1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-rq-qos.h" 15 16 static inline bool bio_will_gap(struct request_queue *q, 17 struct request *prev_rq, struct bio *prev, struct bio *next) 18 { 19 struct bio_vec pb, nb; 20 21 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 22 return false; 23 24 /* 25 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 26 * is quite difficult to respect the sg gap limit. We work hard to 27 * merge a huge number of small single bios in case of mkfs. 28 */ 29 if (prev_rq) 30 bio_get_first_bvec(prev_rq->bio, &pb); 31 else 32 bio_get_first_bvec(prev, &pb); 33 if (pb.bv_offset & queue_virt_boundary(q)) 34 return true; 35 36 /* 37 * We don't need to worry about the situation that the merged segment 38 * ends in unaligned virt boundary: 39 * 40 * - if 'pb' ends aligned, the merged segment ends aligned 41 * - if 'pb' ends unaligned, the next bio must include 42 * one single bvec of 'nb', otherwise the 'nb' can't 43 * merge with 'pb' 44 */ 45 bio_get_last_bvec(prev, &pb); 46 bio_get_first_bvec(next, &nb); 47 if (biovec_phys_mergeable(q, &pb, &nb)) 48 return false; 49 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 50 } 51 52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 53 { 54 return bio_will_gap(req->q, req, req->biotail, bio); 55 } 56 57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 58 { 59 return bio_will_gap(req->q, NULL, bio, req->bio); 60 } 61 62 static struct bio *blk_bio_discard_split(struct request_queue *q, 63 struct bio *bio, 64 struct bio_set *bs, 65 unsigned *nsegs) 66 { 67 unsigned int max_discard_sectors, granularity; 68 int alignment; 69 sector_t tmp; 70 unsigned split_sectors; 71 72 *nsegs = 1; 73 74 /* Zero-sector (unknown) and one-sector granularities are the same. */ 75 granularity = max(q->limits.discard_granularity >> 9, 1U); 76 77 max_discard_sectors = min(q->limits.max_discard_sectors, 78 bio_allowed_max_sectors(q)); 79 max_discard_sectors -= max_discard_sectors % granularity; 80 81 if (unlikely(!max_discard_sectors)) { 82 /* XXX: warn */ 83 return NULL; 84 } 85 86 if (bio_sectors(bio) <= max_discard_sectors) 87 return NULL; 88 89 split_sectors = max_discard_sectors; 90 91 /* 92 * If the next starting sector would be misaligned, stop the discard at 93 * the previous aligned sector. 94 */ 95 alignment = (q->limits.discard_alignment >> 9) % granularity; 96 97 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 98 tmp = sector_div(tmp, granularity); 99 100 if (split_sectors > tmp) 101 split_sectors -= tmp; 102 103 return bio_split(bio, split_sectors, GFP_NOIO, bs); 104 } 105 106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 107 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 108 { 109 *nsegs = 0; 110 111 if (!q->limits.max_write_zeroes_sectors) 112 return NULL; 113 114 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 115 return NULL; 116 117 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 118 } 119 120 static struct bio *blk_bio_write_same_split(struct request_queue *q, 121 struct bio *bio, 122 struct bio_set *bs, 123 unsigned *nsegs) 124 { 125 *nsegs = 1; 126 127 if (!q->limits.max_write_same_sectors) 128 return NULL; 129 130 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 131 return NULL; 132 133 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 134 } 135 136 /* 137 * Return the maximum number of sectors from the start of a bio that may be 138 * submitted as a single request to a block device. If enough sectors remain, 139 * align the end to the physical block size. Otherwise align the end to the 140 * logical block size. This approach minimizes the number of non-aligned 141 * requests that are submitted to a block device if the start of a bio is not 142 * aligned to a physical block boundary. 143 */ 144 static inline unsigned get_max_io_size(struct request_queue *q, 145 struct bio *bio) 146 { 147 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 148 unsigned max_sectors = sectors; 149 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 150 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 151 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 152 153 max_sectors += start_offset; 154 max_sectors &= ~(pbs - 1); 155 if (max_sectors > start_offset) 156 return max_sectors - start_offset; 157 158 return sectors & ~(lbs - 1); 159 } 160 161 static inline unsigned get_max_segment_size(const struct request_queue *q, 162 struct page *start_page, 163 unsigned long offset) 164 { 165 unsigned long mask = queue_segment_boundary(q); 166 167 offset = mask & (page_to_phys(start_page) + offset); 168 169 /* 170 * overflow may be triggered in case of zero page physical address 171 * on 32bit arch, use queue's max segment size when that happens. 172 */ 173 return min_not_zero(mask - offset + 1, 174 (unsigned long)queue_max_segment_size(q)); 175 } 176 177 /** 178 * bvec_split_segs - verify whether or not a bvec should be split in the middle 179 * @q: [in] request queue associated with the bio associated with @bv 180 * @bv: [in] bvec to examine 181 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 182 * by the number of segments from @bv that may be appended to that 183 * bio without exceeding @max_segs 184 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 185 * by the number of sectors from @bv that may be appended to that 186 * bio without exceeding @max_sectors 187 * @max_segs: [in] upper bound for *@nsegs 188 * @max_sectors: [in] upper bound for *@sectors 189 * 190 * When splitting a bio, it can happen that a bvec is encountered that is too 191 * big to fit in a single segment and hence that it has to be split in the 192 * middle. This function verifies whether or not that should happen. The value 193 * %true is returned if and only if appending the entire @bv to a bio with 194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 195 * the block driver. 196 */ 197 static bool bvec_split_segs(const struct request_queue *q, 198 const struct bio_vec *bv, unsigned *nsegs, 199 unsigned *sectors, unsigned max_segs, 200 unsigned max_sectors) 201 { 202 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 203 unsigned len = min(bv->bv_len, max_len); 204 unsigned total_len = 0; 205 unsigned seg_size = 0; 206 207 while (len && *nsegs < max_segs) { 208 seg_size = get_max_segment_size(q, bv->bv_page, 209 bv->bv_offset + total_len); 210 seg_size = min(seg_size, len); 211 212 (*nsegs)++; 213 total_len += seg_size; 214 len -= seg_size; 215 216 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 217 break; 218 } 219 220 *sectors += total_len >> 9; 221 222 /* tell the caller to split the bvec if it is too big to fit */ 223 return len > 0 || bv->bv_len > max_len; 224 } 225 226 /** 227 * blk_bio_segment_split - split a bio in two bios 228 * @q: [in] request queue pointer 229 * @bio: [in] bio to be split 230 * @bs: [in] bio set to allocate the clone from 231 * @segs: [out] number of segments in the bio with the first half of the sectors 232 * 233 * Clone @bio, update the bi_iter of the clone to represent the first sectors 234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 235 * following is guaranteed for the cloned bio: 236 * - That it has at most get_max_io_size(@q, @bio) sectors. 237 * - That it has at most queue_max_segments(@q) segments. 238 * 239 * Except for discard requests the cloned bio will point at the bi_io_vec of 240 * the original bio. It is the responsibility of the caller to ensure that the 241 * original bio is not freed before the cloned bio. The caller is also 242 * responsible for ensuring that @bs is only destroyed after processing of the 243 * split bio has finished. 244 */ 245 static struct bio *blk_bio_segment_split(struct request_queue *q, 246 struct bio *bio, 247 struct bio_set *bs, 248 unsigned *segs) 249 { 250 struct bio_vec bv, bvprv, *bvprvp = NULL; 251 struct bvec_iter iter; 252 unsigned nsegs = 0, sectors = 0; 253 const unsigned max_sectors = get_max_io_size(q, bio); 254 const unsigned max_segs = queue_max_segments(q); 255 256 bio_for_each_bvec(bv, bio, iter) { 257 /* 258 * If the queue doesn't support SG gaps and adding this 259 * offset would create a gap, disallow it. 260 */ 261 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 262 goto split; 263 264 if (nsegs < max_segs && 265 sectors + (bv.bv_len >> 9) <= max_sectors && 266 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 267 nsegs++; 268 sectors += bv.bv_len >> 9; 269 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 270 max_sectors)) { 271 goto split; 272 } 273 274 bvprv = bv; 275 bvprvp = &bvprv; 276 } 277 278 *segs = nsegs; 279 return NULL; 280 split: 281 *segs = nsegs; 282 return bio_split(bio, sectors, GFP_NOIO, bs); 283 } 284 285 /** 286 * __blk_queue_split - split a bio and submit the second half 287 * @bio: [in, out] bio to be split 288 * @nr_segs: [out] number of segments in the first bio 289 * 290 * Split a bio into two bios, chain the two bios, submit the second half and 291 * store a pointer to the first half in *@bio. If the second bio is still too 292 * big it will be split by a recursive call to this function. Since this 293 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is 294 * the responsibility of the caller to ensure that 295 * @bio->bi_disk->queue->bio_split is only released after processing of the 296 * split bio has finished. 297 */ 298 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs) 299 { 300 struct request_queue *q = (*bio)->bi_disk->queue; 301 struct bio *split = NULL; 302 303 switch (bio_op(*bio)) { 304 case REQ_OP_DISCARD: 305 case REQ_OP_SECURE_ERASE: 306 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 307 break; 308 case REQ_OP_WRITE_ZEROES: 309 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 310 nr_segs); 311 break; 312 case REQ_OP_WRITE_SAME: 313 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 314 nr_segs); 315 break; 316 default: 317 /* 318 * All drivers must accept single-segments bios that are <= 319 * PAGE_SIZE. This is a quick and dirty check that relies on 320 * the fact that bi_io_vec[0] is always valid if a bio has data. 321 * The check might lead to occasional false negatives when bios 322 * are cloned, but compared to the performance impact of cloned 323 * bios themselves the loop below doesn't matter anyway. 324 */ 325 if (!q->limits.chunk_sectors && 326 (*bio)->bi_vcnt == 1 && 327 ((*bio)->bi_io_vec[0].bv_len + 328 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { 329 *nr_segs = 1; 330 break; 331 } 332 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 333 break; 334 } 335 336 if (split) { 337 /* there isn't chance to merge the splitted bio */ 338 split->bi_opf |= REQ_NOMERGE; 339 340 bio_chain(split, *bio); 341 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 342 submit_bio_noacct(*bio); 343 *bio = split; 344 } 345 } 346 347 /** 348 * blk_queue_split - split a bio and submit the second half 349 * @bio: [in, out] bio to be split 350 * 351 * Split a bio into two bios, chains the two bios, submit the second half and 352 * store a pointer to the first half in *@bio. Since this function may allocate 353 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of 354 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released 355 * after processing of the split bio has finished. 356 */ 357 void blk_queue_split(struct bio **bio) 358 { 359 unsigned int nr_segs; 360 361 __blk_queue_split(bio, &nr_segs); 362 } 363 EXPORT_SYMBOL(blk_queue_split); 364 365 unsigned int blk_recalc_rq_segments(struct request *rq) 366 { 367 unsigned int nr_phys_segs = 0; 368 unsigned int nr_sectors = 0; 369 struct req_iterator iter; 370 struct bio_vec bv; 371 372 if (!rq->bio) 373 return 0; 374 375 switch (bio_op(rq->bio)) { 376 case REQ_OP_DISCARD: 377 case REQ_OP_SECURE_ERASE: 378 case REQ_OP_WRITE_ZEROES: 379 return 0; 380 case REQ_OP_WRITE_SAME: 381 return 1; 382 } 383 384 rq_for_each_bvec(bv, rq, iter) 385 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 386 UINT_MAX, UINT_MAX); 387 return nr_phys_segs; 388 } 389 390 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 391 struct scatterlist *sglist) 392 { 393 if (!*sg) 394 return sglist; 395 396 /* 397 * If the driver previously mapped a shorter list, we could see a 398 * termination bit prematurely unless it fully inits the sg table 399 * on each mapping. We KNOW that there must be more entries here 400 * or the driver would be buggy, so force clear the termination bit 401 * to avoid doing a full sg_init_table() in drivers for each command. 402 */ 403 sg_unmark_end(*sg); 404 return sg_next(*sg); 405 } 406 407 static unsigned blk_bvec_map_sg(struct request_queue *q, 408 struct bio_vec *bvec, struct scatterlist *sglist, 409 struct scatterlist **sg) 410 { 411 unsigned nbytes = bvec->bv_len; 412 unsigned nsegs = 0, total = 0; 413 414 while (nbytes > 0) { 415 unsigned offset = bvec->bv_offset + total; 416 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 417 offset), nbytes); 418 struct page *page = bvec->bv_page; 419 420 /* 421 * Unfortunately a fair number of drivers barf on scatterlists 422 * that have an offset larger than PAGE_SIZE, despite other 423 * subsystems dealing with that invariant just fine. For now 424 * stick to the legacy format where we never present those from 425 * the block layer, but the code below should be removed once 426 * these offenders (mostly MMC/SD drivers) are fixed. 427 */ 428 page += (offset >> PAGE_SHIFT); 429 offset &= ~PAGE_MASK; 430 431 *sg = blk_next_sg(sg, sglist); 432 sg_set_page(*sg, page, len, offset); 433 434 total += len; 435 nbytes -= len; 436 nsegs++; 437 } 438 439 return nsegs; 440 } 441 442 static inline int __blk_bvec_map_sg(struct bio_vec bv, 443 struct scatterlist *sglist, struct scatterlist **sg) 444 { 445 *sg = blk_next_sg(sg, sglist); 446 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 447 return 1; 448 } 449 450 /* only try to merge bvecs into one sg if they are from two bios */ 451 static inline bool 452 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 453 struct bio_vec *bvprv, struct scatterlist **sg) 454 { 455 456 int nbytes = bvec->bv_len; 457 458 if (!*sg) 459 return false; 460 461 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 462 return false; 463 464 if (!biovec_phys_mergeable(q, bvprv, bvec)) 465 return false; 466 467 (*sg)->length += nbytes; 468 469 return true; 470 } 471 472 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 473 struct scatterlist *sglist, 474 struct scatterlist **sg) 475 { 476 struct bio_vec bvec, bvprv = { NULL }; 477 struct bvec_iter iter; 478 int nsegs = 0; 479 bool new_bio = false; 480 481 for_each_bio(bio) { 482 bio_for_each_bvec(bvec, bio, iter) { 483 /* 484 * Only try to merge bvecs from two bios given we 485 * have done bio internal merge when adding pages 486 * to bio 487 */ 488 if (new_bio && 489 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 490 goto next_bvec; 491 492 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 493 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 494 else 495 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 496 next_bvec: 497 new_bio = false; 498 } 499 if (likely(bio->bi_iter.bi_size)) { 500 bvprv = bvec; 501 new_bio = true; 502 } 503 } 504 505 return nsegs; 506 } 507 508 /* 509 * map a request to scatterlist, return number of sg entries setup. Caller 510 * must make sure sg can hold rq->nr_phys_segments entries 511 */ 512 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 513 struct scatterlist *sglist, struct scatterlist **last_sg) 514 { 515 int nsegs = 0; 516 517 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 518 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 519 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 520 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); 521 else if (rq->bio) 522 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 523 524 if (*last_sg) 525 sg_mark_end(*last_sg); 526 527 /* 528 * Something must have been wrong if the figured number of 529 * segment is bigger than number of req's physical segments 530 */ 531 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 532 533 return nsegs; 534 } 535 EXPORT_SYMBOL(__blk_rq_map_sg); 536 537 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 538 { 539 if (req_op(rq) == REQ_OP_DISCARD) 540 return queue_max_discard_segments(rq->q); 541 return queue_max_segments(rq->q); 542 } 543 544 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 545 unsigned int nr_phys_segs) 546 { 547 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 548 goto no_merge; 549 550 if (blk_integrity_merge_bio(req->q, req, bio) == false) 551 goto no_merge; 552 553 /* 554 * This will form the start of a new hw segment. Bump both 555 * counters. 556 */ 557 req->nr_phys_segments += nr_phys_segs; 558 return 1; 559 560 no_merge: 561 req_set_nomerge(req->q, req); 562 return 0; 563 } 564 565 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 566 { 567 if (req_gap_back_merge(req, bio)) 568 return 0; 569 if (blk_integrity_rq(req) && 570 integrity_req_gap_back_merge(req, bio)) 571 return 0; 572 if (!bio_crypt_ctx_back_mergeable(req, bio)) 573 return 0; 574 if (blk_rq_sectors(req) + bio_sectors(bio) > 575 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 576 req_set_nomerge(req->q, req); 577 return 0; 578 } 579 580 return ll_new_hw_segment(req, bio, nr_segs); 581 } 582 583 static int ll_front_merge_fn(struct request *req, struct bio *bio, 584 unsigned int nr_segs) 585 { 586 if (req_gap_front_merge(req, bio)) 587 return 0; 588 if (blk_integrity_rq(req) && 589 integrity_req_gap_front_merge(req, bio)) 590 return 0; 591 if (!bio_crypt_ctx_front_mergeable(req, bio)) 592 return 0; 593 if (blk_rq_sectors(req) + bio_sectors(bio) > 594 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 595 req_set_nomerge(req->q, req); 596 return 0; 597 } 598 599 return ll_new_hw_segment(req, bio, nr_segs); 600 } 601 602 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 603 struct request *next) 604 { 605 unsigned short segments = blk_rq_nr_discard_segments(req); 606 607 if (segments >= queue_max_discard_segments(q)) 608 goto no_merge; 609 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 610 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 611 goto no_merge; 612 613 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 614 return true; 615 no_merge: 616 req_set_nomerge(q, req); 617 return false; 618 } 619 620 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 621 struct request *next) 622 { 623 int total_phys_segments; 624 625 if (req_gap_back_merge(req, next->bio)) 626 return 0; 627 628 /* 629 * Will it become too large? 630 */ 631 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 632 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 633 return 0; 634 635 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 636 if (total_phys_segments > blk_rq_get_max_segments(req)) 637 return 0; 638 639 if (blk_integrity_merge_rq(q, req, next) == false) 640 return 0; 641 642 if (!bio_crypt_ctx_merge_rq(req, next)) 643 return 0; 644 645 /* Merge is OK... */ 646 req->nr_phys_segments = total_phys_segments; 647 return 1; 648 } 649 650 /** 651 * blk_rq_set_mixed_merge - mark a request as mixed merge 652 * @rq: request to mark as mixed merge 653 * 654 * Description: 655 * @rq is about to be mixed merged. Make sure the attributes 656 * which can be mixed are set in each bio and mark @rq as mixed 657 * merged. 658 */ 659 void blk_rq_set_mixed_merge(struct request *rq) 660 { 661 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 662 struct bio *bio; 663 664 if (rq->rq_flags & RQF_MIXED_MERGE) 665 return; 666 667 /* 668 * @rq will no longer represent mixable attributes for all the 669 * contained bios. It will just track those of the first one. 670 * Distributes the attributs to each bio. 671 */ 672 for (bio = rq->bio; bio; bio = bio->bi_next) { 673 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 674 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 675 bio->bi_opf |= ff; 676 } 677 rq->rq_flags |= RQF_MIXED_MERGE; 678 } 679 680 static void blk_account_io_merge_request(struct request *req) 681 { 682 if (blk_do_io_stat(req)) { 683 part_stat_lock(); 684 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 685 part_stat_unlock(); 686 687 hd_struct_put(req->part); 688 } 689 } 690 691 /* 692 * Two cases of handling DISCARD merge: 693 * If max_discard_segments > 1, the driver takes every bio 694 * as a range and send them to controller together. The ranges 695 * needn't to be contiguous. 696 * Otherwise, the bios/requests will be handled as same as 697 * others which should be contiguous. 698 */ 699 static inline bool blk_discard_mergable(struct request *req) 700 { 701 if (req_op(req) == REQ_OP_DISCARD && 702 queue_max_discard_segments(req->q) > 1) 703 return true; 704 return false; 705 } 706 707 static enum elv_merge blk_try_req_merge(struct request *req, 708 struct request *next) 709 { 710 if (blk_discard_mergable(req)) 711 return ELEVATOR_DISCARD_MERGE; 712 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 713 return ELEVATOR_BACK_MERGE; 714 715 return ELEVATOR_NO_MERGE; 716 } 717 718 /* 719 * For non-mq, this has to be called with the request spinlock acquired. 720 * For mq with scheduling, the appropriate queue wide lock should be held. 721 */ 722 static struct request *attempt_merge(struct request_queue *q, 723 struct request *req, struct request *next) 724 { 725 if (!rq_mergeable(req) || !rq_mergeable(next)) 726 return NULL; 727 728 if (req_op(req) != req_op(next)) 729 return NULL; 730 731 if (rq_data_dir(req) != rq_data_dir(next) 732 || req->rq_disk != next->rq_disk) 733 return NULL; 734 735 if (req_op(req) == REQ_OP_WRITE_SAME && 736 !blk_write_same_mergeable(req->bio, next->bio)) 737 return NULL; 738 739 /* 740 * Don't allow merge of different write hints, or for a hint with 741 * non-hint IO. 742 */ 743 if (req->write_hint != next->write_hint) 744 return NULL; 745 746 if (req->ioprio != next->ioprio) 747 return NULL; 748 749 /* 750 * If we are allowed to merge, then append bio list 751 * from next to rq and release next. merge_requests_fn 752 * will have updated segment counts, update sector 753 * counts here. Handle DISCARDs separately, as they 754 * have separate settings. 755 */ 756 757 switch (blk_try_req_merge(req, next)) { 758 case ELEVATOR_DISCARD_MERGE: 759 if (!req_attempt_discard_merge(q, req, next)) 760 return NULL; 761 break; 762 case ELEVATOR_BACK_MERGE: 763 if (!ll_merge_requests_fn(q, req, next)) 764 return NULL; 765 break; 766 default: 767 return NULL; 768 } 769 770 /* 771 * If failfast settings disagree or any of the two is already 772 * a mixed merge, mark both as mixed before proceeding. This 773 * makes sure that all involved bios have mixable attributes 774 * set properly. 775 */ 776 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 777 (req->cmd_flags & REQ_FAILFAST_MASK) != 778 (next->cmd_flags & REQ_FAILFAST_MASK)) { 779 blk_rq_set_mixed_merge(req); 780 blk_rq_set_mixed_merge(next); 781 } 782 783 /* 784 * At this point we have either done a back merge or front merge. We 785 * need the smaller start_time_ns of the merged requests to be the 786 * current request for accounting purposes. 787 */ 788 if (next->start_time_ns < req->start_time_ns) 789 req->start_time_ns = next->start_time_ns; 790 791 req->biotail->bi_next = next->bio; 792 req->biotail = next->biotail; 793 794 req->__data_len += blk_rq_bytes(next); 795 796 if (!blk_discard_mergable(req)) 797 elv_merge_requests(q, req, next); 798 799 /* 800 * 'next' is going away, so update stats accordingly 801 */ 802 blk_account_io_merge_request(next); 803 804 trace_block_rq_merge(q, next); 805 806 /* 807 * ownership of bio passed from next to req, return 'next' for 808 * the caller to free 809 */ 810 next->bio = NULL; 811 return next; 812 } 813 814 static struct request *attempt_back_merge(struct request_queue *q, 815 struct request *rq) 816 { 817 struct request *next = elv_latter_request(q, rq); 818 819 if (next) 820 return attempt_merge(q, rq, next); 821 822 return NULL; 823 } 824 825 static struct request *attempt_front_merge(struct request_queue *q, 826 struct request *rq) 827 { 828 struct request *prev = elv_former_request(q, rq); 829 830 if (prev) 831 return attempt_merge(q, prev, rq); 832 833 return NULL; 834 } 835 836 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 837 struct request *next) 838 { 839 struct request *free; 840 841 free = attempt_merge(q, rq, next); 842 if (free) { 843 blk_put_request(free); 844 return 1; 845 } 846 847 return 0; 848 } 849 850 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 851 { 852 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 853 return false; 854 855 if (req_op(rq) != bio_op(bio)) 856 return false; 857 858 /* different data direction or already started, don't merge */ 859 if (bio_data_dir(bio) != rq_data_dir(rq)) 860 return false; 861 862 /* must be same device */ 863 if (rq->rq_disk != bio->bi_disk) 864 return false; 865 866 /* only merge integrity protected bio into ditto rq */ 867 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 868 return false; 869 870 /* Only merge if the crypt contexts are compatible */ 871 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 872 return false; 873 874 /* must be using the same buffer */ 875 if (req_op(rq) == REQ_OP_WRITE_SAME && 876 !blk_write_same_mergeable(rq->bio, bio)) 877 return false; 878 879 /* 880 * Don't allow merge of different write hints, or for a hint with 881 * non-hint IO. 882 */ 883 if (rq->write_hint != bio->bi_write_hint) 884 return false; 885 886 if (rq->ioprio != bio_prio(bio)) 887 return false; 888 889 return true; 890 } 891 892 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 893 { 894 if (blk_discard_mergable(rq)) 895 return ELEVATOR_DISCARD_MERGE; 896 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 897 return ELEVATOR_BACK_MERGE; 898 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 899 return ELEVATOR_FRONT_MERGE; 900 return ELEVATOR_NO_MERGE; 901 } 902 903 static void blk_account_io_merge_bio(struct request *req) 904 { 905 if (!blk_do_io_stat(req)) 906 return; 907 908 part_stat_lock(); 909 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 910 part_stat_unlock(); 911 } 912 913 enum bio_merge_status { 914 BIO_MERGE_OK, 915 BIO_MERGE_NONE, 916 BIO_MERGE_FAILED, 917 }; 918 919 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 920 struct bio *bio, unsigned int nr_segs) 921 { 922 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 923 924 if (!ll_back_merge_fn(req, bio, nr_segs)) 925 return BIO_MERGE_FAILED; 926 927 trace_block_bio_backmerge(req->q, req, bio); 928 rq_qos_merge(req->q, req, bio); 929 930 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 931 blk_rq_set_mixed_merge(req); 932 933 req->biotail->bi_next = bio; 934 req->biotail = bio; 935 req->__data_len += bio->bi_iter.bi_size; 936 937 bio_crypt_free_ctx(bio); 938 939 blk_account_io_merge_bio(req); 940 return BIO_MERGE_OK; 941 } 942 943 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 944 struct bio *bio, unsigned int nr_segs) 945 { 946 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 947 948 if (!ll_front_merge_fn(req, bio, nr_segs)) 949 return BIO_MERGE_FAILED; 950 951 trace_block_bio_frontmerge(req->q, req, bio); 952 rq_qos_merge(req->q, req, bio); 953 954 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 955 blk_rq_set_mixed_merge(req); 956 957 bio->bi_next = req->bio; 958 req->bio = bio; 959 960 req->__sector = bio->bi_iter.bi_sector; 961 req->__data_len += bio->bi_iter.bi_size; 962 963 bio_crypt_do_front_merge(req, bio); 964 965 blk_account_io_merge_bio(req); 966 return BIO_MERGE_OK; 967 } 968 969 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 970 struct request *req, struct bio *bio) 971 { 972 unsigned short segments = blk_rq_nr_discard_segments(req); 973 974 if (segments >= queue_max_discard_segments(q)) 975 goto no_merge; 976 if (blk_rq_sectors(req) + bio_sectors(bio) > 977 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 978 goto no_merge; 979 980 rq_qos_merge(q, req, bio); 981 982 req->biotail->bi_next = bio; 983 req->biotail = bio; 984 req->__data_len += bio->bi_iter.bi_size; 985 req->nr_phys_segments = segments + 1; 986 987 blk_account_io_merge_bio(req); 988 return BIO_MERGE_OK; 989 no_merge: 990 req_set_nomerge(q, req); 991 return BIO_MERGE_FAILED; 992 } 993 994 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 995 struct request *rq, 996 struct bio *bio, 997 unsigned int nr_segs, 998 bool sched_allow_merge) 999 { 1000 if (!blk_rq_merge_ok(rq, bio)) 1001 return BIO_MERGE_NONE; 1002 1003 switch (blk_try_merge(rq, bio)) { 1004 case ELEVATOR_BACK_MERGE: 1005 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1006 return bio_attempt_back_merge(rq, bio, nr_segs); 1007 break; 1008 case ELEVATOR_FRONT_MERGE: 1009 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1010 return bio_attempt_front_merge(rq, bio, nr_segs); 1011 break; 1012 case ELEVATOR_DISCARD_MERGE: 1013 return bio_attempt_discard_merge(q, rq, bio); 1014 default: 1015 return BIO_MERGE_NONE; 1016 } 1017 1018 return BIO_MERGE_FAILED; 1019 } 1020 1021 /** 1022 * blk_attempt_plug_merge - try to merge with %current's plugged list 1023 * @q: request_queue new bio is being queued at 1024 * @bio: new bio being queued 1025 * @nr_segs: number of segments in @bio 1026 * @same_queue_rq: pointer to &struct request that gets filled in when 1027 * another request associated with @q is found on the plug list 1028 * (optional, may be %NULL) 1029 * 1030 * Determine whether @bio being queued on @q can be merged with a request 1031 * on %current's plugged list. Returns %true if merge was successful, 1032 * otherwise %false. 1033 * 1034 * Plugging coalesces IOs from the same issuer for the same purpose without 1035 * going through @q->queue_lock. As such it's more of an issuing mechanism 1036 * than scheduling, and the request, while may have elvpriv data, is not 1037 * added on the elevator at this point. In addition, we don't have 1038 * reliable access to the elevator outside queue lock. Only check basic 1039 * merging parameters without querying the elevator. 1040 * 1041 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1042 */ 1043 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1044 unsigned int nr_segs, struct request **same_queue_rq) 1045 { 1046 struct blk_plug *plug; 1047 struct request *rq; 1048 struct list_head *plug_list; 1049 1050 plug = blk_mq_plug(q, bio); 1051 if (!plug) 1052 return false; 1053 1054 plug_list = &plug->mq_list; 1055 1056 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1057 if (rq->q == q && same_queue_rq) { 1058 /* 1059 * Only blk-mq multiple hardware queues case checks the 1060 * rq in the same queue, there should be only one such 1061 * rq in a queue 1062 **/ 1063 *same_queue_rq = rq; 1064 } 1065 1066 if (rq->q != q) 1067 continue; 1068 1069 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1070 BIO_MERGE_OK) 1071 return true; 1072 } 1073 1074 return false; 1075 } 1076 1077 /* 1078 * Iterate list of requests and see if we can merge this bio with any 1079 * of them. 1080 */ 1081 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1082 struct bio *bio, unsigned int nr_segs) 1083 { 1084 struct request *rq; 1085 int checked = 8; 1086 1087 list_for_each_entry_reverse(rq, list, queuelist) { 1088 if (!checked--) 1089 break; 1090 1091 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1092 case BIO_MERGE_NONE: 1093 continue; 1094 case BIO_MERGE_OK: 1095 return true; 1096 case BIO_MERGE_FAILED: 1097 return false; 1098 } 1099 1100 } 1101 1102 return false; 1103 } 1104 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1105 1106 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1107 unsigned int nr_segs, struct request **merged_request) 1108 { 1109 struct request *rq; 1110 1111 switch (elv_merge(q, &rq, bio)) { 1112 case ELEVATOR_BACK_MERGE: 1113 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1114 return false; 1115 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1116 return false; 1117 *merged_request = attempt_back_merge(q, rq); 1118 if (!*merged_request) 1119 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1120 return true; 1121 case ELEVATOR_FRONT_MERGE: 1122 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1123 return false; 1124 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1125 return false; 1126 *merged_request = attempt_front_merge(q, rq); 1127 if (!*merged_request) 1128 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1129 return true; 1130 case ELEVATOR_DISCARD_MERGE: 1131 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1132 default: 1133 return false; 1134 } 1135 } 1136 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1137