xref: /openbmc/linux/block/blk-merge.c (revision aa261f20)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87 
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 /*
99  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100  * is defined as 'unsigned int', meantime it has to be aligned to with the
101  * logical block size, which is the minimum accepted unit by hardware.
102  */
103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105 	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107 
108 static struct bio *bio_split_discard(struct bio *bio,
109 				     const struct queue_limits *lim,
110 				     unsigned *nsegs, struct bio_set *bs)
111 {
112 	unsigned int max_discard_sectors, granularity;
113 	sector_t tmp;
114 	unsigned split_sectors;
115 
116 	*nsegs = 1;
117 
118 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
119 	granularity = max(lim->discard_granularity >> 9, 1U);
120 
121 	max_discard_sectors =
122 		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
123 	max_discard_sectors -= max_discard_sectors % granularity;
124 
125 	if (unlikely(!max_discard_sectors)) {
126 		/* XXX: warn */
127 		return NULL;
128 	}
129 
130 	if (bio_sectors(bio) <= max_discard_sectors)
131 		return NULL;
132 
133 	split_sectors = max_discard_sectors;
134 
135 	/*
136 	 * If the next starting sector would be misaligned, stop the discard at
137 	 * the previous aligned sector.
138 	 */
139 	tmp = bio->bi_iter.bi_sector + split_sectors -
140 		((lim->discard_alignment >> 9) % granularity);
141 	tmp = sector_div(tmp, granularity);
142 
143 	if (split_sectors > tmp)
144 		split_sectors -= tmp;
145 
146 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
147 }
148 
149 static struct bio *bio_split_write_zeroes(struct bio *bio,
150 					  const struct queue_limits *lim,
151 					  unsigned *nsegs, struct bio_set *bs)
152 {
153 	*nsegs = 0;
154 	if (!lim->max_write_zeroes_sectors)
155 		return NULL;
156 	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
157 		return NULL;
158 	return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
159 }
160 
161 /*
162  * Return the maximum number of sectors from the start of a bio that may be
163  * submitted as a single request to a block device. If enough sectors remain,
164  * align the end to the physical block size. Otherwise align the end to the
165  * logical block size. This approach minimizes the number of non-aligned
166  * requests that are submitted to a block device if the start of a bio is not
167  * aligned to a physical block boundary.
168  */
169 static inline unsigned get_max_io_size(struct bio *bio,
170 				       const struct queue_limits *lim)
171 {
172 	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
173 	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
174 	unsigned max_sectors = lim->max_sectors, start, end;
175 
176 	if (lim->chunk_sectors) {
177 		max_sectors = min(max_sectors,
178 			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
179 					       lim->chunk_sectors));
180 	}
181 
182 	start = bio->bi_iter.bi_sector & (pbs - 1);
183 	end = (start + max_sectors) & ~(pbs - 1);
184 	if (end > start)
185 		return end - start;
186 	return max_sectors & ~(lbs - 1);
187 }
188 
189 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
190 		struct page *start_page, unsigned long offset)
191 {
192 	unsigned long mask = lim->seg_boundary_mask;
193 
194 	offset = mask & (page_to_phys(start_page) + offset);
195 
196 	/*
197 	 * overflow may be triggered in case of zero page physical address
198 	 * on 32bit arch, use queue's max segment size when that happens.
199 	 */
200 	return min_not_zero(mask - offset + 1,
201 			(unsigned long)lim->max_segment_size);
202 }
203 
204 /**
205  * bvec_split_segs - verify whether or not a bvec should be split in the middle
206  * @lim:      [in] queue limits to split based on
207  * @bv:       [in] bvec to examine
208  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
209  *            by the number of segments from @bv that may be appended to that
210  *            bio without exceeding @max_segs
211  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
212  *            by the number of bytes from @bv that may be appended to that
213  *            bio without exceeding @max_bytes
214  * @max_segs: [in] upper bound for *@nsegs
215  * @max_bytes: [in] upper bound for *@bytes
216  *
217  * When splitting a bio, it can happen that a bvec is encountered that is too
218  * big to fit in a single segment and hence that it has to be split in the
219  * middle. This function verifies whether or not that should happen. The value
220  * %true is returned if and only if appending the entire @bv to a bio with
221  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
222  * the block driver.
223  */
224 static bool bvec_split_segs(const struct queue_limits *lim,
225 		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
226 		unsigned max_segs, unsigned max_bytes)
227 {
228 	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
229 	unsigned len = min(bv->bv_len, max_len);
230 	unsigned total_len = 0;
231 	unsigned seg_size = 0;
232 
233 	while (len && *nsegs < max_segs) {
234 		seg_size = get_max_segment_size(lim, bv->bv_page,
235 						bv->bv_offset + total_len);
236 		seg_size = min(seg_size, len);
237 
238 		(*nsegs)++;
239 		total_len += seg_size;
240 		len -= seg_size;
241 
242 		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
243 			break;
244 	}
245 
246 	*bytes += total_len;
247 
248 	/* tell the caller to split the bvec if it is too big to fit */
249 	return len > 0 || bv->bv_len > max_len;
250 }
251 
252 /**
253  * bio_split_rw - split a bio in two bios
254  * @bio:  [in] bio to be split
255  * @lim:  [in] queue limits to split based on
256  * @segs: [out] number of segments in the bio with the first half of the sectors
257  * @bs:	  [in] bio set to allocate the clone from
258  * @max_bytes: [in] maximum number of bytes per bio
259  *
260  * Clone @bio, update the bi_iter of the clone to represent the first sectors
261  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
262  * following is guaranteed for the cloned bio:
263  * - That it has at most @max_bytes worth of data
264  * - That it has at most queue_max_segments(@q) segments.
265  *
266  * Except for discard requests the cloned bio will point at the bi_io_vec of
267  * the original bio. It is the responsibility of the caller to ensure that the
268  * original bio is not freed before the cloned bio. The caller is also
269  * responsible for ensuring that @bs is only destroyed after processing of the
270  * split bio has finished.
271  */
272 static struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
273 		unsigned *segs, struct bio_set *bs, unsigned max_bytes)
274 {
275 	struct bio_vec bv, bvprv, *bvprvp = NULL;
276 	struct bvec_iter iter;
277 	unsigned nsegs = 0, bytes = 0;
278 
279 	bio_for_each_bvec(bv, bio, iter) {
280 		/*
281 		 * If the queue doesn't support SG gaps and adding this
282 		 * offset would create a gap, disallow it.
283 		 */
284 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
285 			goto split;
286 
287 		if (nsegs < lim->max_segments &&
288 		    bytes + bv.bv_len <= max_bytes &&
289 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
290 			nsegs++;
291 			bytes += bv.bv_len;
292 		} else {
293 			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
294 					lim->max_segments, max_bytes))
295 				goto split;
296 		}
297 
298 		bvprv = bv;
299 		bvprvp = &bvprv;
300 	}
301 
302 	*segs = nsegs;
303 	return NULL;
304 split:
305 	*segs = nsegs;
306 
307 	/*
308 	 * Individual bvecs might not be logical block aligned. Round down the
309 	 * split size so that each bio is properly block size aligned, even if
310 	 * we do not use the full hardware limits.
311 	 */
312 	bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
313 
314 	/*
315 	 * Bio splitting may cause subtle trouble such as hang when doing sync
316 	 * iopoll in direct IO routine. Given performance gain of iopoll for
317 	 * big IO can be trival, disable iopoll when split needed.
318 	 */
319 	bio_clear_polled(bio);
320 	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
321 }
322 
323 /**
324  * __bio_split_to_limits - split a bio to fit the queue limits
325  * @bio:     bio to be split
326  * @lim:     queue limits to split based on
327  * @nr_segs: returns the number of segments in the returned bio
328  *
329  * Check if @bio needs splitting based on the queue limits, and if so split off
330  * a bio fitting the limits from the beginning of @bio and return it.  @bio is
331  * shortened to the remainder and re-submitted.
332  *
333  * The split bio is allocated from @q->bio_split, which is provided by the
334  * block layer.
335  */
336 struct bio *__bio_split_to_limits(struct bio *bio,
337 				  const struct queue_limits *lim,
338 				  unsigned int *nr_segs)
339 {
340 	struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
341 	struct bio *split;
342 
343 	switch (bio_op(bio)) {
344 	case REQ_OP_DISCARD:
345 	case REQ_OP_SECURE_ERASE:
346 		split = bio_split_discard(bio, lim, nr_segs, bs);
347 		break;
348 	case REQ_OP_WRITE_ZEROES:
349 		split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
350 		break;
351 	default:
352 		split = bio_split_rw(bio, lim, nr_segs, bs,
353 				get_max_io_size(bio, lim) << SECTOR_SHIFT);
354 		break;
355 	}
356 
357 	if (split) {
358 		/* there isn't chance to merge the splitted bio */
359 		split->bi_opf |= REQ_NOMERGE;
360 
361 		blkcg_bio_issue_init(split);
362 		bio_chain(split, bio);
363 		trace_block_split(split, bio->bi_iter.bi_sector);
364 		submit_bio_noacct(bio);
365 		return split;
366 	}
367 	return bio;
368 }
369 
370 /**
371  * bio_split_to_limits - split a bio to fit the queue limits
372  * @bio:     bio to be split
373  *
374  * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
375  * if so split off a bio fitting the limits from the beginning of @bio and
376  * return it.  @bio is shortened to the remainder and re-submitted.
377  *
378  * The split bio is allocated from @q->bio_split, which is provided by the
379  * block layer.
380  */
381 struct bio *bio_split_to_limits(struct bio *bio)
382 {
383 	const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
384 	unsigned int nr_segs;
385 
386 	if (bio_may_exceed_limits(bio, lim))
387 		return __bio_split_to_limits(bio, lim, &nr_segs);
388 	return bio;
389 }
390 EXPORT_SYMBOL(bio_split_to_limits);
391 
392 unsigned int blk_recalc_rq_segments(struct request *rq)
393 {
394 	unsigned int nr_phys_segs = 0;
395 	unsigned int bytes = 0;
396 	struct req_iterator iter;
397 	struct bio_vec bv;
398 
399 	if (!rq->bio)
400 		return 0;
401 
402 	switch (bio_op(rq->bio)) {
403 	case REQ_OP_DISCARD:
404 	case REQ_OP_SECURE_ERASE:
405 		if (queue_max_discard_segments(rq->q) > 1) {
406 			struct bio *bio = rq->bio;
407 
408 			for_each_bio(bio)
409 				nr_phys_segs++;
410 			return nr_phys_segs;
411 		}
412 		return 1;
413 	case REQ_OP_WRITE_ZEROES:
414 		return 0;
415 	default:
416 		break;
417 	}
418 
419 	rq_for_each_bvec(bv, rq, iter)
420 		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
421 				UINT_MAX, UINT_MAX);
422 	return nr_phys_segs;
423 }
424 
425 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
426 		struct scatterlist *sglist)
427 {
428 	if (!*sg)
429 		return sglist;
430 
431 	/*
432 	 * If the driver previously mapped a shorter list, we could see a
433 	 * termination bit prematurely unless it fully inits the sg table
434 	 * on each mapping. We KNOW that there must be more entries here
435 	 * or the driver would be buggy, so force clear the termination bit
436 	 * to avoid doing a full sg_init_table() in drivers for each command.
437 	 */
438 	sg_unmark_end(*sg);
439 	return sg_next(*sg);
440 }
441 
442 static unsigned blk_bvec_map_sg(struct request_queue *q,
443 		struct bio_vec *bvec, struct scatterlist *sglist,
444 		struct scatterlist **sg)
445 {
446 	unsigned nbytes = bvec->bv_len;
447 	unsigned nsegs = 0, total = 0;
448 
449 	while (nbytes > 0) {
450 		unsigned offset = bvec->bv_offset + total;
451 		unsigned len = min(get_max_segment_size(&q->limits,
452 				   bvec->bv_page, offset), nbytes);
453 		struct page *page = bvec->bv_page;
454 
455 		/*
456 		 * Unfortunately a fair number of drivers barf on scatterlists
457 		 * that have an offset larger than PAGE_SIZE, despite other
458 		 * subsystems dealing with that invariant just fine.  For now
459 		 * stick to the legacy format where we never present those from
460 		 * the block layer, but the code below should be removed once
461 		 * these offenders (mostly MMC/SD drivers) are fixed.
462 		 */
463 		page += (offset >> PAGE_SHIFT);
464 		offset &= ~PAGE_MASK;
465 
466 		*sg = blk_next_sg(sg, sglist);
467 		sg_set_page(*sg, page, len, offset);
468 
469 		total += len;
470 		nbytes -= len;
471 		nsegs++;
472 	}
473 
474 	return nsegs;
475 }
476 
477 static inline int __blk_bvec_map_sg(struct bio_vec bv,
478 		struct scatterlist *sglist, struct scatterlist **sg)
479 {
480 	*sg = blk_next_sg(sg, sglist);
481 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
482 	return 1;
483 }
484 
485 /* only try to merge bvecs into one sg if they are from two bios */
486 static inline bool
487 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
488 			   struct bio_vec *bvprv, struct scatterlist **sg)
489 {
490 
491 	int nbytes = bvec->bv_len;
492 
493 	if (!*sg)
494 		return false;
495 
496 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
497 		return false;
498 
499 	if (!biovec_phys_mergeable(q, bvprv, bvec))
500 		return false;
501 
502 	(*sg)->length += nbytes;
503 
504 	return true;
505 }
506 
507 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
508 			     struct scatterlist *sglist,
509 			     struct scatterlist **sg)
510 {
511 	struct bio_vec bvec, bvprv = { NULL };
512 	struct bvec_iter iter;
513 	int nsegs = 0;
514 	bool new_bio = false;
515 
516 	for_each_bio(bio) {
517 		bio_for_each_bvec(bvec, bio, iter) {
518 			/*
519 			 * Only try to merge bvecs from two bios given we
520 			 * have done bio internal merge when adding pages
521 			 * to bio
522 			 */
523 			if (new_bio &&
524 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
525 				goto next_bvec;
526 
527 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
528 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
529 			else
530 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
531  next_bvec:
532 			new_bio = false;
533 		}
534 		if (likely(bio->bi_iter.bi_size)) {
535 			bvprv = bvec;
536 			new_bio = true;
537 		}
538 	}
539 
540 	return nsegs;
541 }
542 
543 /*
544  * map a request to scatterlist, return number of sg entries setup. Caller
545  * must make sure sg can hold rq->nr_phys_segments entries
546  */
547 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
548 		struct scatterlist *sglist, struct scatterlist **last_sg)
549 {
550 	int nsegs = 0;
551 
552 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
553 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
554 	else if (rq->bio)
555 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
556 
557 	if (*last_sg)
558 		sg_mark_end(*last_sg);
559 
560 	/*
561 	 * Something must have been wrong if the figured number of
562 	 * segment is bigger than number of req's physical segments
563 	 */
564 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
565 
566 	return nsegs;
567 }
568 EXPORT_SYMBOL(__blk_rq_map_sg);
569 
570 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
571 {
572 	if (req_op(rq) == REQ_OP_DISCARD)
573 		return queue_max_discard_segments(rq->q);
574 	return queue_max_segments(rq->q);
575 }
576 
577 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
578 						  sector_t offset)
579 {
580 	struct request_queue *q = rq->q;
581 	unsigned int max_sectors;
582 
583 	if (blk_rq_is_passthrough(rq))
584 		return q->limits.max_hw_sectors;
585 
586 	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
587 	if (!q->limits.chunk_sectors ||
588 	    req_op(rq) == REQ_OP_DISCARD ||
589 	    req_op(rq) == REQ_OP_SECURE_ERASE)
590 		return max_sectors;
591 	return min(max_sectors,
592 		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
593 }
594 
595 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
596 		unsigned int nr_phys_segs)
597 {
598 	if (!blk_cgroup_mergeable(req, bio))
599 		goto no_merge;
600 
601 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
602 		goto no_merge;
603 
604 	/* discard request merge won't add new segment */
605 	if (req_op(req) == REQ_OP_DISCARD)
606 		return 1;
607 
608 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
609 		goto no_merge;
610 
611 	/*
612 	 * This will form the start of a new hw segment.  Bump both
613 	 * counters.
614 	 */
615 	req->nr_phys_segments += nr_phys_segs;
616 	return 1;
617 
618 no_merge:
619 	req_set_nomerge(req->q, req);
620 	return 0;
621 }
622 
623 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
624 {
625 	if (req_gap_back_merge(req, bio))
626 		return 0;
627 	if (blk_integrity_rq(req) &&
628 	    integrity_req_gap_back_merge(req, bio))
629 		return 0;
630 	if (!bio_crypt_ctx_back_mergeable(req, bio))
631 		return 0;
632 	if (blk_rq_sectors(req) + bio_sectors(bio) >
633 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
634 		req_set_nomerge(req->q, req);
635 		return 0;
636 	}
637 
638 	return ll_new_hw_segment(req, bio, nr_segs);
639 }
640 
641 static int ll_front_merge_fn(struct request *req, struct bio *bio,
642 		unsigned int nr_segs)
643 {
644 	if (req_gap_front_merge(req, bio))
645 		return 0;
646 	if (blk_integrity_rq(req) &&
647 	    integrity_req_gap_front_merge(req, bio))
648 		return 0;
649 	if (!bio_crypt_ctx_front_mergeable(req, bio))
650 		return 0;
651 	if (blk_rq_sectors(req) + bio_sectors(bio) >
652 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
653 		req_set_nomerge(req->q, req);
654 		return 0;
655 	}
656 
657 	return ll_new_hw_segment(req, bio, nr_segs);
658 }
659 
660 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
661 		struct request *next)
662 {
663 	unsigned short segments = blk_rq_nr_discard_segments(req);
664 
665 	if (segments >= queue_max_discard_segments(q))
666 		goto no_merge;
667 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
668 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
669 		goto no_merge;
670 
671 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
672 	return true;
673 no_merge:
674 	req_set_nomerge(q, req);
675 	return false;
676 }
677 
678 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
679 				struct request *next)
680 {
681 	int total_phys_segments;
682 
683 	if (req_gap_back_merge(req, next->bio))
684 		return 0;
685 
686 	/*
687 	 * Will it become too large?
688 	 */
689 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
690 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
691 		return 0;
692 
693 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
694 	if (total_phys_segments > blk_rq_get_max_segments(req))
695 		return 0;
696 
697 	if (!blk_cgroup_mergeable(req, next->bio))
698 		return 0;
699 
700 	if (blk_integrity_merge_rq(q, req, next) == false)
701 		return 0;
702 
703 	if (!bio_crypt_ctx_merge_rq(req, next))
704 		return 0;
705 
706 	/* Merge is OK... */
707 	req->nr_phys_segments = total_phys_segments;
708 	return 1;
709 }
710 
711 /**
712  * blk_rq_set_mixed_merge - mark a request as mixed merge
713  * @rq: request to mark as mixed merge
714  *
715  * Description:
716  *     @rq is about to be mixed merged.  Make sure the attributes
717  *     which can be mixed are set in each bio and mark @rq as mixed
718  *     merged.
719  */
720 void blk_rq_set_mixed_merge(struct request *rq)
721 {
722 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
723 	struct bio *bio;
724 
725 	if (rq->rq_flags & RQF_MIXED_MERGE)
726 		return;
727 
728 	/*
729 	 * @rq will no longer represent mixable attributes for all the
730 	 * contained bios.  It will just track those of the first one.
731 	 * Distributes the attributs to each bio.
732 	 */
733 	for (bio = rq->bio; bio; bio = bio->bi_next) {
734 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
735 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
736 		bio->bi_opf |= ff;
737 	}
738 	rq->rq_flags |= RQF_MIXED_MERGE;
739 }
740 
741 static void blk_account_io_merge_request(struct request *req)
742 {
743 	if (blk_do_io_stat(req)) {
744 		part_stat_lock();
745 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
746 		part_stat_unlock();
747 	}
748 }
749 
750 static enum elv_merge blk_try_req_merge(struct request *req,
751 					struct request *next)
752 {
753 	if (blk_discard_mergable(req))
754 		return ELEVATOR_DISCARD_MERGE;
755 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
756 		return ELEVATOR_BACK_MERGE;
757 
758 	return ELEVATOR_NO_MERGE;
759 }
760 
761 /*
762  * For non-mq, this has to be called with the request spinlock acquired.
763  * For mq with scheduling, the appropriate queue wide lock should be held.
764  */
765 static struct request *attempt_merge(struct request_queue *q,
766 				     struct request *req, struct request *next)
767 {
768 	if (!rq_mergeable(req) || !rq_mergeable(next))
769 		return NULL;
770 
771 	if (req_op(req) != req_op(next))
772 		return NULL;
773 
774 	if (rq_data_dir(req) != rq_data_dir(next))
775 		return NULL;
776 
777 	if (req->ioprio != next->ioprio)
778 		return NULL;
779 
780 	/*
781 	 * If we are allowed to merge, then append bio list
782 	 * from next to rq and release next. merge_requests_fn
783 	 * will have updated segment counts, update sector
784 	 * counts here. Handle DISCARDs separately, as they
785 	 * have separate settings.
786 	 */
787 
788 	switch (blk_try_req_merge(req, next)) {
789 	case ELEVATOR_DISCARD_MERGE:
790 		if (!req_attempt_discard_merge(q, req, next))
791 			return NULL;
792 		break;
793 	case ELEVATOR_BACK_MERGE:
794 		if (!ll_merge_requests_fn(q, req, next))
795 			return NULL;
796 		break;
797 	default:
798 		return NULL;
799 	}
800 
801 	/*
802 	 * If failfast settings disagree or any of the two is already
803 	 * a mixed merge, mark both as mixed before proceeding.  This
804 	 * makes sure that all involved bios have mixable attributes
805 	 * set properly.
806 	 */
807 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
808 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
809 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
810 		blk_rq_set_mixed_merge(req);
811 		blk_rq_set_mixed_merge(next);
812 	}
813 
814 	/*
815 	 * At this point we have either done a back merge or front merge. We
816 	 * need the smaller start_time_ns of the merged requests to be the
817 	 * current request for accounting purposes.
818 	 */
819 	if (next->start_time_ns < req->start_time_ns)
820 		req->start_time_ns = next->start_time_ns;
821 
822 	req->biotail->bi_next = next->bio;
823 	req->biotail = next->biotail;
824 
825 	req->__data_len += blk_rq_bytes(next);
826 
827 	if (!blk_discard_mergable(req))
828 		elv_merge_requests(q, req, next);
829 
830 	/*
831 	 * 'next' is going away, so update stats accordingly
832 	 */
833 	blk_account_io_merge_request(next);
834 
835 	trace_block_rq_merge(next);
836 
837 	/*
838 	 * ownership of bio passed from next to req, return 'next' for
839 	 * the caller to free
840 	 */
841 	next->bio = NULL;
842 	return next;
843 }
844 
845 static struct request *attempt_back_merge(struct request_queue *q,
846 		struct request *rq)
847 {
848 	struct request *next = elv_latter_request(q, rq);
849 
850 	if (next)
851 		return attempt_merge(q, rq, next);
852 
853 	return NULL;
854 }
855 
856 static struct request *attempt_front_merge(struct request_queue *q,
857 		struct request *rq)
858 {
859 	struct request *prev = elv_former_request(q, rq);
860 
861 	if (prev)
862 		return attempt_merge(q, prev, rq);
863 
864 	return NULL;
865 }
866 
867 /*
868  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
869  * otherwise. The caller is responsible for freeing 'next' if the merge
870  * happened.
871  */
872 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
873 			   struct request *next)
874 {
875 	return attempt_merge(q, rq, next);
876 }
877 
878 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
879 {
880 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
881 		return false;
882 
883 	if (req_op(rq) != bio_op(bio))
884 		return false;
885 
886 	/* different data direction or already started, don't merge */
887 	if (bio_data_dir(bio) != rq_data_dir(rq))
888 		return false;
889 
890 	/* don't merge across cgroup boundaries */
891 	if (!blk_cgroup_mergeable(rq, bio))
892 		return false;
893 
894 	/* only merge integrity protected bio into ditto rq */
895 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
896 		return false;
897 
898 	/* Only merge if the crypt contexts are compatible */
899 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
900 		return false;
901 
902 	if (rq->ioprio != bio_prio(bio))
903 		return false;
904 
905 	return true;
906 }
907 
908 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
909 {
910 	if (blk_discard_mergable(rq))
911 		return ELEVATOR_DISCARD_MERGE;
912 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
913 		return ELEVATOR_BACK_MERGE;
914 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
915 		return ELEVATOR_FRONT_MERGE;
916 	return ELEVATOR_NO_MERGE;
917 }
918 
919 static void blk_account_io_merge_bio(struct request *req)
920 {
921 	if (!blk_do_io_stat(req))
922 		return;
923 
924 	part_stat_lock();
925 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
926 	part_stat_unlock();
927 }
928 
929 enum bio_merge_status {
930 	BIO_MERGE_OK,
931 	BIO_MERGE_NONE,
932 	BIO_MERGE_FAILED,
933 };
934 
935 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
936 		struct bio *bio, unsigned int nr_segs)
937 {
938 	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
939 
940 	if (!ll_back_merge_fn(req, bio, nr_segs))
941 		return BIO_MERGE_FAILED;
942 
943 	trace_block_bio_backmerge(bio);
944 	rq_qos_merge(req->q, req, bio);
945 
946 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
947 		blk_rq_set_mixed_merge(req);
948 
949 	req->biotail->bi_next = bio;
950 	req->biotail = bio;
951 	req->__data_len += bio->bi_iter.bi_size;
952 
953 	bio_crypt_free_ctx(bio);
954 
955 	blk_account_io_merge_bio(req);
956 	return BIO_MERGE_OK;
957 }
958 
959 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
960 		struct bio *bio, unsigned int nr_segs)
961 {
962 	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
963 
964 	if (!ll_front_merge_fn(req, bio, nr_segs))
965 		return BIO_MERGE_FAILED;
966 
967 	trace_block_bio_frontmerge(bio);
968 	rq_qos_merge(req->q, req, bio);
969 
970 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
971 		blk_rq_set_mixed_merge(req);
972 
973 	bio->bi_next = req->bio;
974 	req->bio = bio;
975 
976 	req->__sector = bio->bi_iter.bi_sector;
977 	req->__data_len += bio->bi_iter.bi_size;
978 
979 	bio_crypt_do_front_merge(req, bio);
980 
981 	blk_account_io_merge_bio(req);
982 	return BIO_MERGE_OK;
983 }
984 
985 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
986 		struct request *req, struct bio *bio)
987 {
988 	unsigned short segments = blk_rq_nr_discard_segments(req);
989 
990 	if (segments >= queue_max_discard_segments(q))
991 		goto no_merge;
992 	if (blk_rq_sectors(req) + bio_sectors(bio) >
993 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
994 		goto no_merge;
995 
996 	rq_qos_merge(q, req, bio);
997 
998 	req->biotail->bi_next = bio;
999 	req->biotail = bio;
1000 	req->__data_len += bio->bi_iter.bi_size;
1001 	req->nr_phys_segments = segments + 1;
1002 
1003 	blk_account_io_merge_bio(req);
1004 	return BIO_MERGE_OK;
1005 no_merge:
1006 	req_set_nomerge(q, req);
1007 	return BIO_MERGE_FAILED;
1008 }
1009 
1010 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1011 						   struct request *rq,
1012 						   struct bio *bio,
1013 						   unsigned int nr_segs,
1014 						   bool sched_allow_merge)
1015 {
1016 	if (!blk_rq_merge_ok(rq, bio))
1017 		return BIO_MERGE_NONE;
1018 
1019 	switch (blk_try_merge(rq, bio)) {
1020 	case ELEVATOR_BACK_MERGE:
1021 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1022 			return bio_attempt_back_merge(rq, bio, nr_segs);
1023 		break;
1024 	case ELEVATOR_FRONT_MERGE:
1025 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1026 			return bio_attempt_front_merge(rq, bio, nr_segs);
1027 		break;
1028 	case ELEVATOR_DISCARD_MERGE:
1029 		return bio_attempt_discard_merge(q, rq, bio);
1030 	default:
1031 		return BIO_MERGE_NONE;
1032 	}
1033 
1034 	return BIO_MERGE_FAILED;
1035 }
1036 
1037 /**
1038  * blk_attempt_plug_merge - try to merge with %current's plugged list
1039  * @q: request_queue new bio is being queued at
1040  * @bio: new bio being queued
1041  * @nr_segs: number of segments in @bio
1042  * from the passed in @q already in the plug list
1043  *
1044  * Determine whether @bio being queued on @q can be merged with the previous
1045  * request on %current's plugged list.  Returns %true if merge was successful,
1046  * otherwise %false.
1047  *
1048  * Plugging coalesces IOs from the same issuer for the same purpose without
1049  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1050  * than scheduling, and the request, while may have elvpriv data, is not
1051  * added on the elevator at this point.  In addition, we don't have
1052  * reliable access to the elevator outside queue lock.  Only check basic
1053  * merging parameters without querying the elevator.
1054  *
1055  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1056  */
1057 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1058 		unsigned int nr_segs)
1059 {
1060 	struct blk_plug *plug;
1061 	struct request *rq;
1062 
1063 	plug = blk_mq_plug(bio);
1064 	if (!plug || rq_list_empty(plug->mq_list))
1065 		return false;
1066 
1067 	rq_list_for_each(&plug->mq_list, rq) {
1068 		if (rq->q == q) {
1069 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1070 			    BIO_MERGE_OK)
1071 				return true;
1072 			break;
1073 		}
1074 
1075 		/*
1076 		 * Only keep iterating plug list for merges if we have multiple
1077 		 * queues
1078 		 */
1079 		if (!plug->multiple_queues)
1080 			break;
1081 	}
1082 	return false;
1083 }
1084 
1085 /*
1086  * Iterate list of requests and see if we can merge this bio with any
1087  * of them.
1088  */
1089 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1090 			struct bio *bio, unsigned int nr_segs)
1091 {
1092 	struct request *rq;
1093 	int checked = 8;
1094 
1095 	list_for_each_entry_reverse(rq, list, queuelist) {
1096 		if (!checked--)
1097 			break;
1098 
1099 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1100 		case BIO_MERGE_NONE:
1101 			continue;
1102 		case BIO_MERGE_OK:
1103 			return true;
1104 		case BIO_MERGE_FAILED:
1105 			return false;
1106 		}
1107 
1108 	}
1109 
1110 	return false;
1111 }
1112 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1113 
1114 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1115 		unsigned int nr_segs, struct request **merged_request)
1116 {
1117 	struct request *rq;
1118 
1119 	switch (elv_merge(q, &rq, bio)) {
1120 	case ELEVATOR_BACK_MERGE:
1121 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1122 			return false;
1123 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1124 			return false;
1125 		*merged_request = attempt_back_merge(q, rq);
1126 		if (!*merged_request)
1127 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1128 		return true;
1129 	case ELEVATOR_FRONT_MERGE:
1130 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1131 			return false;
1132 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1133 			return false;
1134 		*merged_request = attempt_front_merge(q, rq);
1135 		if (!*merged_request)
1136 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1137 		return true;
1138 	case ELEVATOR_DISCARD_MERGE:
1139 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1140 	default:
1141 		return false;
1142 	}
1143 }
1144 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1145