1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 15 /* 16 * Check if the two bvecs from two bios can be merged to one segment. If yes, 17 * no need to check gap between the two bios since the 1st bio and the 1st bvec 18 * in the 2nd bio can be handled in one segment. 19 */ 20 static inline bool bios_segs_mergeable(struct request_queue *q, 21 struct bio *prev, struct bio_vec *prev_last_bv, 22 struct bio_vec *next_first_bv) 23 { 24 if (!biovec_phys_mergeable(q, prev_last_bv, next_first_bv)) 25 return false; 26 if (prev->bi_seg_back_size + next_first_bv->bv_len > 27 queue_max_segment_size(q)) 28 return false; 29 return true; 30 } 31 32 static inline bool bio_will_gap(struct request_queue *q, 33 struct request *prev_rq, struct bio *prev, struct bio *next) 34 { 35 struct bio_vec pb, nb; 36 37 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 38 return false; 39 40 /* 41 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 42 * is quite difficult to respect the sg gap limit. We work hard to 43 * merge a huge number of small single bios in case of mkfs. 44 */ 45 if (prev_rq) 46 bio_get_first_bvec(prev_rq->bio, &pb); 47 else 48 bio_get_first_bvec(prev, &pb); 49 if (pb.bv_offset & queue_virt_boundary(q)) 50 return true; 51 52 /* 53 * We don't need to worry about the situation that the merged segment 54 * ends in unaligned virt boundary: 55 * 56 * - if 'pb' ends aligned, the merged segment ends aligned 57 * - if 'pb' ends unaligned, the next bio must include 58 * one single bvec of 'nb', otherwise the 'nb' can't 59 * merge with 'pb' 60 */ 61 bio_get_last_bvec(prev, &pb); 62 bio_get_first_bvec(next, &nb); 63 if (bios_segs_mergeable(q, prev, &pb, &nb)) 64 return false; 65 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 66 } 67 68 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 69 { 70 return bio_will_gap(req->q, req, req->biotail, bio); 71 } 72 73 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 74 { 75 return bio_will_gap(req->q, NULL, bio, req->bio); 76 } 77 78 static struct bio *blk_bio_discard_split(struct request_queue *q, 79 struct bio *bio, 80 struct bio_set *bs, 81 unsigned *nsegs) 82 { 83 unsigned int max_discard_sectors, granularity; 84 int alignment; 85 sector_t tmp; 86 unsigned split_sectors; 87 88 *nsegs = 1; 89 90 /* Zero-sector (unknown) and one-sector granularities are the same. */ 91 granularity = max(q->limits.discard_granularity >> 9, 1U); 92 93 max_discard_sectors = min(q->limits.max_discard_sectors, 94 bio_allowed_max_sectors(q)); 95 max_discard_sectors -= max_discard_sectors % granularity; 96 97 if (unlikely(!max_discard_sectors)) { 98 /* XXX: warn */ 99 return NULL; 100 } 101 102 if (bio_sectors(bio) <= max_discard_sectors) 103 return NULL; 104 105 split_sectors = max_discard_sectors; 106 107 /* 108 * If the next starting sector would be misaligned, stop the discard at 109 * the previous aligned sector. 110 */ 111 alignment = (q->limits.discard_alignment >> 9) % granularity; 112 113 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 114 tmp = sector_div(tmp, granularity); 115 116 if (split_sectors > tmp) 117 split_sectors -= tmp; 118 119 return bio_split(bio, split_sectors, GFP_NOIO, bs); 120 } 121 122 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 123 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 124 { 125 *nsegs = 1; 126 127 if (!q->limits.max_write_zeroes_sectors) 128 return NULL; 129 130 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 131 return NULL; 132 133 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 134 } 135 136 static struct bio *blk_bio_write_same_split(struct request_queue *q, 137 struct bio *bio, 138 struct bio_set *bs, 139 unsigned *nsegs) 140 { 141 *nsegs = 1; 142 143 if (!q->limits.max_write_same_sectors) 144 return NULL; 145 146 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 147 return NULL; 148 149 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 150 } 151 152 static inline unsigned get_max_io_size(struct request_queue *q, 153 struct bio *bio) 154 { 155 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 156 unsigned mask = queue_logical_block_size(q) - 1; 157 158 /* aligned to logical block size */ 159 sectors &= ~(mask >> 9); 160 161 return sectors; 162 } 163 164 static struct bio *blk_bio_segment_split(struct request_queue *q, 165 struct bio *bio, 166 struct bio_set *bs, 167 unsigned *segs) 168 { 169 struct bio_vec bv, bvprv, *bvprvp = NULL; 170 struct bvec_iter iter; 171 unsigned seg_size = 0, nsegs = 0, sectors = 0; 172 unsigned front_seg_size = bio->bi_seg_front_size; 173 bool do_split = true; 174 struct bio *new = NULL; 175 const unsigned max_sectors = get_max_io_size(q, bio); 176 177 bio_for_each_segment(bv, bio, iter) { 178 /* 179 * If the queue doesn't support SG gaps and adding this 180 * offset would create a gap, disallow it. 181 */ 182 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 183 goto split; 184 185 if (sectors + (bv.bv_len >> 9) > max_sectors) { 186 /* 187 * Consider this a new segment if we're splitting in 188 * the middle of this vector. 189 */ 190 if (nsegs < queue_max_segments(q) && 191 sectors < max_sectors) { 192 nsegs++; 193 sectors = max_sectors; 194 } 195 goto split; 196 } 197 198 if (bvprvp && blk_queue_cluster(q)) { 199 if (seg_size + bv.bv_len > queue_max_segment_size(q)) 200 goto new_segment; 201 if (!biovec_phys_mergeable(q, bvprvp, &bv)) 202 goto new_segment; 203 204 seg_size += bv.bv_len; 205 bvprv = bv; 206 bvprvp = &bvprv; 207 sectors += bv.bv_len >> 9; 208 209 continue; 210 } 211 new_segment: 212 if (nsegs == queue_max_segments(q)) 213 goto split; 214 215 if (nsegs == 1 && seg_size > front_seg_size) 216 front_seg_size = seg_size; 217 218 nsegs++; 219 bvprv = bv; 220 bvprvp = &bvprv; 221 seg_size = bv.bv_len; 222 sectors += bv.bv_len >> 9; 223 224 } 225 226 do_split = false; 227 split: 228 *segs = nsegs; 229 230 if (do_split) { 231 new = bio_split(bio, sectors, GFP_NOIO, bs); 232 if (new) 233 bio = new; 234 } 235 236 if (nsegs == 1 && seg_size > front_seg_size) 237 front_seg_size = seg_size; 238 bio->bi_seg_front_size = front_seg_size; 239 if (seg_size > bio->bi_seg_back_size) 240 bio->bi_seg_back_size = seg_size; 241 242 return do_split ? new : NULL; 243 } 244 245 void blk_queue_split(struct request_queue *q, struct bio **bio) 246 { 247 struct bio *split, *res; 248 unsigned nsegs; 249 250 switch (bio_op(*bio)) { 251 case REQ_OP_DISCARD: 252 case REQ_OP_SECURE_ERASE: 253 split = blk_bio_discard_split(q, *bio, &q->bio_split, &nsegs); 254 break; 255 case REQ_OP_WRITE_ZEROES: 256 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, &nsegs); 257 break; 258 case REQ_OP_WRITE_SAME: 259 split = blk_bio_write_same_split(q, *bio, &q->bio_split, &nsegs); 260 break; 261 default: 262 split = blk_bio_segment_split(q, *bio, &q->bio_split, &nsegs); 263 break; 264 } 265 266 /* physical segments can be figured out during splitting */ 267 res = split ? split : *bio; 268 res->bi_phys_segments = nsegs; 269 bio_set_flag(res, BIO_SEG_VALID); 270 271 if (split) { 272 /* there isn't chance to merge the splitted bio */ 273 split->bi_opf |= REQ_NOMERGE; 274 275 /* 276 * Since we're recursing into make_request here, ensure 277 * that we mark this bio as already having entered the queue. 278 * If not, and the queue is going away, we can get stuck 279 * forever on waiting for the queue reference to drop. But 280 * that will never happen, as we're already holding a 281 * reference to it. 282 */ 283 bio_set_flag(*bio, BIO_QUEUE_ENTERED); 284 285 bio_chain(split, *bio); 286 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 287 generic_make_request(*bio); 288 *bio = split; 289 } 290 } 291 EXPORT_SYMBOL(blk_queue_split); 292 293 static unsigned int __blk_recalc_rq_segments(struct request_queue *q, 294 struct bio *bio, 295 bool no_sg_merge) 296 { 297 struct bio_vec bv, bvprv = { NULL }; 298 int cluster, prev = 0; 299 unsigned int seg_size, nr_phys_segs; 300 struct bio *fbio, *bbio; 301 struct bvec_iter iter; 302 303 if (!bio) 304 return 0; 305 306 switch (bio_op(bio)) { 307 case REQ_OP_DISCARD: 308 case REQ_OP_SECURE_ERASE: 309 case REQ_OP_WRITE_ZEROES: 310 return 0; 311 case REQ_OP_WRITE_SAME: 312 return 1; 313 } 314 315 fbio = bio; 316 cluster = blk_queue_cluster(q); 317 seg_size = 0; 318 nr_phys_segs = 0; 319 for_each_bio(bio) { 320 bio_for_each_segment(bv, bio, iter) { 321 /* 322 * If SG merging is disabled, each bio vector is 323 * a segment 324 */ 325 if (no_sg_merge) 326 goto new_segment; 327 328 if (prev && cluster) { 329 if (seg_size + bv.bv_len 330 > queue_max_segment_size(q)) 331 goto new_segment; 332 if (!biovec_phys_mergeable(q, &bvprv, &bv)) 333 goto new_segment; 334 335 seg_size += bv.bv_len; 336 bvprv = bv; 337 continue; 338 } 339 new_segment: 340 if (nr_phys_segs == 1 && seg_size > 341 fbio->bi_seg_front_size) 342 fbio->bi_seg_front_size = seg_size; 343 344 nr_phys_segs++; 345 bvprv = bv; 346 prev = 1; 347 seg_size = bv.bv_len; 348 } 349 bbio = bio; 350 } 351 352 if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size) 353 fbio->bi_seg_front_size = seg_size; 354 if (seg_size > bbio->bi_seg_back_size) 355 bbio->bi_seg_back_size = seg_size; 356 357 return nr_phys_segs; 358 } 359 360 void blk_recalc_rq_segments(struct request *rq) 361 { 362 bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE, 363 &rq->q->queue_flags); 364 365 rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio, 366 no_sg_merge); 367 } 368 369 void blk_recount_segments(struct request_queue *q, struct bio *bio) 370 { 371 unsigned short seg_cnt; 372 373 /* estimate segment number by bi_vcnt for non-cloned bio */ 374 if (bio_flagged(bio, BIO_CLONED)) 375 seg_cnt = bio_segments(bio); 376 else 377 seg_cnt = bio->bi_vcnt; 378 379 if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) && 380 (seg_cnt < queue_max_segments(q))) 381 bio->bi_phys_segments = seg_cnt; 382 else { 383 struct bio *nxt = bio->bi_next; 384 385 bio->bi_next = NULL; 386 bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false); 387 bio->bi_next = nxt; 388 } 389 390 bio_set_flag(bio, BIO_SEG_VALID); 391 } 392 EXPORT_SYMBOL(blk_recount_segments); 393 394 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio, 395 struct bio *nxt) 396 { 397 struct bio_vec end_bv = { NULL }, nxt_bv; 398 399 if (!blk_queue_cluster(q)) 400 return 0; 401 402 if (bio->bi_seg_back_size + nxt->bi_seg_front_size > 403 queue_max_segment_size(q)) 404 return 0; 405 406 if (!bio_has_data(bio)) 407 return 1; 408 409 bio_get_last_bvec(bio, &end_bv); 410 bio_get_first_bvec(nxt, &nxt_bv); 411 412 return biovec_phys_mergeable(q, &end_bv, &nxt_bv); 413 } 414 415 static inline void 416 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec, 417 struct scatterlist *sglist, struct bio_vec *bvprv, 418 struct scatterlist **sg, int *nsegs, int *cluster) 419 { 420 421 int nbytes = bvec->bv_len; 422 423 if (*sg && *cluster) { 424 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 425 goto new_segment; 426 if (!biovec_phys_mergeable(q, bvprv, bvec)) 427 goto new_segment; 428 429 (*sg)->length += nbytes; 430 } else { 431 new_segment: 432 if (!*sg) 433 *sg = sglist; 434 else { 435 /* 436 * If the driver previously mapped a shorter 437 * list, we could see a termination bit 438 * prematurely unless it fully inits the sg 439 * table on each mapping. We KNOW that there 440 * must be more entries here or the driver 441 * would be buggy, so force clear the 442 * termination bit to avoid doing a full 443 * sg_init_table() in drivers for each command. 444 */ 445 sg_unmark_end(*sg); 446 *sg = sg_next(*sg); 447 } 448 449 sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset); 450 (*nsegs)++; 451 } 452 *bvprv = *bvec; 453 } 454 455 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv, 456 struct scatterlist *sglist, struct scatterlist **sg) 457 { 458 *sg = sglist; 459 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 460 return 1; 461 } 462 463 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 464 struct scatterlist *sglist, 465 struct scatterlist **sg) 466 { 467 struct bio_vec bvec, bvprv = { NULL }; 468 struct bvec_iter iter; 469 int cluster = blk_queue_cluster(q), nsegs = 0; 470 471 for_each_bio(bio) 472 bio_for_each_segment(bvec, bio, iter) 473 __blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg, 474 &nsegs, &cluster); 475 476 return nsegs; 477 } 478 479 /* 480 * map a request to scatterlist, return number of sg entries setup. Caller 481 * must make sure sg can hold rq->nr_phys_segments entries 482 */ 483 int blk_rq_map_sg(struct request_queue *q, struct request *rq, 484 struct scatterlist *sglist) 485 { 486 struct scatterlist *sg = NULL; 487 int nsegs = 0; 488 489 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 490 nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg); 491 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 492 nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg); 493 else if (rq->bio) 494 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg); 495 496 if (unlikely(rq->rq_flags & RQF_COPY_USER) && 497 (blk_rq_bytes(rq) & q->dma_pad_mask)) { 498 unsigned int pad_len = 499 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 500 501 sg->length += pad_len; 502 rq->extra_len += pad_len; 503 } 504 505 if (q->dma_drain_size && q->dma_drain_needed(rq)) { 506 if (op_is_write(req_op(rq))) 507 memset(q->dma_drain_buffer, 0, q->dma_drain_size); 508 509 sg_unmark_end(sg); 510 sg = sg_next(sg); 511 sg_set_page(sg, virt_to_page(q->dma_drain_buffer), 512 q->dma_drain_size, 513 ((unsigned long)q->dma_drain_buffer) & 514 (PAGE_SIZE - 1)); 515 nsegs++; 516 rq->extra_len += q->dma_drain_size; 517 } 518 519 if (sg) 520 sg_mark_end(sg); 521 522 /* 523 * Something must have been wrong if the figured number of 524 * segment is bigger than number of req's physical segments 525 */ 526 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 527 528 return nsegs; 529 } 530 EXPORT_SYMBOL(blk_rq_map_sg); 531 532 static inline int ll_new_hw_segment(struct request_queue *q, 533 struct request *req, 534 struct bio *bio) 535 { 536 int nr_phys_segs = bio_phys_segments(q, bio); 537 538 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q)) 539 goto no_merge; 540 541 if (blk_integrity_merge_bio(q, req, bio) == false) 542 goto no_merge; 543 544 /* 545 * This will form the start of a new hw segment. Bump both 546 * counters. 547 */ 548 req->nr_phys_segments += nr_phys_segs; 549 return 1; 550 551 no_merge: 552 req_set_nomerge(q, req); 553 return 0; 554 } 555 556 int ll_back_merge_fn(struct request_queue *q, struct request *req, 557 struct bio *bio) 558 { 559 if (req_gap_back_merge(req, bio)) 560 return 0; 561 if (blk_integrity_rq(req) && 562 integrity_req_gap_back_merge(req, bio)) 563 return 0; 564 if (blk_rq_sectors(req) + bio_sectors(bio) > 565 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 566 req_set_nomerge(q, req); 567 return 0; 568 } 569 if (!bio_flagged(req->biotail, BIO_SEG_VALID)) 570 blk_recount_segments(q, req->biotail); 571 if (!bio_flagged(bio, BIO_SEG_VALID)) 572 blk_recount_segments(q, bio); 573 574 return ll_new_hw_segment(q, req, bio); 575 } 576 577 int ll_front_merge_fn(struct request_queue *q, struct request *req, 578 struct bio *bio) 579 { 580 581 if (req_gap_front_merge(req, bio)) 582 return 0; 583 if (blk_integrity_rq(req) && 584 integrity_req_gap_front_merge(req, bio)) 585 return 0; 586 if (blk_rq_sectors(req) + bio_sectors(bio) > 587 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 588 req_set_nomerge(q, req); 589 return 0; 590 } 591 if (!bio_flagged(bio, BIO_SEG_VALID)) 592 blk_recount_segments(q, bio); 593 if (!bio_flagged(req->bio, BIO_SEG_VALID)) 594 blk_recount_segments(q, req->bio); 595 596 return ll_new_hw_segment(q, req, bio); 597 } 598 599 /* 600 * blk-mq uses req->special to carry normal driver per-request payload, it 601 * does not indicate a prepared command that we cannot merge with. 602 */ 603 static bool req_no_special_merge(struct request *req) 604 { 605 struct request_queue *q = req->q; 606 607 return !q->mq_ops && req->special; 608 } 609 610 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 611 struct request *next) 612 { 613 unsigned short segments = blk_rq_nr_discard_segments(req); 614 615 if (segments >= queue_max_discard_segments(q)) 616 goto no_merge; 617 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 618 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 619 goto no_merge; 620 621 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 622 return true; 623 no_merge: 624 req_set_nomerge(q, req); 625 return false; 626 } 627 628 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 629 struct request *next) 630 { 631 int total_phys_segments; 632 unsigned int seg_size = 633 req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size; 634 635 /* 636 * First check if the either of the requests are re-queued 637 * requests. Can't merge them if they are. 638 */ 639 if (req_no_special_merge(req) || req_no_special_merge(next)) 640 return 0; 641 642 if (req_gap_back_merge(req, next->bio)) 643 return 0; 644 645 /* 646 * Will it become too large? 647 */ 648 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 649 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 650 return 0; 651 652 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 653 if (blk_phys_contig_segment(q, req->biotail, next->bio)) { 654 if (req->nr_phys_segments == 1) 655 req->bio->bi_seg_front_size = seg_size; 656 if (next->nr_phys_segments == 1) 657 next->biotail->bi_seg_back_size = seg_size; 658 total_phys_segments--; 659 } 660 661 if (total_phys_segments > queue_max_segments(q)) 662 return 0; 663 664 if (blk_integrity_merge_rq(q, req, next) == false) 665 return 0; 666 667 /* Merge is OK... */ 668 req->nr_phys_segments = total_phys_segments; 669 return 1; 670 } 671 672 /** 673 * blk_rq_set_mixed_merge - mark a request as mixed merge 674 * @rq: request to mark as mixed merge 675 * 676 * Description: 677 * @rq is about to be mixed merged. Make sure the attributes 678 * which can be mixed are set in each bio and mark @rq as mixed 679 * merged. 680 */ 681 void blk_rq_set_mixed_merge(struct request *rq) 682 { 683 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 684 struct bio *bio; 685 686 if (rq->rq_flags & RQF_MIXED_MERGE) 687 return; 688 689 /* 690 * @rq will no longer represent mixable attributes for all the 691 * contained bios. It will just track those of the first one. 692 * Distributes the attributs to each bio. 693 */ 694 for (bio = rq->bio; bio; bio = bio->bi_next) { 695 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 696 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 697 bio->bi_opf |= ff; 698 } 699 rq->rq_flags |= RQF_MIXED_MERGE; 700 } 701 702 static void blk_account_io_merge(struct request *req) 703 { 704 if (blk_do_io_stat(req)) { 705 struct hd_struct *part; 706 int cpu; 707 708 cpu = part_stat_lock(); 709 part = req->part; 710 711 part_round_stats(req->q, cpu, part); 712 part_dec_in_flight(req->q, part, rq_data_dir(req)); 713 714 hd_struct_put(part); 715 part_stat_unlock(); 716 } 717 } 718 /* 719 * Two cases of handling DISCARD merge: 720 * If max_discard_segments > 1, the driver takes every bio 721 * as a range and send them to controller together. The ranges 722 * needn't to be contiguous. 723 * Otherwise, the bios/requests will be handled as same as 724 * others which should be contiguous. 725 */ 726 static inline bool blk_discard_mergable(struct request *req) 727 { 728 if (req_op(req) == REQ_OP_DISCARD && 729 queue_max_discard_segments(req->q) > 1) 730 return true; 731 return false; 732 } 733 734 enum elv_merge blk_try_req_merge(struct request *req, struct request *next) 735 { 736 if (blk_discard_mergable(req)) 737 return ELEVATOR_DISCARD_MERGE; 738 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 739 return ELEVATOR_BACK_MERGE; 740 741 return ELEVATOR_NO_MERGE; 742 } 743 744 /* 745 * For non-mq, this has to be called with the request spinlock acquired. 746 * For mq with scheduling, the appropriate queue wide lock should be held. 747 */ 748 static struct request *attempt_merge(struct request_queue *q, 749 struct request *req, struct request *next) 750 { 751 if (!q->mq_ops) 752 lockdep_assert_held(q->queue_lock); 753 754 if (!rq_mergeable(req) || !rq_mergeable(next)) 755 return NULL; 756 757 if (req_op(req) != req_op(next)) 758 return NULL; 759 760 if (rq_data_dir(req) != rq_data_dir(next) 761 || req->rq_disk != next->rq_disk 762 || req_no_special_merge(next)) 763 return NULL; 764 765 if (req_op(req) == REQ_OP_WRITE_SAME && 766 !blk_write_same_mergeable(req->bio, next->bio)) 767 return NULL; 768 769 /* 770 * Don't allow merge of different write hints, or for a hint with 771 * non-hint IO. 772 */ 773 if (req->write_hint != next->write_hint) 774 return NULL; 775 776 /* 777 * If we are allowed to merge, then append bio list 778 * from next to rq and release next. merge_requests_fn 779 * will have updated segment counts, update sector 780 * counts here. Handle DISCARDs separately, as they 781 * have separate settings. 782 */ 783 784 switch (blk_try_req_merge(req, next)) { 785 case ELEVATOR_DISCARD_MERGE: 786 if (!req_attempt_discard_merge(q, req, next)) 787 return NULL; 788 break; 789 case ELEVATOR_BACK_MERGE: 790 if (!ll_merge_requests_fn(q, req, next)) 791 return NULL; 792 break; 793 default: 794 return NULL; 795 } 796 797 /* 798 * If failfast settings disagree or any of the two is already 799 * a mixed merge, mark both as mixed before proceeding. This 800 * makes sure that all involved bios have mixable attributes 801 * set properly. 802 */ 803 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 804 (req->cmd_flags & REQ_FAILFAST_MASK) != 805 (next->cmd_flags & REQ_FAILFAST_MASK)) { 806 blk_rq_set_mixed_merge(req); 807 blk_rq_set_mixed_merge(next); 808 } 809 810 /* 811 * At this point we have either done a back merge or front merge. We 812 * need the smaller start_time_ns of the merged requests to be the 813 * current request for accounting purposes. 814 */ 815 if (next->start_time_ns < req->start_time_ns) 816 req->start_time_ns = next->start_time_ns; 817 818 req->biotail->bi_next = next->bio; 819 req->biotail = next->biotail; 820 821 req->__data_len += blk_rq_bytes(next); 822 823 if (!blk_discard_mergable(req)) 824 elv_merge_requests(q, req, next); 825 826 /* 827 * 'next' is going away, so update stats accordingly 828 */ 829 blk_account_io_merge(next); 830 831 req->ioprio = ioprio_best(req->ioprio, next->ioprio); 832 if (blk_rq_cpu_valid(next)) 833 req->cpu = next->cpu; 834 835 /* 836 * ownership of bio passed from next to req, return 'next' for 837 * the caller to free 838 */ 839 next->bio = NULL; 840 return next; 841 } 842 843 struct request *attempt_back_merge(struct request_queue *q, struct request *rq) 844 { 845 struct request *next = elv_latter_request(q, rq); 846 847 if (next) 848 return attempt_merge(q, rq, next); 849 850 return NULL; 851 } 852 853 struct request *attempt_front_merge(struct request_queue *q, struct request *rq) 854 { 855 struct request *prev = elv_former_request(q, rq); 856 857 if (prev) 858 return attempt_merge(q, prev, rq); 859 860 return NULL; 861 } 862 863 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 864 struct request *next) 865 { 866 struct elevator_queue *e = q->elevator; 867 struct request *free; 868 869 if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn) 870 if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next)) 871 return 0; 872 873 free = attempt_merge(q, rq, next); 874 if (free) { 875 __blk_put_request(q, free); 876 return 1; 877 } 878 879 return 0; 880 } 881 882 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 883 { 884 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 885 return false; 886 887 if (req_op(rq) != bio_op(bio)) 888 return false; 889 890 /* different data direction or already started, don't merge */ 891 if (bio_data_dir(bio) != rq_data_dir(rq)) 892 return false; 893 894 /* must be same device and not a special request */ 895 if (rq->rq_disk != bio->bi_disk || req_no_special_merge(rq)) 896 return false; 897 898 /* only merge integrity protected bio into ditto rq */ 899 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 900 return false; 901 902 /* must be using the same buffer */ 903 if (req_op(rq) == REQ_OP_WRITE_SAME && 904 !blk_write_same_mergeable(rq->bio, bio)) 905 return false; 906 907 /* 908 * Don't allow merge of different write hints, or for a hint with 909 * non-hint IO. 910 */ 911 if (rq->write_hint != bio->bi_write_hint) 912 return false; 913 914 return true; 915 } 916 917 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 918 { 919 if (blk_discard_mergable(rq)) 920 return ELEVATOR_DISCARD_MERGE; 921 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 922 return ELEVATOR_BACK_MERGE; 923 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 924 return ELEVATOR_FRONT_MERGE; 925 return ELEVATOR_NO_MERGE; 926 } 927