xref: /openbmc/linux/block/blk-merge.c (revision a6f0788e)
1 /*
2  * Functions related to segment and merge handling
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/bio.h>
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 
14 static struct bio *blk_bio_discard_split(struct request_queue *q,
15 					 struct bio *bio,
16 					 struct bio_set *bs,
17 					 unsigned *nsegs)
18 {
19 	unsigned int max_discard_sectors, granularity;
20 	int alignment;
21 	sector_t tmp;
22 	unsigned split_sectors;
23 
24 	*nsegs = 1;
25 
26 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
27 	granularity = max(q->limits.discard_granularity >> 9, 1U);
28 
29 	max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
30 	max_discard_sectors -= max_discard_sectors % granularity;
31 
32 	if (unlikely(!max_discard_sectors)) {
33 		/* XXX: warn */
34 		return NULL;
35 	}
36 
37 	if (bio_sectors(bio) <= max_discard_sectors)
38 		return NULL;
39 
40 	split_sectors = max_discard_sectors;
41 
42 	/*
43 	 * If the next starting sector would be misaligned, stop the discard at
44 	 * the previous aligned sector.
45 	 */
46 	alignment = (q->limits.discard_alignment >> 9) % granularity;
47 
48 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
49 	tmp = sector_div(tmp, granularity);
50 
51 	if (split_sectors > tmp)
52 		split_sectors -= tmp;
53 
54 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
55 }
56 
57 static struct bio *blk_bio_write_same_split(struct request_queue *q,
58 					    struct bio *bio,
59 					    struct bio_set *bs,
60 					    unsigned *nsegs)
61 {
62 	*nsegs = 1;
63 
64 	if (!q->limits.max_write_same_sectors)
65 		return NULL;
66 
67 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
68 		return NULL;
69 
70 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
71 }
72 
73 static inline unsigned get_max_io_size(struct request_queue *q,
74 				       struct bio *bio)
75 {
76 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
77 	unsigned mask = queue_logical_block_size(q) - 1;
78 
79 	/* aligned to logical block size */
80 	sectors &= ~(mask >> 9);
81 
82 	return sectors;
83 }
84 
85 static struct bio *blk_bio_segment_split(struct request_queue *q,
86 					 struct bio *bio,
87 					 struct bio_set *bs,
88 					 unsigned *segs)
89 {
90 	struct bio_vec bv, bvprv, *bvprvp = NULL;
91 	struct bvec_iter iter;
92 	unsigned seg_size = 0, nsegs = 0, sectors = 0;
93 	unsigned front_seg_size = bio->bi_seg_front_size;
94 	bool do_split = true;
95 	struct bio *new = NULL;
96 	const unsigned max_sectors = get_max_io_size(q, bio);
97 	unsigned bvecs = 0;
98 
99 	bio_for_each_segment(bv, bio, iter) {
100 		/*
101 		 * With arbitrary bio size, the incoming bio may be very
102 		 * big. We have to split the bio into small bios so that
103 		 * each holds at most BIO_MAX_PAGES bvecs because
104 		 * bio_clone() can fail to allocate big bvecs.
105 		 *
106 		 * It should have been better to apply the limit per
107 		 * request queue in which bio_clone() is involved,
108 		 * instead of globally. The biggest blocker is the
109 		 * bio_clone() in bio bounce.
110 		 *
111 		 * If bio is splitted by this reason, we should have
112 		 * allowed to continue bios merging, but don't do
113 		 * that now for making the change simple.
114 		 *
115 		 * TODO: deal with bio bounce's bio_clone() gracefully
116 		 * and convert the global limit into per-queue limit.
117 		 */
118 		if (bvecs++ >= BIO_MAX_PAGES)
119 			goto split;
120 
121 		/*
122 		 * If the queue doesn't support SG gaps and adding this
123 		 * offset would create a gap, disallow it.
124 		 */
125 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
126 			goto split;
127 
128 		if (sectors + (bv.bv_len >> 9) > max_sectors) {
129 			/*
130 			 * Consider this a new segment if we're splitting in
131 			 * the middle of this vector.
132 			 */
133 			if (nsegs < queue_max_segments(q) &&
134 			    sectors < max_sectors) {
135 				nsegs++;
136 				sectors = max_sectors;
137 			}
138 			if (sectors)
139 				goto split;
140 			/* Make this single bvec as the 1st segment */
141 		}
142 
143 		if (bvprvp && blk_queue_cluster(q)) {
144 			if (seg_size + bv.bv_len > queue_max_segment_size(q))
145 				goto new_segment;
146 			if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
147 				goto new_segment;
148 			if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
149 				goto new_segment;
150 
151 			seg_size += bv.bv_len;
152 			bvprv = bv;
153 			bvprvp = &bvprv;
154 			sectors += bv.bv_len >> 9;
155 
156 			if (nsegs == 1 && seg_size > front_seg_size)
157 				front_seg_size = seg_size;
158 			continue;
159 		}
160 new_segment:
161 		if (nsegs == queue_max_segments(q))
162 			goto split;
163 
164 		nsegs++;
165 		bvprv = bv;
166 		bvprvp = &bvprv;
167 		seg_size = bv.bv_len;
168 		sectors += bv.bv_len >> 9;
169 
170 		if (nsegs == 1 && seg_size > front_seg_size)
171 			front_seg_size = seg_size;
172 	}
173 
174 	do_split = false;
175 split:
176 	*segs = nsegs;
177 
178 	if (do_split) {
179 		new = bio_split(bio, sectors, GFP_NOIO, bs);
180 		if (new)
181 			bio = new;
182 	}
183 
184 	bio->bi_seg_front_size = front_seg_size;
185 	if (seg_size > bio->bi_seg_back_size)
186 		bio->bi_seg_back_size = seg_size;
187 
188 	return do_split ? new : NULL;
189 }
190 
191 void blk_queue_split(struct request_queue *q, struct bio **bio,
192 		     struct bio_set *bs)
193 {
194 	struct bio *split, *res;
195 	unsigned nsegs;
196 
197 	switch (bio_op(*bio)) {
198 	case REQ_OP_DISCARD:
199 	case REQ_OP_SECURE_ERASE:
200 		split = blk_bio_discard_split(q, *bio, bs, &nsegs);
201 		break;
202 	case REQ_OP_WRITE_ZEROES:
203 		split = NULL;
204 		nsegs = (*bio)->bi_phys_segments;
205 		break;
206 	case REQ_OP_WRITE_SAME:
207 		split = blk_bio_write_same_split(q, *bio, bs, &nsegs);
208 		break;
209 	default:
210 		split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs);
211 		break;
212 	}
213 
214 	/* physical segments can be figured out during splitting */
215 	res = split ? split : *bio;
216 	res->bi_phys_segments = nsegs;
217 	bio_set_flag(res, BIO_SEG_VALID);
218 
219 	if (split) {
220 		/* there isn't chance to merge the splitted bio */
221 		split->bi_opf |= REQ_NOMERGE;
222 
223 		bio_chain(split, *bio);
224 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
225 		generic_make_request(*bio);
226 		*bio = split;
227 	}
228 }
229 EXPORT_SYMBOL(blk_queue_split);
230 
231 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
232 					     struct bio *bio,
233 					     bool no_sg_merge)
234 {
235 	struct bio_vec bv, bvprv = { NULL };
236 	int cluster, prev = 0;
237 	unsigned int seg_size, nr_phys_segs;
238 	struct bio *fbio, *bbio;
239 	struct bvec_iter iter;
240 
241 	if (!bio)
242 		return 0;
243 
244 	/*
245 	 * This should probably be returning 0, but blk_add_request_payload()
246 	 * (Christoph!!!!)
247 	 */
248 	switch (bio_op(bio)) {
249 	case REQ_OP_DISCARD:
250 	case REQ_OP_SECURE_ERASE:
251 	case REQ_OP_WRITE_SAME:
252 	case REQ_OP_WRITE_ZEROES:
253 		return 1;
254 	default:
255 		break;
256 	}
257 
258 	fbio = bio;
259 	cluster = blk_queue_cluster(q);
260 	seg_size = 0;
261 	nr_phys_segs = 0;
262 	for_each_bio(bio) {
263 		bio_for_each_segment(bv, bio, iter) {
264 			/*
265 			 * If SG merging is disabled, each bio vector is
266 			 * a segment
267 			 */
268 			if (no_sg_merge)
269 				goto new_segment;
270 
271 			if (prev && cluster) {
272 				if (seg_size + bv.bv_len
273 				    > queue_max_segment_size(q))
274 					goto new_segment;
275 				if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
276 					goto new_segment;
277 				if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
278 					goto new_segment;
279 
280 				seg_size += bv.bv_len;
281 				bvprv = bv;
282 				continue;
283 			}
284 new_segment:
285 			if (nr_phys_segs == 1 && seg_size >
286 			    fbio->bi_seg_front_size)
287 				fbio->bi_seg_front_size = seg_size;
288 
289 			nr_phys_segs++;
290 			bvprv = bv;
291 			prev = 1;
292 			seg_size = bv.bv_len;
293 		}
294 		bbio = bio;
295 	}
296 
297 	if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
298 		fbio->bi_seg_front_size = seg_size;
299 	if (seg_size > bbio->bi_seg_back_size)
300 		bbio->bi_seg_back_size = seg_size;
301 
302 	return nr_phys_segs;
303 }
304 
305 void blk_recalc_rq_segments(struct request *rq)
306 {
307 	bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
308 			&rq->q->queue_flags);
309 
310 	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
311 			no_sg_merge);
312 }
313 
314 void blk_recount_segments(struct request_queue *q, struct bio *bio)
315 {
316 	unsigned short seg_cnt;
317 
318 	/* estimate segment number by bi_vcnt for non-cloned bio */
319 	if (bio_flagged(bio, BIO_CLONED))
320 		seg_cnt = bio_segments(bio);
321 	else
322 		seg_cnt = bio->bi_vcnt;
323 
324 	if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
325 			(seg_cnt < queue_max_segments(q)))
326 		bio->bi_phys_segments = seg_cnt;
327 	else {
328 		struct bio *nxt = bio->bi_next;
329 
330 		bio->bi_next = NULL;
331 		bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
332 		bio->bi_next = nxt;
333 	}
334 
335 	bio_set_flag(bio, BIO_SEG_VALID);
336 }
337 EXPORT_SYMBOL(blk_recount_segments);
338 
339 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
340 				   struct bio *nxt)
341 {
342 	struct bio_vec end_bv = { NULL }, nxt_bv;
343 
344 	if (!blk_queue_cluster(q))
345 		return 0;
346 
347 	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
348 	    queue_max_segment_size(q))
349 		return 0;
350 
351 	if (!bio_has_data(bio))
352 		return 1;
353 
354 	bio_get_last_bvec(bio, &end_bv);
355 	bio_get_first_bvec(nxt, &nxt_bv);
356 
357 	if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
358 		return 0;
359 
360 	/*
361 	 * bio and nxt are contiguous in memory; check if the queue allows
362 	 * these two to be merged into one
363 	 */
364 	if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
365 		return 1;
366 
367 	return 0;
368 }
369 
370 static inline void
371 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
372 		     struct scatterlist *sglist, struct bio_vec *bvprv,
373 		     struct scatterlist **sg, int *nsegs, int *cluster)
374 {
375 
376 	int nbytes = bvec->bv_len;
377 
378 	if (*sg && *cluster) {
379 		if ((*sg)->length + nbytes > queue_max_segment_size(q))
380 			goto new_segment;
381 
382 		if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
383 			goto new_segment;
384 		if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
385 			goto new_segment;
386 
387 		(*sg)->length += nbytes;
388 	} else {
389 new_segment:
390 		if (!*sg)
391 			*sg = sglist;
392 		else {
393 			/*
394 			 * If the driver previously mapped a shorter
395 			 * list, we could see a termination bit
396 			 * prematurely unless it fully inits the sg
397 			 * table on each mapping. We KNOW that there
398 			 * must be more entries here or the driver
399 			 * would be buggy, so force clear the
400 			 * termination bit to avoid doing a full
401 			 * sg_init_table() in drivers for each command.
402 			 */
403 			sg_unmark_end(*sg);
404 			*sg = sg_next(*sg);
405 		}
406 
407 		sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
408 		(*nsegs)++;
409 	}
410 	*bvprv = *bvec;
411 }
412 
413 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
414 			     struct scatterlist *sglist,
415 			     struct scatterlist **sg)
416 {
417 	struct bio_vec bvec, bvprv = { NULL };
418 	struct bvec_iter iter;
419 	int nsegs, cluster;
420 
421 	nsegs = 0;
422 	cluster = blk_queue_cluster(q);
423 
424 	switch (bio_op(bio)) {
425 	case REQ_OP_DISCARD:
426 	case REQ_OP_SECURE_ERASE:
427 	case REQ_OP_WRITE_ZEROES:
428 		/*
429 		 * This is a hack - drivers should be neither modifying the
430 		 * biovec, nor relying on bi_vcnt - but because of
431 		 * blk_add_request_payload(), a discard bio may or may not have
432 		 * a payload we need to set up here (thank you Christoph) and
433 		 * bi_vcnt is really the only way of telling if we need to.
434 		 */
435 		if (!bio->bi_vcnt)
436 			return 0;
437 		/* Fall through */
438 	case REQ_OP_WRITE_SAME:
439 		*sg = sglist;
440 		bvec = bio_iovec(bio);
441 		sg_set_page(*sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset);
442 		return 1;
443 	default:
444 		break;
445 	}
446 
447 	for_each_bio(bio)
448 		bio_for_each_segment(bvec, bio, iter)
449 			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
450 					     &nsegs, &cluster);
451 
452 	return nsegs;
453 }
454 
455 /*
456  * map a request to scatterlist, return number of sg entries setup. Caller
457  * must make sure sg can hold rq->nr_phys_segments entries
458  */
459 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
460 		  struct scatterlist *sglist)
461 {
462 	struct scatterlist *sg = NULL;
463 	int nsegs = 0;
464 
465 	if (rq->bio)
466 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
467 
468 	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
469 	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
470 		unsigned int pad_len =
471 			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
472 
473 		sg->length += pad_len;
474 		rq->extra_len += pad_len;
475 	}
476 
477 	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
478 		if (op_is_write(req_op(rq)))
479 			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
480 
481 		sg_unmark_end(sg);
482 		sg = sg_next(sg);
483 		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
484 			    q->dma_drain_size,
485 			    ((unsigned long)q->dma_drain_buffer) &
486 			    (PAGE_SIZE - 1));
487 		nsegs++;
488 		rq->extra_len += q->dma_drain_size;
489 	}
490 
491 	if (sg)
492 		sg_mark_end(sg);
493 
494 	/*
495 	 * Something must have been wrong if the figured number of
496 	 * segment is bigger than number of req's physical segments
497 	 */
498 	WARN_ON(nsegs > rq->nr_phys_segments);
499 
500 	return nsegs;
501 }
502 EXPORT_SYMBOL(blk_rq_map_sg);
503 
504 static inline int ll_new_hw_segment(struct request_queue *q,
505 				    struct request *req,
506 				    struct bio *bio)
507 {
508 	int nr_phys_segs = bio_phys_segments(q, bio);
509 
510 	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
511 		goto no_merge;
512 
513 	if (blk_integrity_merge_bio(q, req, bio) == false)
514 		goto no_merge;
515 
516 	/*
517 	 * This will form the start of a new hw segment.  Bump both
518 	 * counters.
519 	 */
520 	req->nr_phys_segments += nr_phys_segs;
521 	return 1;
522 
523 no_merge:
524 	req->cmd_flags |= REQ_NOMERGE;
525 	if (req == q->last_merge)
526 		q->last_merge = NULL;
527 	return 0;
528 }
529 
530 int ll_back_merge_fn(struct request_queue *q, struct request *req,
531 		     struct bio *bio)
532 {
533 	if (req_gap_back_merge(req, bio))
534 		return 0;
535 	if (blk_integrity_rq(req) &&
536 	    integrity_req_gap_back_merge(req, bio))
537 		return 0;
538 	if (blk_rq_sectors(req) + bio_sectors(bio) >
539 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
540 		req->cmd_flags |= REQ_NOMERGE;
541 		if (req == q->last_merge)
542 			q->last_merge = NULL;
543 		return 0;
544 	}
545 	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
546 		blk_recount_segments(q, req->biotail);
547 	if (!bio_flagged(bio, BIO_SEG_VALID))
548 		blk_recount_segments(q, bio);
549 
550 	return ll_new_hw_segment(q, req, bio);
551 }
552 
553 int ll_front_merge_fn(struct request_queue *q, struct request *req,
554 		      struct bio *bio)
555 {
556 
557 	if (req_gap_front_merge(req, bio))
558 		return 0;
559 	if (blk_integrity_rq(req) &&
560 	    integrity_req_gap_front_merge(req, bio))
561 		return 0;
562 	if (blk_rq_sectors(req) + bio_sectors(bio) >
563 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
564 		req->cmd_flags |= REQ_NOMERGE;
565 		if (req == q->last_merge)
566 			q->last_merge = NULL;
567 		return 0;
568 	}
569 	if (!bio_flagged(bio, BIO_SEG_VALID))
570 		blk_recount_segments(q, bio);
571 	if (!bio_flagged(req->bio, BIO_SEG_VALID))
572 		blk_recount_segments(q, req->bio);
573 
574 	return ll_new_hw_segment(q, req, bio);
575 }
576 
577 /*
578  * blk-mq uses req->special to carry normal driver per-request payload, it
579  * does not indicate a prepared command that we cannot merge with.
580  */
581 static bool req_no_special_merge(struct request *req)
582 {
583 	struct request_queue *q = req->q;
584 
585 	return !q->mq_ops && req->special;
586 }
587 
588 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
589 				struct request *next)
590 {
591 	int total_phys_segments;
592 	unsigned int seg_size =
593 		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
594 
595 	/*
596 	 * First check if the either of the requests are re-queued
597 	 * requests.  Can't merge them if they are.
598 	 */
599 	if (req_no_special_merge(req) || req_no_special_merge(next))
600 		return 0;
601 
602 	if (req_gap_back_merge(req, next->bio))
603 		return 0;
604 
605 	/*
606 	 * Will it become too large?
607 	 */
608 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
609 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
610 		return 0;
611 
612 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
613 	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
614 		if (req->nr_phys_segments == 1)
615 			req->bio->bi_seg_front_size = seg_size;
616 		if (next->nr_phys_segments == 1)
617 			next->biotail->bi_seg_back_size = seg_size;
618 		total_phys_segments--;
619 	}
620 
621 	if (total_phys_segments > queue_max_segments(q))
622 		return 0;
623 
624 	if (blk_integrity_merge_rq(q, req, next) == false)
625 		return 0;
626 
627 	/* Merge is OK... */
628 	req->nr_phys_segments = total_phys_segments;
629 	return 1;
630 }
631 
632 /**
633  * blk_rq_set_mixed_merge - mark a request as mixed merge
634  * @rq: request to mark as mixed merge
635  *
636  * Description:
637  *     @rq is about to be mixed merged.  Make sure the attributes
638  *     which can be mixed are set in each bio and mark @rq as mixed
639  *     merged.
640  */
641 void blk_rq_set_mixed_merge(struct request *rq)
642 {
643 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
644 	struct bio *bio;
645 
646 	if (rq->rq_flags & RQF_MIXED_MERGE)
647 		return;
648 
649 	/*
650 	 * @rq will no longer represent mixable attributes for all the
651 	 * contained bios.  It will just track those of the first one.
652 	 * Distributes the attributs to each bio.
653 	 */
654 	for (bio = rq->bio; bio; bio = bio->bi_next) {
655 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
656 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
657 		bio->bi_opf |= ff;
658 	}
659 	rq->rq_flags |= RQF_MIXED_MERGE;
660 }
661 
662 static void blk_account_io_merge(struct request *req)
663 {
664 	if (blk_do_io_stat(req)) {
665 		struct hd_struct *part;
666 		int cpu;
667 
668 		cpu = part_stat_lock();
669 		part = req->part;
670 
671 		part_round_stats(cpu, part);
672 		part_dec_in_flight(part, rq_data_dir(req));
673 
674 		hd_struct_put(part);
675 		part_stat_unlock();
676 	}
677 }
678 
679 /*
680  * Has to be called with the request spinlock acquired
681  */
682 static int attempt_merge(struct request_queue *q, struct request *req,
683 			  struct request *next)
684 {
685 	if (!rq_mergeable(req) || !rq_mergeable(next))
686 		return 0;
687 
688 	if (req_op(req) != req_op(next))
689 		return 0;
690 
691 	/*
692 	 * not contiguous
693 	 */
694 	if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
695 		return 0;
696 
697 	if (rq_data_dir(req) != rq_data_dir(next)
698 	    || req->rq_disk != next->rq_disk
699 	    || req_no_special_merge(next))
700 		return 0;
701 
702 	if (req_op(req) == REQ_OP_WRITE_SAME &&
703 	    !blk_write_same_mergeable(req->bio, next->bio))
704 		return 0;
705 
706 	/*
707 	 * If we are allowed to merge, then append bio list
708 	 * from next to rq and release next. merge_requests_fn
709 	 * will have updated segment counts, update sector
710 	 * counts here.
711 	 */
712 	if (!ll_merge_requests_fn(q, req, next))
713 		return 0;
714 
715 	/*
716 	 * If failfast settings disagree or any of the two is already
717 	 * a mixed merge, mark both as mixed before proceeding.  This
718 	 * makes sure that all involved bios have mixable attributes
719 	 * set properly.
720 	 */
721 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
722 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
723 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
724 		blk_rq_set_mixed_merge(req);
725 		blk_rq_set_mixed_merge(next);
726 	}
727 
728 	/*
729 	 * At this point we have either done a back merge
730 	 * or front merge. We need the smaller start_time of
731 	 * the merged requests to be the current request
732 	 * for accounting purposes.
733 	 */
734 	if (time_after(req->start_time, next->start_time))
735 		req->start_time = next->start_time;
736 
737 	req->biotail->bi_next = next->bio;
738 	req->biotail = next->biotail;
739 
740 	req->__data_len += blk_rq_bytes(next);
741 
742 	elv_merge_requests(q, req, next);
743 
744 	/*
745 	 * 'next' is going away, so update stats accordingly
746 	 */
747 	blk_account_io_merge(next);
748 
749 	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
750 	if (blk_rq_cpu_valid(next))
751 		req->cpu = next->cpu;
752 
753 	/* owner-ship of bio passed from next to req */
754 	next->bio = NULL;
755 	__blk_put_request(q, next);
756 	return 1;
757 }
758 
759 int attempt_back_merge(struct request_queue *q, struct request *rq)
760 {
761 	struct request *next = elv_latter_request(q, rq);
762 
763 	if (next)
764 		return attempt_merge(q, rq, next);
765 
766 	return 0;
767 }
768 
769 int attempt_front_merge(struct request_queue *q, struct request *rq)
770 {
771 	struct request *prev = elv_former_request(q, rq);
772 
773 	if (prev)
774 		return attempt_merge(q, prev, rq);
775 
776 	return 0;
777 }
778 
779 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
780 			  struct request *next)
781 {
782 	struct elevator_queue *e = q->elevator;
783 
784 	if (e->type->ops.elevator_allow_rq_merge_fn)
785 		if (!e->type->ops.elevator_allow_rq_merge_fn(q, rq, next))
786 			return 0;
787 
788 	return attempt_merge(q, rq, next);
789 }
790 
791 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
792 {
793 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
794 		return false;
795 
796 	if (req_op(rq) != bio_op(bio))
797 		return false;
798 
799 	/* different data direction or already started, don't merge */
800 	if (bio_data_dir(bio) != rq_data_dir(rq))
801 		return false;
802 
803 	/* must be same device and not a special request */
804 	if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq))
805 		return false;
806 
807 	/* only merge integrity protected bio into ditto rq */
808 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
809 		return false;
810 
811 	/* must be using the same buffer */
812 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
813 	    !blk_write_same_mergeable(rq->bio, bio))
814 		return false;
815 
816 	return true;
817 }
818 
819 int blk_try_merge(struct request *rq, struct bio *bio)
820 {
821 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
822 		return ELEVATOR_BACK_MERGE;
823 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
824 		return ELEVATOR_FRONT_MERGE;
825 	return ELEVATOR_NO_MERGE;
826 }
827