1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-rq-qos.h" 15 16 static inline bool bio_will_gap(struct request_queue *q, 17 struct request *prev_rq, struct bio *prev, struct bio *next) 18 { 19 struct bio_vec pb, nb; 20 21 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 22 return false; 23 24 /* 25 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 26 * is quite difficult to respect the sg gap limit. We work hard to 27 * merge a huge number of small single bios in case of mkfs. 28 */ 29 if (prev_rq) 30 bio_get_first_bvec(prev_rq->bio, &pb); 31 else 32 bio_get_first_bvec(prev, &pb); 33 if (pb.bv_offset & queue_virt_boundary(q)) 34 return true; 35 36 /* 37 * We don't need to worry about the situation that the merged segment 38 * ends in unaligned virt boundary: 39 * 40 * - if 'pb' ends aligned, the merged segment ends aligned 41 * - if 'pb' ends unaligned, the next bio must include 42 * one single bvec of 'nb', otherwise the 'nb' can't 43 * merge with 'pb' 44 */ 45 bio_get_last_bvec(prev, &pb); 46 bio_get_first_bvec(next, &nb); 47 if (biovec_phys_mergeable(q, &pb, &nb)) 48 return false; 49 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 50 } 51 52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 53 { 54 return bio_will_gap(req->q, req, req->biotail, bio); 55 } 56 57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 58 { 59 return bio_will_gap(req->q, NULL, bio, req->bio); 60 } 61 62 static struct bio *blk_bio_discard_split(struct request_queue *q, 63 struct bio *bio, 64 struct bio_set *bs, 65 unsigned *nsegs) 66 { 67 unsigned int max_discard_sectors, granularity; 68 int alignment; 69 sector_t tmp; 70 unsigned split_sectors; 71 72 *nsegs = 1; 73 74 /* Zero-sector (unknown) and one-sector granularities are the same. */ 75 granularity = max(q->limits.discard_granularity >> 9, 1U); 76 77 max_discard_sectors = min(q->limits.max_discard_sectors, 78 bio_allowed_max_sectors(q)); 79 max_discard_sectors -= max_discard_sectors % granularity; 80 81 if (unlikely(!max_discard_sectors)) { 82 /* XXX: warn */ 83 return NULL; 84 } 85 86 if (bio_sectors(bio) <= max_discard_sectors) 87 return NULL; 88 89 split_sectors = max_discard_sectors; 90 91 /* 92 * If the next starting sector would be misaligned, stop the discard at 93 * the previous aligned sector. 94 */ 95 alignment = (q->limits.discard_alignment >> 9) % granularity; 96 97 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 98 tmp = sector_div(tmp, granularity); 99 100 if (split_sectors > tmp) 101 split_sectors -= tmp; 102 103 return bio_split(bio, split_sectors, GFP_NOIO, bs); 104 } 105 106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 107 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 108 { 109 *nsegs = 0; 110 111 if (!q->limits.max_write_zeroes_sectors) 112 return NULL; 113 114 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 115 return NULL; 116 117 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 118 } 119 120 static struct bio *blk_bio_write_same_split(struct request_queue *q, 121 struct bio *bio, 122 struct bio_set *bs, 123 unsigned *nsegs) 124 { 125 *nsegs = 1; 126 127 if (!q->limits.max_write_same_sectors) 128 return NULL; 129 130 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 131 return NULL; 132 133 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 134 } 135 136 /* 137 * Return the maximum number of sectors from the start of a bio that may be 138 * submitted as a single request to a block device. If enough sectors remain, 139 * align the end to the physical block size. Otherwise align the end to the 140 * logical block size. This approach minimizes the number of non-aligned 141 * requests that are submitted to a block device if the start of a bio is not 142 * aligned to a physical block boundary. 143 */ 144 static inline unsigned get_max_io_size(struct request_queue *q, 145 struct bio *bio) 146 { 147 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); 148 unsigned max_sectors = sectors; 149 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 150 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 151 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 152 153 max_sectors += start_offset; 154 max_sectors &= ~(pbs - 1); 155 if (max_sectors > start_offset) 156 return max_sectors - start_offset; 157 158 return sectors & ~(lbs - 1); 159 } 160 161 static inline unsigned get_max_segment_size(const struct request_queue *q, 162 struct page *start_page, 163 unsigned long offset) 164 { 165 unsigned long mask = queue_segment_boundary(q); 166 167 offset = mask & (page_to_phys(start_page) + offset); 168 169 /* 170 * overflow may be triggered in case of zero page physical address 171 * on 32bit arch, use queue's max segment size when that happens. 172 */ 173 return min_not_zero(mask - offset + 1, 174 (unsigned long)queue_max_segment_size(q)); 175 } 176 177 /** 178 * bvec_split_segs - verify whether or not a bvec should be split in the middle 179 * @q: [in] request queue associated with the bio associated with @bv 180 * @bv: [in] bvec to examine 181 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 182 * by the number of segments from @bv that may be appended to that 183 * bio without exceeding @max_segs 184 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 185 * by the number of sectors from @bv that may be appended to that 186 * bio without exceeding @max_sectors 187 * @max_segs: [in] upper bound for *@nsegs 188 * @max_sectors: [in] upper bound for *@sectors 189 * 190 * When splitting a bio, it can happen that a bvec is encountered that is too 191 * big to fit in a single segment and hence that it has to be split in the 192 * middle. This function verifies whether or not that should happen. The value 193 * %true is returned if and only if appending the entire @bv to a bio with 194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 195 * the block driver. 196 */ 197 static bool bvec_split_segs(const struct request_queue *q, 198 const struct bio_vec *bv, unsigned *nsegs, 199 unsigned *sectors, unsigned max_segs, 200 unsigned max_sectors) 201 { 202 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 203 unsigned len = min(bv->bv_len, max_len); 204 unsigned total_len = 0; 205 unsigned seg_size = 0; 206 207 while (len && *nsegs < max_segs) { 208 seg_size = get_max_segment_size(q, bv->bv_page, 209 bv->bv_offset + total_len); 210 seg_size = min(seg_size, len); 211 212 (*nsegs)++; 213 total_len += seg_size; 214 len -= seg_size; 215 216 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 217 break; 218 } 219 220 *sectors += total_len >> 9; 221 222 /* tell the caller to split the bvec if it is too big to fit */ 223 return len > 0 || bv->bv_len > max_len; 224 } 225 226 /** 227 * blk_bio_segment_split - split a bio in two bios 228 * @q: [in] request queue pointer 229 * @bio: [in] bio to be split 230 * @bs: [in] bio set to allocate the clone from 231 * @segs: [out] number of segments in the bio with the first half of the sectors 232 * 233 * Clone @bio, update the bi_iter of the clone to represent the first sectors 234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 235 * following is guaranteed for the cloned bio: 236 * - That it has at most get_max_io_size(@q, @bio) sectors. 237 * - That it has at most queue_max_segments(@q) segments. 238 * 239 * Except for discard requests the cloned bio will point at the bi_io_vec of 240 * the original bio. It is the responsibility of the caller to ensure that the 241 * original bio is not freed before the cloned bio. The caller is also 242 * responsible for ensuring that @bs is only destroyed after processing of the 243 * split bio has finished. 244 */ 245 static struct bio *blk_bio_segment_split(struct request_queue *q, 246 struct bio *bio, 247 struct bio_set *bs, 248 unsigned *segs) 249 { 250 struct bio_vec bv, bvprv, *bvprvp = NULL; 251 struct bvec_iter iter; 252 unsigned nsegs = 0, sectors = 0; 253 const unsigned max_sectors = get_max_io_size(q, bio); 254 const unsigned max_segs = queue_max_segments(q); 255 256 bio_for_each_bvec(bv, bio, iter) { 257 /* 258 * If the queue doesn't support SG gaps and adding this 259 * offset would create a gap, disallow it. 260 */ 261 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 262 goto split; 263 264 if (nsegs < max_segs && 265 sectors + (bv.bv_len >> 9) <= max_sectors && 266 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 267 nsegs++; 268 sectors += bv.bv_len >> 9; 269 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 270 max_sectors)) { 271 goto split; 272 } 273 274 bvprv = bv; 275 bvprvp = &bvprv; 276 } 277 278 *segs = nsegs; 279 return NULL; 280 split: 281 *segs = nsegs; 282 283 /* 284 * Bio splitting may cause subtle trouble such as hang when doing sync 285 * iopoll in direct IO routine. Given performance gain of iopoll for 286 * big IO can be trival, disable iopoll when split needed. 287 */ 288 bio->bi_opf &= ~REQ_HIPRI; 289 290 return bio_split(bio, sectors, GFP_NOIO, bs); 291 } 292 293 /** 294 * __blk_queue_split - split a bio and submit the second half 295 * @bio: [in, out] bio to be split 296 * @nr_segs: [out] number of segments in the first bio 297 * 298 * Split a bio into two bios, chain the two bios, submit the second half and 299 * store a pointer to the first half in *@bio. If the second bio is still too 300 * big it will be split by a recursive call to this function. Since this 301 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is 302 * the responsibility of the caller to ensure that 303 * @bio->bi_disk->queue->bio_split is only released after processing of the 304 * split bio has finished. 305 */ 306 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs) 307 { 308 struct request_queue *q = (*bio)->bi_disk->queue; 309 struct bio *split = NULL; 310 311 switch (bio_op(*bio)) { 312 case REQ_OP_DISCARD: 313 case REQ_OP_SECURE_ERASE: 314 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 315 break; 316 case REQ_OP_WRITE_ZEROES: 317 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 318 nr_segs); 319 break; 320 case REQ_OP_WRITE_SAME: 321 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 322 nr_segs); 323 break; 324 default: 325 /* 326 * All drivers must accept single-segments bios that are <= 327 * PAGE_SIZE. This is a quick and dirty check that relies on 328 * the fact that bi_io_vec[0] is always valid if a bio has data. 329 * The check might lead to occasional false negatives when bios 330 * are cloned, but compared to the performance impact of cloned 331 * bios themselves the loop below doesn't matter anyway. 332 */ 333 if (!q->limits.chunk_sectors && 334 (*bio)->bi_vcnt == 1 && 335 ((*bio)->bi_io_vec[0].bv_len + 336 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { 337 *nr_segs = 1; 338 break; 339 } 340 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 341 break; 342 } 343 344 if (split) { 345 /* there isn't chance to merge the splitted bio */ 346 split->bi_opf |= REQ_NOMERGE; 347 348 bio_chain(split, *bio); 349 trace_block_split(split, (*bio)->bi_iter.bi_sector); 350 submit_bio_noacct(*bio); 351 *bio = split; 352 } 353 } 354 355 /** 356 * blk_queue_split - split a bio and submit the second half 357 * @bio: [in, out] bio to be split 358 * 359 * Split a bio into two bios, chains the two bios, submit the second half and 360 * store a pointer to the first half in *@bio. Since this function may allocate 361 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of 362 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released 363 * after processing of the split bio has finished. 364 */ 365 void blk_queue_split(struct bio **bio) 366 { 367 unsigned int nr_segs; 368 369 __blk_queue_split(bio, &nr_segs); 370 } 371 EXPORT_SYMBOL(blk_queue_split); 372 373 unsigned int blk_recalc_rq_segments(struct request *rq) 374 { 375 unsigned int nr_phys_segs = 0; 376 unsigned int nr_sectors = 0; 377 struct req_iterator iter; 378 struct bio_vec bv; 379 380 if (!rq->bio) 381 return 0; 382 383 switch (bio_op(rq->bio)) { 384 case REQ_OP_DISCARD: 385 case REQ_OP_SECURE_ERASE: 386 case REQ_OP_WRITE_ZEROES: 387 return 0; 388 case REQ_OP_WRITE_SAME: 389 return 1; 390 } 391 392 rq_for_each_bvec(bv, rq, iter) 393 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 394 UINT_MAX, UINT_MAX); 395 return nr_phys_segs; 396 } 397 398 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 399 struct scatterlist *sglist) 400 { 401 if (!*sg) 402 return sglist; 403 404 /* 405 * If the driver previously mapped a shorter list, we could see a 406 * termination bit prematurely unless it fully inits the sg table 407 * on each mapping. We KNOW that there must be more entries here 408 * or the driver would be buggy, so force clear the termination bit 409 * to avoid doing a full sg_init_table() in drivers for each command. 410 */ 411 sg_unmark_end(*sg); 412 return sg_next(*sg); 413 } 414 415 static unsigned blk_bvec_map_sg(struct request_queue *q, 416 struct bio_vec *bvec, struct scatterlist *sglist, 417 struct scatterlist **sg) 418 { 419 unsigned nbytes = bvec->bv_len; 420 unsigned nsegs = 0, total = 0; 421 422 while (nbytes > 0) { 423 unsigned offset = bvec->bv_offset + total; 424 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 425 offset), nbytes); 426 struct page *page = bvec->bv_page; 427 428 /* 429 * Unfortunately a fair number of drivers barf on scatterlists 430 * that have an offset larger than PAGE_SIZE, despite other 431 * subsystems dealing with that invariant just fine. For now 432 * stick to the legacy format where we never present those from 433 * the block layer, but the code below should be removed once 434 * these offenders (mostly MMC/SD drivers) are fixed. 435 */ 436 page += (offset >> PAGE_SHIFT); 437 offset &= ~PAGE_MASK; 438 439 *sg = blk_next_sg(sg, sglist); 440 sg_set_page(*sg, page, len, offset); 441 442 total += len; 443 nbytes -= len; 444 nsegs++; 445 } 446 447 return nsegs; 448 } 449 450 static inline int __blk_bvec_map_sg(struct bio_vec bv, 451 struct scatterlist *sglist, struct scatterlist **sg) 452 { 453 *sg = blk_next_sg(sg, sglist); 454 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 455 return 1; 456 } 457 458 /* only try to merge bvecs into one sg if they are from two bios */ 459 static inline bool 460 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 461 struct bio_vec *bvprv, struct scatterlist **sg) 462 { 463 464 int nbytes = bvec->bv_len; 465 466 if (!*sg) 467 return false; 468 469 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 470 return false; 471 472 if (!biovec_phys_mergeable(q, bvprv, bvec)) 473 return false; 474 475 (*sg)->length += nbytes; 476 477 return true; 478 } 479 480 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 481 struct scatterlist *sglist, 482 struct scatterlist **sg) 483 { 484 struct bio_vec bvec, bvprv = { NULL }; 485 struct bvec_iter iter; 486 int nsegs = 0; 487 bool new_bio = false; 488 489 for_each_bio(bio) { 490 bio_for_each_bvec(bvec, bio, iter) { 491 /* 492 * Only try to merge bvecs from two bios given we 493 * have done bio internal merge when adding pages 494 * to bio 495 */ 496 if (new_bio && 497 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 498 goto next_bvec; 499 500 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 501 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 502 else 503 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 504 next_bvec: 505 new_bio = false; 506 } 507 if (likely(bio->bi_iter.bi_size)) { 508 bvprv = bvec; 509 new_bio = true; 510 } 511 } 512 513 return nsegs; 514 } 515 516 /* 517 * map a request to scatterlist, return number of sg entries setup. Caller 518 * must make sure sg can hold rq->nr_phys_segments entries 519 */ 520 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 521 struct scatterlist *sglist, struct scatterlist **last_sg) 522 { 523 int nsegs = 0; 524 525 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 526 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 527 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 528 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); 529 else if (rq->bio) 530 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 531 532 if (*last_sg) 533 sg_mark_end(*last_sg); 534 535 /* 536 * Something must have been wrong if the figured number of 537 * segment is bigger than number of req's physical segments 538 */ 539 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 540 541 return nsegs; 542 } 543 EXPORT_SYMBOL(__blk_rq_map_sg); 544 545 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 546 { 547 if (req_op(rq) == REQ_OP_DISCARD) 548 return queue_max_discard_segments(rq->q); 549 return queue_max_segments(rq->q); 550 } 551 552 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 553 unsigned int nr_phys_segs) 554 { 555 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 556 goto no_merge; 557 558 if (blk_integrity_merge_bio(req->q, req, bio) == false) 559 goto no_merge; 560 561 /* 562 * This will form the start of a new hw segment. Bump both 563 * counters. 564 */ 565 req->nr_phys_segments += nr_phys_segs; 566 return 1; 567 568 no_merge: 569 req_set_nomerge(req->q, req); 570 return 0; 571 } 572 573 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 574 { 575 if (req_gap_back_merge(req, bio)) 576 return 0; 577 if (blk_integrity_rq(req) && 578 integrity_req_gap_back_merge(req, bio)) 579 return 0; 580 if (!bio_crypt_ctx_back_mergeable(req, bio)) 581 return 0; 582 if (blk_rq_sectors(req) + bio_sectors(bio) > 583 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 584 req_set_nomerge(req->q, req); 585 return 0; 586 } 587 588 return ll_new_hw_segment(req, bio, nr_segs); 589 } 590 591 static int ll_front_merge_fn(struct request *req, struct bio *bio, 592 unsigned int nr_segs) 593 { 594 if (req_gap_front_merge(req, bio)) 595 return 0; 596 if (blk_integrity_rq(req) && 597 integrity_req_gap_front_merge(req, bio)) 598 return 0; 599 if (!bio_crypt_ctx_front_mergeable(req, bio)) 600 return 0; 601 if (blk_rq_sectors(req) + bio_sectors(bio) > 602 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 603 req_set_nomerge(req->q, req); 604 return 0; 605 } 606 607 return ll_new_hw_segment(req, bio, nr_segs); 608 } 609 610 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 611 struct request *next) 612 { 613 unsigned short segments = blk_rq_nr_discard_segments(req); 614 615 if (segments >= queue_max_discard_segments(q)) 616 goto no_merge; 617 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 618 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 619 goto no_merge; 620 621 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 622 return true; 623 no_merge: 624 req_set_nomerge(q, req); 625 return false; 626 } 627 628 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 629 struct request *next) 630 { 631 int total_phys_segments; 632 633 if (req_gap_back_merge(req, next->bio)) 634 return 0; 635 636 /* 637 * Will it become too large? 638 */ 639 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 640 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 641 return 0; 642 643 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 644 if (total_phys_segments > blk_rq_get_max_segments(req)) 645 return 0; 646 647 if (blk_integrity_merge_rq(q, req, next) == false) 648 return 0; 649 650 if (!bio_crypt_ctx_merge_rq(req, next)) 651 return 0; 652 653 /* Merge is OK... */ 654 req->nr_phys_segments = total_phys_segments; 655 return 1; 656 } 657 658 /** 659 * blk_rq_set_mixed_merge - mark a request as mixed merge 660 * @rq: request to mark as mixed merge 661 * 662 * Description: 663 * @rq is about to be mixed merged. Make sure the attributes 664 * which can be mixed are set in each bio and mark @rq as mixed 665 * merged. 666 */ 667 void blk_rq_set_mixed_merge(struct request *rq) 668 { 669 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 670 struct bio *bio; 671 672 if (rq->rq_flags & RQF_MIXED_MERGE) 673 return; 674 675 /* 676 * @rq will no longer represent mixable attributes for all the 677 * contained bios. It will just track those of the first one. 678 * Distributes the attributs to each bio. 679 */ 680 for (bio = rq->bio; bio; bio = bio->bi_next) { 681 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 682 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 683 bio->bi_opf |= ff; 684 } 685 rq->rq_flags |= RQF_MIXED_MERGE; 686 } 687 688 static void blk_account_io_merge_request(struct request *req) 689 { 690 if (blk_do_io_stat(req)) { 691 part_stat_lock(); 692 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 693 part_stat_unlock(); 694 } 695 } 696 697 /* 698 * Two cases of handling DISCARD merge: 699 * If max_discard_segments > 1, the driver takes every bio 700 * as a range and send them to controller together. The ranges 701 * needn't to be contiguous. 702 * Otherwise, the bios/requests will be handled as same as 703 * others which should be contiguous. 704 */ 705 static inline bool blk_discard_mergable(struct request *req) 706 { 707 if (req_op(req) == REQ_OP_DISCARD && 708 queue_max_discard_segments(req->q) > 1) 709 return true; 710 return false; 711 } 712 713 static enum elv_merge blk_try_req_merge(struct request *req, 714 struct request *next) 715 { 716 if (blk_discard_mergable(req)) 717 return ELEVATOR_DISCARD_MERGE; 718 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 719 return ELEVATOR_BACK_MERGE; 720 721 return ELEVATOR_NO_MERGE; 722 } 723 724 /* 725 * For non-mq, this has to be called with the request spinlock acquired. 726 * For mq with scheduling, the appropriate queue wide lock should be held. 727 */ 728 static struct request *attempt_merge(struct request_queue *q, 729 struct request *req, struct request *next) 730 { 731 if (!rq_mergeable(req) || !rq_mergeable(next)) 732 return NULL; 733 734 if (req_op(req) != req_op(next)) 735 return NULL; 736 737 if (rq_data_dir(req) != rq_data_dir(next) 738 || req->rq_disk != next->rq_disk) 739 return NULL; 740 741 if (req_op(req) == REQ_OP_WRITE_SAME && 742 !blk_write_same_mergeable(req->bio, next->bio)) 743 return NULL; 744 745 /* 746 * Don't allow merge of different write hints, or for a hint with 747 * non-hint IO. 748 */ 749 if (req->write_hint != next->write_hint) 750 return NULL; 751 752 if (req->ioprio != next->ioprio) 753 return NULL; 754 755 /* 756 * If we are allowed to merge, then append bio list 757 * from next to rq and release next. merge_requests_fn 758 * will have updated segment counts, update sector 759 * counts here. Handle DISCARDs separately, as they 760 * have separate settings. 761 */ 762 763 switch (blk_try_req_merge(req, next)) { 764 case ELEVATOR_DISCARD_MERGE: 765 if (!req_attempt_discard_merge(q, req, next)) 766 return NULL; 767 break; 768 case ELEVATOR_BACK_MERGE: 769 if (!ll_merge_requests_fn(q, req, next)) 770 return NULL; 771 break; 772 default: 773 return NULL; 774 } 775 776 /* 777 * If failfast settings disagree or any of the two is already 778 * a mixed merge, mark both as mixed before proceeding. This 779 * makes sure that all involved bios have mixable attributes 780 * set properly. 781 */ 782 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 783 (req->cmd_flags & REQ_FAILFAST_MASK) != 784 (next->cmd_flags & REQ_FAILFAST_MASK)) { 785 blk_rq_set_mixed_merge(req); 786 blk_rq_set_mixed_merge(next); 787 } 788 789 /* 790 * At this point we have either done a back merge or front merge. We 791 * need the smaller start_time_ns of the merged requests to be the 792 * current request for accounting purposes. 793 */ 794 if (next->start_time_ns < req->start_time_ns) 795 req->start_time_ns = next->start_time_ns; 796 797 req->biotail->bi_next = next->bio; 798 req->biotail = next->biotail; 799 800 req->__data_len += blk_rq_bytes(next); 801 802 if (!blk_discard_mergable(req)) 803 elv_merge_requests(q, req, next); 804 805 /* 806 * 'next' is going away, so update stats accordingly 807 */ 808 blk_account_io_merge_request(next); 809 810 trace_block_rq_merge(next); 811 812 /* 813 * ownership of bio passed from next to req, return 'next' for 814 * the caller to free 815 */ 816 next->bio = NULL; 817 return next; 818 } 819 820 static struct request *attempt_back_merge(struct request_queue *q, 821 struct request *rq) 822 { 823 struct request *next = elv_latter_request(q, rq); 824 825 if (next) 826 return attempt_merge(q, rq, next); 827 828 return NULL; 829 } 830 831 static struct request *attempt_front_merge(struct request_queue *q, 832 struct request *rq) 833 { 834 struct request *prev = elv_former_request(q, rq); 835 836 if (prev) 837 return attempt_merge(q, prev, rq); 838 839 return NULL; 840 } 841 842 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 843 struct request *next) 844 { 845 struct request *free; 846 847 free = attempt_merge(q, rq, next); 848 if (free) { 849 blk_put_request(free); 850 return 1; 851 } 852 853 return 0; 854 } 855 856 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 857 { 858 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 859 return false; 860 861 if (req_op(rq) != bio_op(bio)) 862 return false; 863 864 /* different data direction or already started, don't merge */ 865 if (bio_data_dir(bio) != rq_data_dir(rq)) 866 return false; 867 868 /* must be same device */ 869 if (rq->rq_disk != bio->bi_disk) 870 return false; 871 872 /* only merge integrity protected bio into ditto rq */ 873 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 874 return false; 875 876 /* Only merge if the crypt contexts are compatible */ 877 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 878 return false; 879 880 /* must be using the same buffer */ 881 if (req_op(rq) == REQ_OP_WRITE_SAME && 882 !blk_write_same_mergeable(rq->bio, bio)) 883 return false; 884 885 /* 886 * Don't allow merge of different write hints, or for a hint with 887 * non-hint IO. 888 */ 889 if (rq->write_hint != bio->bi_write_hint) 890 return false; 891 892 if (rq->ioprio != bio_prio(bio)) 893 return false; 894 895 return true; 896 } 897 898 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 899 { 900 if (blk_discard_mergable(rq)) 901 return ELEVATOR_DISCARD_MERGE; 902 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 903 return ELEVATOR_BACK_MERGE; 904 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 905 return ELEVATOR_FRONT_MERGE; 906 return ELEVATOR_NO_MERGE; 907 } 908 909 static void blk_account_io_merge_bio(struct request *req) 910 { 911 if (!blk_do_io_stat(req)) 912 return; 913 914 part_stat_lock(); 915 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 916 part_stat_unlock(); 917 } 918 919 enum bio_merge_status { 920 BIO_MERGE_OK, 921 BIO_MERGE_NONE, 922 BIO_MERGE_FAILED, 923 }; 924 925 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 926 struct bio *bio, unsigned int nr_segs) 927 { 928 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 929 930 if (!ll_back_merge_fn(req, bio, nr_segs)) 931 return BIO_MERGE_FAILED; 932 933 trace_block_bio_backmerge(bio); 934 rq_qos_merge(req->q, req, bio); 935 936 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 937 blk_rq_set_mixed_merge(req); 938 939 req->biotail->bi_next = bio; 940 req->biotail = bio; 941 req->__data_len += bio->bi_iter.bi_size; 942 943 bio_crypt_free_ctx(bio); 944 945 blk_account_io_merge_bio(req); 946 return BIO_MERGE_OK; 947 } 948 949 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 950 struct bio *bio, unsigned int nr_segs) 951 { 952 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 953 954 if (!ll_front_merge_fn(req, bio, nr_segs)) 955 return BIO_MERGE_FAILED; 956 957 trace_block_bio_frontmerge(bio); 958 rq_qos_merge(req->q, req, bio); 959 960 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 961 blk_rq_set_mixed_merge(req); 962 963 bio->bi_next = req->bio; 964 req->bio = bio; 965 966 req->__sector = bio->bi_iter.bi_sector; 967 req->__data_len += bio->bi_iter.bi_size; 968 969 bio_crypt_do_front_merge(req, bio); 970 971 blk_account_io_merge_bio(req); 972 return BIO_MERGE_OK; 973 } 974 975 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 976 struct request *req, struct bio *bio) 977 { 978 unsigned short segments = blk_rq_nr_discard_segments(req); 979 980 if (segments >= queue_max_discard_segments(q)) 981 goto no_merge; 982 if (blk_rq_sectors(req) + bio_sectors(bio) > 983 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 984 goto no_merge; 985 986 rq_qos_merge(q, req, bio); 987 988 req->biotail->bi_next = bio; 989 req->biotail = bio; 990 req->__data_len += bio->bi_iter.bi_size; 991 req->nr_phys_segments = segments + 1; 992 993 blk_account_io_merge_bio(req); 994 return BIO_MERGE_OK; 995 no_merge: 996 req_set_nomerge(q, req); 997 return BIO_MERGE_FAILED; 998 } 999 1000 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1001 struct request *rq, 1002 struct bio *bio, 1003 unsigned int nr_segs, 1004 bool sched_allow_merge) 1005 { 1006 if (!blk_rq_merge_ok(rq, bio)) 1007 return BIO_MERGE_NONE; 1008 1009 switch (blk_try_merge(rq, bio)) { 1010 case ELEVATOR_BACK_MERGE: 1011 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1012 return bio_attempt_back_merge(rq, bio, nr_segs); 1013 break; 1014 case ELEVATOR_FRONT_MERGE: 1015 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1016 return bio_attempt_front_merge(rq, bio, nr_segs); 1017 break; 1018 case ELEVATOR_DISCARD_MERGE: 1019 return bio_attempt_discard_merge(q, rq, bio); 1020 default: 1021 return BIO_MERGE_NONE; 1022 } 1023 1024 return BIO_MERGE_FAILED; 1025 } 1026 1027 /** 1028 * blk_attempt_plug_merge - try to merge with %current's plugged list 1029 * @q: request_queue new bio is being queued at 1030 * @bio: new bio being queued 1031 * @nr_segs: number of segments in @bio 1032 * @same_queue_rq: pointer to &struct request that gets filled in when 1033 * another request associated with @q is found on the plug list 1034 * (optional, may be %NULL) 1035 * 1036 * Determine whether @bio being queued on @q can be merged with a request 1037 * on %current's plugged list. Returns %true if merge was successful, 1038 * otherwise %false. 1039 * 1040 * Plugging coalesces IOs from the same issuer for the same purpose without 1041 * going through @q->queue_lock. As such it's more of an issuing mechanism 1042 * than scheduling, and the request, while may have elvpriv data, is not 1043 * added on the elevator at this point. In addition, we don't have 1044 * reliable access to the elevator outside queue lock. Only check basic 1045 * merging parameters without querying the elevator. 1046 * 1047 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1048 */ 1049 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1050 unsigned int nr_segs, struct request **same_queue_rq) 1051 { 1052 struct blk_plug *plug; 1053 struct request *rq; 1054 struct list_head *plug_list; 1055 1056 plug = blk_mq_plug(q, bio); 1057 if (!plug) 1058 return false; 1059 1060 plug_list = &plug->mq_list; 1061 1062 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1063 if (rq->q == q && same_queue_rq) { 1064 /* 1065 * Only blk-mq multiple hardware queues case checks the 1066 * rq in the same queue, there should be only one such 1067 * rq in a queue 1068 **/ 1069 *same_queue_rq = rq; 1070 } 1071 1072 if (rq->q != q) 1073 continue; 1074 1075 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1076 BIO_MERGE_OK) 1077 return true; 1078 } 1079 1080 return false; 1081 } 1082 1083 /* 1084 * Iterate list of requests and see if we can merge this bio with any 1085 * of them. 1086 */ 1087 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1088 struct bio *bio, unsigned int nr_segs) 1089 { 1090 struct request *rq; 1091 int checked = 8; 1092 1093 list_for_each_entry_reverse(rq, list, queuelist) { 1094 if (!checked--) 1095 break; 1096 1097 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1098 case BIO_MERGE_NONE: 1099 continue; 1100 case BIO_MERGE_OK: 1101 return true; 1102 case BIO_MERGE_FAILED: 1103 return false; 1104 } 1105 1106 } 1107 1108 return false; 1109 } 1110 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1111 1112 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1113 unsigned int nr_segs, struct request **merged_request) 1114 { 1115 struct request *rq; 1116 1117 switch (elv_merge(q, &rq, bio)) { 1118 case ELEVATOR_BACK_MERGE: 1119 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1120 return false; 1121 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1122 return false; 1123 *merged_request = attempt_back_merge(q, rq); 1124 if (!*merged_request) 1125 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1126 return true; 1127 case ELEVATOR_FRONT_MERGE: 1128 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1129 return false; 1130 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1131 return false; 1132 *merged_request = attempt_front_merge(q, rq); 1133 if (!*merged_request) 1134 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1135 return true; 1136 case ELEVATOR_DISCARD_MERGE: 1137 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1138 default: 1139 return false; 1140 } 1141 } 1142 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1143