unsigned int nr_phys_segs) 602 { 603 if (blk_integrity_merge_bio(req->q, req, bio) == false) 604 goto no_merge; 605 606 /* discard request merge won't add new segment */ 607 if (req_op(req) == REQ_OP_DISCARD) 608 return 1; 609 610 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 611 goto no_merge; 612 613 /* 614 * This will form the start of a new hw segment. Bump both 615 * counters. 616 */ 617 req->nr_phys_segments += nr_phys_segs; 618 return 1; 619 620 no_merge: 621 req_set_nomerge(req->q, req); 622 return 0; 623 } 624 625 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 626 { 627 if (req_gap_back_merge(req, bio)) 628 return 0; 629 if (blk_integrity_rq(req) && 630 integrity_req_gap_back_merge(req, bio)) 631 return 0; 632 if (!bio_crypt_ctx_back_mergeable(req, bio)) 633 return 0; 634 if (blk_rq_sectors(req) + bio_sectors(bio) > 635 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 636 req_set_nomerge(req->q, req); 637 return 0; 638 } 639 640 return ll_new_hw_segment(req, bio, nr_segs); 641 } 642 643 static int ll_front_merge_fn(struct request *req, struct bio *bio, 644 unsigned int nr_segs) 645 { 646 if (req_gap_front_merge(req, bio)) 647 return 0; 648 if (blk_integrity_rq(req) && 649 integrity_req_gap_front_merge(req, bio)) 650 return 0; 651 if (!bio_crypt_ctx_front_mergeable(req, bio)) 652 return 0; 653 if (blk_rq_sectors(req) + bio_sectors(bio) > 654 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 655 req_set_nomerge(req->q, req); 656 return 0; 657 } 658 659 return ll_new_hw_segment(req, bio, nr_segs); 660 } 661 662 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 663 struct request *next) 664 { 665 unsigned short segments = blk_rq_nr_discard_segments(req); 666 667 if (segments >= queue_max_discard_segments(q)) 668 goto no_merge; 669 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 670 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 671 goto no_merge; 672 673 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 674 return true; 675 no_merge: 676 req_set_nomerge(q, req); 677 return false; 678 } 679 680 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 681 struct request *next) 682 { 683 int total_phys_segments; 684 685 if (req_gap_back_merge(req, next->bio)) 686 return 0; 687 688 /* 689 * Will it become too large? 690 */ 691 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 692 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 693 return 0; 694 695 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 696 if (total_phys_segments > blk_rq_get_max_segments(req)) 697 return 0; 698 699 if (blk_integrity_merge_rq(q, req, next) == false) 700 return 0; 701 702 if (!bio_crypt_ctx_merge_rq(req, next)) 703 return 0; 704 705 /* Merge is OK... */ 706 req->nr_phys_segments = total_phys_segments; 707 return 1; 708 } 709 710 /** 711 * blk_rq_set_mixed_merge - mark a request as mixed merge 712 * @rq: request to mark as mixed merge 713 * 714 * Description: 715 * @rq is about to be mixed merged. Make sure the attributes 716 * which can be mixed are set in each bio and mark @rq as mixed 717 * merged. 718 */ 719 void blk_rq_set_mixed_merge(struct request *rq) 720 { 721 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 722 struct bio *bio; 723 724 if (rq->rq_flags & RQF_MIXED_MERGE) 725 return; 726 727 /* 728 * @rq will no longer represent mixable attributes for all the 729 * contained bios. It will just track those of the first one. 730 * Distributes the attributs to each bio. 731 */ 732 for (bio = rq->bio; bio; bio = bio->bi_next) { 733 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 734 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 735 bio->bi_opf |= ff; 736 } 737 rq->rq_flags |= RQF_MIXED_MERGE; 738 } 739 740 static void blk_account_io_merge_request(struct request *req) 741 { 742 if (blk_do_io_stat(req)) { 743 part_stat_lock(); 744 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 745 part_stat_unlock(); 746 } 747 } 748 749 static enum elv_merge blk_try_req_merge(struct request *req, 750 struct request *next) 751 { 752 if (blk_discard_mergable(req)) 753 return ELEVATOR_DISCARD_MERGE; 754 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 755 return ELEVATOR_BACK_MERGE; 756 757 return ELEVATOR_NO_MERGE; 758 } 759 760 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 761 { 762 if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b)) 763 return true; 764 return false; 765 } 766 767 /* 768 * For non-mq, this has to be called with the request spinlock acquired. 769 * For mq with scheduling, the appropriate queue wide lock should be held. 770 */ 771 static struct request *attempt_merge(struct request_queue *q, 772 struct request *req, struct request *next) 773 { 774 if (!rq_mergeable(req) || !rq_mergeable(next)) 775 return NULL; 776 777 if (req_op(req) != req_op(next)) 778 return NULL; 779 780 if (rq_data_dir(req) != rq_data_dir(next)) 781 return NULL; 782 783 if (req_op(req) == REQ_OP_WRITE_SAME && 784 !blk_write_same_mergeable(req->bio, next->bio)) 785 return NULL; 786 787 /* 788 * Don't allow merge of different write hints, or for a hint with 789 * non-hint IO. 790 */ 791 if (req->write_hint != next->write_hint) 792 return NULL; 793 794 if (req->ioprio != next->ioprio) 795 return NULL; 796 797 /* 798 * If we are allowed to merge, then append bio list 799 * from next to rq and release next. merge_requests_fn 800 * will have updated segment counts, update sector 801 * counts here. Handle DISCARDs separately, as they 802 * have separate settings. 803 */ 804 805 switch (blk_try_req_merge(req, next)) { 806 case ELEVATOR_DISCARD_MERGE: 807 if (!req_attempt_discard_merge(q, req, next)) 808 return NULL; 809 break; 810 case ELEVATOR_BACK_MERGE: 811 if (!ll_merge_requests_fn(q, req, next)) 812 return NULL; 813 break; 814 default: 815 return NULL; 816 } 817 818 /* 819 * If failfast settings disagree or any of the two is already 820 * a mixed merge, mark both as mixed before proceeding. This 821 * makes sure that all involved bios have mixable attributes 822 * set properly. 823 */ 824 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 825 (req->cmd_flags & REQ_FAILFAST_MASK) != 826 (next->cmd_flags & REQ_FAILFAST_MASK)) { 827 blk_rq_set_mixed_merge(req); 828 blk_rq_set_mixed_merge(next); 829 } 830 831 /* 832 * At this point we have either done a back merge or front merge. We 833 * need the smaller start_time_ns of the merged requests to be the 834 * current request for accounting purposes. 835 */ 836 if (next->start_time_ns < req->start_time_ns) 837 req->start_time_ns = next->start_time_ns; 838 839 req->biotail->bi_next = next->bio; 840 req->biotail = next->biotail; 841 842 req->__data_len += blk_rq_bytes(next); 843 844 if (!blk_discard_mergable(req)) 845 elv_merge_requests(q, req, next); 846 847 /* 848 * 'next' is going away, so update stats accordingly 849 */ 850 blk_account_io_merge_request(next); 851 852 trace_block_rq_merge(next); 853 854 /* 855 * ownership of bio passed from next to req, return 'next' for 856 * the caller to free 857 */ 858 next->bio = NULL; 859 return next; 860 } 861 862 static struct request *attempt_back_merge(struct request_queue *q, 863 struct request *rq) 864 { 865 struct request *next = elv_latter_request(q, rq); 866 867 if (next) 868 return attempt_merge(q, rq, next); 869 870 return NULL; 871 } 872 873 static struct request *attempt_front_merge(struct request_queue *q, 874 struct request *rq) 875 { 876 struct request *prev = elv_former_request(q, rq); 877 878 if (prev) 879 return attempt_merge(q, prev, rq); 880 881 return NULL; 882 } 883 884 /* 885 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 886 * otherwise. The caller is responsible for freeing 'next' if the merge 887 * happened. 888 */ 889 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 890 struct request *next) 891 { 892 return attempt_merge(q, rq, next); 893 } 894 895 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 896 { 897 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 898 return false; 899 900 if (req_op(rq) != bio_op(bio)) 901 return false; 902 903 /* different data direction or already started, don't merge */ 904 if (bio_data_dir(bio) != rq_data_dir(rq)) 905 return false; 906 907 /* only merge integrity protected bio into ditto rq */ 908 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 909 return false; 910 911 /* Only merge if the crypt contexts are compatible */ 912 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 913 return false; 914 915 /* must be using the same buffer */ 916 if (req_op(rq) == REQ_OP_WRITE_SAME && 917 !blk_write_same_mergeable(rq->bio, bio)) 918 return false; 919 920 /* 921 * Don't allow merge of different write hints, or for a hint with 922 * non-hint IO. 923 */ 924 if (rq->write_hint != bio->bi_write_hint) 925 return false; 926 927 if (rq->ioprio != bio_prio(bio)) 928 return false; 929 930 return true; 931 } 932 933 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 934 { 935 if (blk_discard_mergable(rq)) 936 return ELEVATOR_DISCARD_MERGE; 937 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 938 return ELEVATOR_BACK_MERGE; 939 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 940 return ELEVATOR_FRONT_MERGE; 941 return ELEVATOR_NO_MERGE; 942 } 943 944 static void blk_account_io_merge_bio(struct request *req) 945 { 946 if (!blk_do_io_stat(req)) 947 return; 948 949 part_stat_lock(); 950 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 951 part_stat_unlock(); 952 } 953 954 enum bio_merge_status { 955 BIO_MERGE_OK, 956 BIO_MERGE_NONE, 957 BIO_MERGE_FAILED, 958 }; 959 960 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 961 struct bio *bio, unsigned int nr_segs) 962 { 963 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 964 965 if (!ll_back_merge_fn(req, bio, nr_segs)) 966 return BIO_MERGE_FAILED; 967 968 trace_block_bio_backmerge(bio); 969 rq_qos_merge(req->q, req, bio); 970 971 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 972 blk_rq_set_mixed_merge(req); 973 974 req->biotail->bi_next = bio; 975 req->biotail = bio; 976 req->__data_len += bio->bi_iter.bi_size; 977 978 bio_crypt_free_ctx(bio); 979 980 blk_account_io_merge_bio(req); 981 return BIO_MERGE_OK; 982 } 983 984 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 985 struct bio *bio, unsigned int nr_segs) 986 { 987 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 988 989 if (!ll_front_merge_fn(req, bio, nr_segs)) 990 return BIO_MERGE_FAILED; 991 992 trace_block_bio_frontmerge(bio); 993 rq_qos_merge(req->q, req, bio); 994 995 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 996 blk_rq_set_mixed_merge(req); 997 998 bio->bi_next = req->bio; 999 req->bio = bio; 1000 1001 req->__sector = bio->bi_iter.bi_sector; 1002 req->__data_len += bio->bi_iter.bi_size; 1003 1004 bio_crypt_do_front_merge(req, bio); 1005 1006 blk_account_io_merge_bio(req); 1007 return BIO_MERGE_OK; 1008 } 1009 1010 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1011 struct request *req, struct bio *bio) 1012 { 1013 unsigned short segments = blk_rq_nr_discard_segments(req); 1014 1015 if (segments >= queue_max_discard_segments(q)) 1016 goto no_merge; 1017 if (blk_rq_sectors(req) + bio_sectors(bio) > 1018 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1019 goto no_merge; 1020 1021 rq_qos_merge(q, req, bio); 1022 1023 req->biotail->bi_next = bio; 1024 req->biotail = bio; 1025 req->__data_len += bio->bi_iter.bi_size; 1026 req->nr_phys_segments = segments + 1; 1027 1028 blk_account_io_merge_bio(req); 1029 return BIO_MERGE_OK; 1030 no_merge: 1031 req_set_nomerge(q, req); 1032 return BIO_MERGE_FAILED; 1033 } 1034 1035 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1036 struct request *rq, 1037 struct bio *bio, 1038 unsigned int nr_segs, 1039 bool sched_allow_merge) 1040 { 1041 if (!blk_rq_merge_ok(rq, bio)) 1042 return BIO_MERGE_NONE; 1043 1044 switch (blk_try_merge(rq, bio)) { 1045 case ELEVATOR_BACK_MERGE: 1046 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1047 return bio_attempt_back_merge(rq, bio, nr_segs); 1048 break; 1049 case ELEVATOR_FRONT_MERGE: 1050 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1051 return bio_attempt_front_merge(rq, bio, nr_segs); 1052 break; 1053 case ELEVATOR_DISCARD_MERGE: 1054 return bio_attempt_discard_merge(q, rq, bio); 1055 default: 1056 return BIO_MERGE_NONE; 1057 } 1058 1059 return BIO_MERGE_FAILED; 1060 } 1061 1062 /** 1063 * blk_attempt_plug_merge - try to merge with %current's plugged list 1064 * @q: request_queue new bio is being queued at 1065 * @bio: new bio being queued 1066 * @nr_segs: number of segments in @bio 1067 * from the passed in @q already in the plug list 1068 * 1069 * Determine whether @bio being queued on @q can be merged with the previous 1070 * request on %current's plugged list. Returns %true if merge was successful, 1071 * otherwise %false. 1072 * 1073 * Plugging coalesces IOs from the same issuer for the same purpose without 1074 * going through @q->queue_lock. As such it's more of an issuing mechanism 1075 * than scheduling, and the request, while may have elvpriv data, is not 1076 * added on the elevator at this point. In addition, we don't have 1077 * reliable access to the elevator outside queue lock. Only check basic 1078 * merging parameters without querying the elevator. 1079 * 1080 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1081 */ 1082 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1083 unsigned int nr_segs) 1084 { 1085 struct blk_plug *plug; 1086 struct request *rq; 1087 1088 plug = blk_mq_plug(q, bio); 1089 if (!plug || rq_list_empty(plug->mq_list)) 1090 return false; 1091 1092 /* check the previously added entry for a quick merge attempt */ 1093 rq = rq_list_peek(&plug->mq_list); 1094 if (rq->q == q) { 1095 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1096 BIO_MERGE_OK) 1097 return true; 1098 } 1099 return false; 1100 } 1101 1102 /* 1103 * Iterate list of requests and see if we can merge this bio with any 1104 * of them. 1105 */ 1106 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1107 struct bio *bio, unsigned int nr_segs) 1108 { 1109 struct request *rq; 1110 int checked = 8; 1111 1112 list_for_each_entry_reverse(rq, list, queuelist) { 1113 if (!checked--) 1114 break; 1115 1116 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1117 case BIO_MERGE_NONE: 1118 continue; 1119 case BIO_MERGE_OK: 1120 return true; 1121 case BIO_MERGE_FAILED: 1122 return false; 1123 } 1124 1125 } 1126 1127 return false; 1128 } 1129 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1130 1131 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1132 unsigned int nr_segs, struct request **merged_request) 1133 { 1134 struct request *rq; 1135 1136 switch (elv_merge(q, &rq, bio)) { 1137 case ELEVATOR_BACK_MERGE: 1138 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1139 return false; 1140 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1141 return false; 1142 *merged_request = attempt_back_merge(q, rq); 1143 if (!*merged_request) 1144 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1145 return true; 1146 case ELEVATOR_FRONT_MERGE: 1147 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1148 return false; 1149 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1150 return false; 1151 *merged_request = attempt_front_merge(q, rq); 1152 if (!*merged_request) 1153 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1154 return true; 1155 case ELEVATOR_DISCARD_MERGE: 1156 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1157 default: 1158 return false; 1159 } 1160 } 1161 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1162