1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 15 static inline bool bio_will_gap(struct request_queue *q, 16 struct request *prev_rq, struct bio *prev, struct bio *next) 17 { 18 struct bio_vec pb, nb; 19 20 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 21 return false; 22 23 /* 24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 25 * is quite difficult to respect the sg gap limit. We work hard to 26 * merge a huge number of small single bios in case of mkfs. 27 */ 28 if (prev_rq) 29 bio_get_first_bvec(prev_rq->bio, &pb); 30 else 31 bio_get_first_bvec(prev, &pb); 32 if (pb.bv_offset & queue_virt_boundary(q)) 33 return true; 34 35 /* 36 * We don't need to worry about the situation that the merged segment 37 * ends in unaligned virt boundary: 38 * 39 * - if 'pb' ends aligned, the merged segment ends aligned 40 * - if 'pb' ends unaligned, the next bio must include 41 * one single bvec of 'nb', otherwise the 'nb' can't 42 * merge with 'pb' 43 */ 44 bio_get_last_bvec(prev, &pb); 45 bio_get_first_bvec(next, &nb); 46 if (biovec_phys_mergeable(q, &pb, &nb)) 47 return false; 48 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 49 } 50 51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 52 { 53 return bio_will_gap(req->q, req, req->biotail, bio); 54 } 55 56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 57 { 58 return bio_will_gap(req->q, NULL, bio, req->bio); 59 } 60 61 static struct bio *blk_bio_discard_split(struct request_queue *q, 62 struct bio *bio, 63 struct bio_set *bs, 64 unsigned *nsegs) 65 { 66 unsigned int max_discard_sectors, granularity; 67 int alignment; 68 sector_t tmp; 69 unsigned split_sectors; 70 71 *nsegs = 1; 72 73 /* Zero-sector (unknown) and one-sector granularities are the same. */ 74 granularity = max(q->limits.discard_granularity >> 9, 1U); 75 76 max_discard_sectors = min(q->limits.max_discard_sectors, 77 bio_allowed_max_sectors(q)); 78 max_discard_sectors -= max_discard_sectors % granularity; 79 80 if (unlikely(!max_discard_sectors)) { 81 /* XXX: warn */ 82 return NULL; 83 } 84 85 if (bio_sectors(bio) <= max_discard_sectors) 86 return NULL; 87 88 split_sectors = max_discard_sectors; 89 90 /* 91 * If the next starting sector would be misaligned, stop the discard at 92 * the previous aligned sector. 93 */ 94 alignment = (q->limits.discard_alignment >> 9) % granularity; 95 96 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 97 tmp = sector_div(tmp, granularity); 98 99 if (split_sectors > tmp) 100 split_sectors -= tmp; 101 102 return bio_split(bio, split_sectors, GFP_NOIO, bs); 103 } 104 105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 106 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 107 { 108 *nsegs = 0; 109 110 if (!q->limits.max_write_zeroes_sectors) 111 return NULL; 112 113 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 114 return NULL; 115 116 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 117 } 118 119 static struct bio *blk_bio_write_same_split(struct request_queue *q, 120 struct bio *bio, 121 struct bio_set *bs, 122 unsigned *nsegs) 123 { 124 *nsegs = 1; 125 126 if (!q->limits.max_write_same_sectors) 127 return NULL; 128 129 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 130 return NULL; 131 132 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 133 } 134 135 /* 136 * Return the maximum number of sectors from the start of a bio that may be 137 * submitted as a single request to a block device. If enough sectors remain, 138 * align the end to the physical block size. Otherwise align the end to the 139 * logical block size. This approach minimizes the number of non-aligned 140 * requests that are submitted to a block device if the start of a bio is not 141 * aligned to a physical block boundary. 142 */ 143 static inline unsigned get_max_io_size(struct request_queue *q, 144 struct bio *bio) 145 { 146 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 147 unsigned max_sectors = sectors; 148 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 149 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 150 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 151 152 max_sectors += start_offset; 153 max_sectors &= ~(pbs - 1); 154 if (max_sectors > start_offset) 155 return max_sectors - start_offset; 156 157 return sectors & (lbs - 1); 158 } 159 160 static unsigned get_max_segment_size(const struct request_queue *q, 161 unsigned offset) 162 { 163 unsigned long mask = queue_segment_boundary(q); 164 165 /* default segment boundary mask means no boundary limit */ 166 if (mask == BLK_SEG_BOUNDARY_MASK) 167 return queue_max_segment_size(q); 168 169 return min_t(unsigned long, mask - (mask & offset) + 1, 170 queue_max_segment_size(q)); 171 } 172 173 /** 174 * bvec_split_segs - verify whether or not a bvec should be split in the middle 175 * @q: [in] request queue associated with the bio associated with @bv 176 * @bv: [in] bvec to examine 177 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 178 * by the number of segments from @bv that may be appended to that 179 * bio without exceeding @max_segs 180 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 181 * by the number of sectors from @bv that may be appended to that 182 * bio without exceeding @max_sectors 183 * @max_segs: [in] upper bound for *@nsegs 184 * @max_sectors: [in] upper bound for *@sectors 185 * 186 * When splitting a bio, it can happen that a bvec is encountered that is too 187 * big to fit in a single segment and hence that it has to be split in the 188 * middle. This function verifies whether or not that should happen. The value 189 * %true is returned if and only if appending the entire @bv to a bio with 190 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 191 * the block driver. 192 */ 193 static bool bvec_split_segs(const struct request_queue *q, 194 const struct bio_vec *bv, unsigned *nsegs, 195 unsigned *sectors, unsigned max_segs, 196 unsigned max_sectors) 197 { 198 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 199 unsigned len = min(bv->bv_len, max_len); 200 unsigned total_len = 0; 201 unsigned seg_size = 0; 202 203 while (len && *nsegs < max_segs) { 204 seg_size = get_max_segment_size(q, bv->bv_offset + total_len); 205 seg_size = min(seg_size, len); 206 207 (*nsegs)++; 208 total_len += seg_size; 209 len -= seg_size; 210 211 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 212 break; 213 } 214 215 *sectors += total_len >> 9; 216 217 /* tell the caller to split the bvec if it is too big to fit */ 218 return len > 0 || bv->bv_len > max_len; 219 } 220 221 /** 222 * blk_bio_segment_split - split a bio in two bios 223 * @q: [in] request queue pointer 224 * @bio: [in] bio to be split 225 * @bs: [in] bio set to allocate the clone from 226 * @segs: [out] number of segments in the bio with the first half of the sectors 227 * 228 * Clone @bio, update the bi_iter of the clone to represent the first sectors 229 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 230 * following is guaranteed for the cloned bio: 231 * - That it has at most get_max_io_size(@q, @bio) sectors. 232 * - That it has at most queue_max_segments(@q) segments. 233 * 234 * Except for discard requests the cloned bio will point at the bi_io_vec of 235 * the original bio. It is the responsibility of the caller to ensure that the 236 * original bio is not freed before the cloned bio. The caller is also 237 * responsible for ensuring that @bs is only destroyed after processing of the 238 * split bio has finished. 239 */ 240 static struct bio *blk_bio_segment_split(struct request_queue *q, 241 struct bio *bio, 242 struct bio_set *bs, 243 unsigned *segs) 244 { 245 struct bio_vec bv, bvprv, *bvprvp = NULL; 246 struct bvec_iter iter; 247 unsigned nsegs = 0, sectors = 0; 248 const unsigned max_sectors = get_max_io_size(q, bio); 249 const unsigned max_segs = queue_max_segments(q); 250 251 bio_for_each_bvec(bv, bio, iter) { 252 /* 253 * If the queue doesn't support SG gaps and adding this 254 * offset would create a gap, disallow it. 255 */ 256 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 257 goto split; 258 259 if (nsegs < max_segs && 260 sectors + (bv.bv_len >> 9) <= max_sectors && 261 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 262 nsegs++; 263 sectors += bv.bv_len >> 9; 264 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 265 max_sectors)) { 266 goto split; 267 } 268 269 bvprv = bv; 270 bvprvp = &bvprv; 271 } 272 273 *segs = nsegs; 274 return NULL; 275 split: 276 *segs = nsegs; 277 return bio_split(bio, sectors, GFP_NOIO, bs); 278 } 279 280 /** 281 * __blk_queue_split - split a bio and submit the second half 282 * @q: [in] request queue pointer 283 * @bio: [in, out] bio to be split 284 * @nr_segs: [out] number of segments in the first bio 285 * 286 * Split a bio into two bios, chain the two bios, submit the second half and 287 * store a pointer to the first half in *@bio. If the second bio is still too 288 * big it will be split by a recursive call to this function. Since this 289 * function may allocate a new bio from @q->bio_split, it is the responsibility 290 * of the caller to ensure that @q is only released after processing of the 291 * split bio has finished. 292 */ 293 void __blk_queue_split(struct request_queue *q, struct bio **bio, 294 unsigned int *nr_segs) 295 { 296 struct bio *split; 297 298 switch (bio_op(*bio)) { 299 case REQ_OP_DISCARD: 300 case REQ_OP_SECURE_ERASE: 301 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 302 break; 303 case REQ_OP_WRITE_ZEROES: 304 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 305 nr_segs); 306 break; 307 case REQ_OP_WRITE_SAME: 308 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 309 nr_segs); 310 break; 311 default: 312 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 313 break; 314 } 315 316 if (split) { 317 /* there isn't chance to merge the splitted bio */ 318 split->bi_opf |= REQ_NOMERGE; 319 320 /* 321 * Since we're recursing into make_request here, ensure 322 * that we mark this bio as already having entered the queue. 323 * If not, and the queue is going away, we can get stuck 324 * forever on waiting for the queue reference to drop. But 325 * that will never happen, as we're already holding a 326 * reference to it. 327 */ 328 bio_set_flag(*bio, BIO_QUEUE_ENTERED); 329 330 bio_chain(split, *bio); 331 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 332 generic_make_request(*bio); 333 *bio = split; 334 } 335 } 336 337 /** 338 * blk_queue_split - split a bio and submit the second half 339 * @q: [in] request queue pointer 340 * @bio: [in, out] bio to be split 341 * 342 * Split a bio into two bios, chains the two bios, submit the second half and 343 * store a pointer to the first half in *@bio. Since this function may allocate 344 * a new bio from @q->bio_split, it is the responsibility of the caller to 345 * ensure that @q is only released after processing of the split bio has 346 * finished. 347 */ 348 void blk_queue_split(struct request_queue *q, struct bio **bio) 349 { 350 unsigned int nr_segs; 351 352 __blk_queue_split(q, bio, &nr_segs); 353 } 354 EXPORT_SYMBOL(blk_queue_split); 355 356 unsigned int blk_recalc_rq_segments(struct request *rq) 357 { 358 unsigned int nr_phys_segs = 0; 359 unsigned int nr_sectors = 0; 360 struct req_iterator iter; 361 struct bio_vec bv; 362 363 if (!rq->bio) 364 return 0; 365 366 switch (bio_op(rq->bio)) { 367 case REQ_OP_DISCARD: 368 case REQ_OP_SECURE_ERASE: 369 case REQ_OP_WRITE_ZEROES: 370 return 0; 371 case REQ_OP_WRITE_SAME: 372 return 1; 373 } 374 375 rq_for_each_bvec(bv, rq, iter) 376 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 377 UINT_MAX, UINT_MAX); 378 return nr_phys_segs; 379 } 380 381 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 382 struct scatterlist *sglist) 383 { 384 if (!*sg) 385 return sglist; 386 387 /* 388 * If the driver previously mapped a shorter list, we could see a 389 * termination bit prematurely unless it fully inits the sg table 390 * on each mapping. We KNOW that there must be more entries here 391 * or the driver would be buggy, so force clear the termination bit 392 * to avoid doing a full sg_init_table() in drivers for each command. 393 */ 394 sg_unmark_end(*sg); 395 return sg_next(*sg); 396 } 397 398 static unsigned blk_bvec_map_sg(struct request_queue *q, 399 struct bio_vec *bvec, struct scatterlist *sglist, 400 struct scatterlist **sg) 401 { 402 unsigned nbytes = bvec->bv_len; 403 unsigned nsegs = 0, total = 0; 404 405 while (nbytes > 0) { 406 unsigned offset = bvec->bv_offset + total; 407 unsigned len = min(get_max_segment_size(q, offset), nbytes); 408 struct page *page = bvec->bv_page; 409 410 /* 411 * Unfortunately a fair number of drivers barf on scatterlists 412 * that have an offset larger than PAGE_SIZE, despite other 413 * subsystems dealing with that invariant just fine. For now 414 * stick to the legacy format where we never present those from 415 * the block layer, but the code below should be removed once 416 * these offenders (mostly MMC/SD drivers) are fixed. 417 */ 418 page += (offset >> PAGE_SHIFT); 419 offset &= ~PAGE_MASK; 420 421 *sg = blk_next_sg(sg, sglist); 422 sg_set_page(*sg, page, len, offset); 423 424 total += len; 425 nbytes -= len; 426 nsegs++; 427 } 428 429 return nsegs; 430 } 431 432 static inline int __blk_bvec_map_sg(struct bio_vec bv, 433 struct scatterlist *sglist, struct scatterlist **sg) 434 { 435 *sg = blk_next_sg(sg, sglist); 436 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 437 return 1; 438 } 439 440 /* only try to merge bvecs into one sg if they are from two bios */ 441 static inline bool 442 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 443 struct bio_vec *bvprv, struct scatterlist **sg) 444 { 445 446 int nbytes = bvec->bv_len; 447 448 if (!*sg) 449 return false; 450 451 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 452 return false; 453 454 if (!biovec_phys_mergeable(q, bvprv, bvec)) 455 return false; 456 457 (*sg)->length += nbytes; 458 459 return true; 460 } 461 462 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 463 struct scatterlist *sglist, 464 struct scatterlist **sg) 465 { 466 struct bio_vec uninitialized_var(bvec), bvprv = { NULL }; 467 struct bvec_iter iter; 468 int nsegs = 0; 469 bool new_bio = false; 470 471 for_each_bio(bio) { 472 bio_for_each_bvec(bvec, bio, iter) { 473 /* 474 * Only try to merge bvecs from two bios given we 475 * have done bio internal merge when adding pages 476 * to bio 477 */ 478 if (new_bio && 479 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 480 goto next_bvec; 481 482 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 483 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 484 else 485 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 486 next_bvec: 487 new_bio = false; 488 } 489 if (likely(bio->bi_iter.bi_size)) { 490 bvprv = bvec; 491 new_bio = true; 492 } 493 } 494 495 return nsegs; 496 } 497 498 /* 499 * map a request to scatterlist, return number of sg entries setup. Caller 500 * must make sure sg can hold rq->nr_phys_segments entries 501 */ 502 int blk_rq_map_sg(struct request_queue *q, struct request *rq, 503 struct scatterlist *sglist) 504 { 505 struct scatterlist *sg = NULL; 506 int nsegs = 0; 507 508 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 509 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg); 510 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 511 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg); 512 else if (rq->bio) 513 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg); 514 515 if (unlikely(rq->rq_flags & RQF_COPY_USER) && 516 (blk_rq_bytes(rq) & q->dma_pad_mask)) { 517 unsigned int pad_len = 518 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 519 520 sg->length += pad_len; 521 rq->extra_len += pad_len; 522 } 523 524 if (q->dma_drain_size && q->dma_drain_needed(rq)) { 525 if (op_is_write(req_op(rq))) 526 memset(q->dma_drain_buffer, 0, q->dma_drain_size); 527 528 sg_unmark_end(sg); 529 sg = sg_next(sg); 530 sg_set_page(sg, virt_to_page(q->dma_drain_buffer), 531 q->dma_drain_size, 532 ((unsigned long)q->dma_drain_buffer) & 533 (PAGE_SIZE - 1)); 534 nsegs++; 535 rq->extra_len += q->dma_drain_size; 536 } 537 538 if (sg) 539 sg_mark_end(sg); 540 541 /* 542 * Something must have been wrong if the figured number of 543 * segment is bigger than number of req's physical segments 544 */ 545 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 546 547 return nsegs; 548 } 549 EXPORT_SYMBOL(blk_rq_map_sg); 550 551 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 552 unsigned int nr_phys_segs) 553 { 554 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q)) 555 goto no_merge; 556 557 if (blk_integrity_merge_bio(req->q, req, bio) == false) 558 goto no_merge; 559 560 /* 561 * This will form the start of a new hw segment. Bump both 562 * counters. 563 */ 564 req->nr_phys_segments += nr_phys_segs; 565 return 1; 566 567 no_merge: 568 req_set_nomerge(req->q, req); 569 return 0; 570 } 571 572 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 573 { 574 if (req_gap_back_merge(req, bio)) 575 return 0; 576 if (blk_integrity_rq(req) && 577 integrity_req_gap_back_merge(req, bio)) 578 return 0; 579 if (blk_rq_sectors(req) + bio_sectors(bio) > 580 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 581 req_set_nomerge(req->q, req); 582 return 0; 583 } 584 585 return ll_new_hw_segment(req, bio, nr_segs); 586 } 587 588 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 589 { 590 if (req_gap_front_merge(req, bio)) 591 return 0; 592 if (blk_integrity_rq(req) && 593 integrity_req_gap_front_merge(req, bio)) 594 return 0; 595 if (blk_rq_sectors(req) + bio_sectors(bio) > 596 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 597 req_set_nomerge(req->q, req); 598 return 0; 599 } 600 601 return ll_new_hw_segment(req, bio, nr_segs); 602 } 603 604 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 605 struct request *next) 606 { 607 unsigned short segments = blk_rq_nr_discard_segments(req); 608 609 if (segments >= queue_max_discard_segments(q)) 610 goto no_merge; 611 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 612 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 613 goto no_merge; 614 615 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 616 return true; 617 no_merge: 618 req_set_nomerge(q, req); 619 return false; 620 } 621 622 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 623 struct request *next) 624 { 625 int total_phys_segments; 626 627 if (req_gap_back_merge(req, next->bio)) 628 return 0; 629 630 /* 631 * Will it become too large? 632 */ 633 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 634 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 635 return 0; 636 637 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 638 if (total_phys_segments > queue_max_segments(q)) 639 return 0; 640 641 if (blk_integrity_merge_rq(q, req, next) == false) 642 return 0; 643 644 /* Merge is OK... */ 645 req->nr_phys_segments = total_phys_segments; 646 return 1; 647 } 648 649 /** 650 * blk_rq_set_mixed_merge - mark a request as mixed merge 651 * @rq: request to mark as mixed merge 652 * 653 * Description: 654 * @rq is about to be mixed merged. Make sure the attributes 655 * which can be mixed are set in each bio and mark @rq as mixed 656 * merged. 657 */ 658 void blk_rq_set_mixed_merge(struct request *rq) 659 { 660 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 661 struct bio *bio; 662 663 if (rq->rq_flags & RQF_MIXED_MERGE) 664 return; 665 666 /* 667 * @rq will no longer represent mixable attributes for all the 668 * contained bios. It will just track those of the first one. 669 * Distributes the attributs to each bio. 670 */ 671 for (bio = rq->bio; bio; bio = bio->bi_next) { 672 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 673 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 674 bio->bi_opf |= ff; 675 } 676 rq->rq_flags |= RQF_MIXED_MERGE; 677 } 678 679 static void blk_account_io_merge(struct request *req) 680 { 681 if (blk_do_io_stat(req)) { 682 struct hd_struct *part; 683 684 part_stat_lock(); 685 part = req->part; 686 687 part_dec_in_flight(req->q, part, rq_data_dir(req)); 688 689 hd_struct_put(part); 690 part_stat_unlock(); 691 } 692 } 693 /* 694 * Two cases of handling DISCARD merge: 695 * If max_discard_segments > 1, the driver takes every bio 696 * as a range and send them to controller together. The ranges 697 * needn't to be contiguous. 698 * Otherwise, the bios/requests will be handled as same as 699 * others which should be contiguous. 700 */ 701 static inline bool blk_discard_mergable(struct request *req) 702 { 703 if (req_op(req) == REQ_OP_DISCARD && 704 queue_max_discard_segments(req->q) > 1) 705 return true; 706 return false; 707 } 708 709 static enum elv_merge blk_try_req_merge(struct request *req, 710 struct request *next) 711 { 712 if (blk_discard_mergable(req)) 713 return ELEVATOR_DISCARD_MERGE; 714 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 715 return ELEVATOR_BACK_MERGE; 716 717 return ELEVATOR_NO_MERGE; 718 } 719 720 /* 721 * For non-mq, this has to be called with the request spinlock acquired. 722 * For mq with scheduling, the appropriate queue wide lock should be held. 723 */ 724 static struct request *attempt_merge(struct request_queue *q, 725 struct request *req, struct request *next) 726 { 727 if (!rq_mergeable(req) || !rq_mergeable(next)) 728 return NULL; 729 730 if (req_op(req) != req_op(next)) 731 return NULL; 732 733 if (rq_data_dir(req) != rq_data_dir(next) 734 || req->rq_disk != next->rq_disk) 735 return NULL; 736 737 if (req_op(req) == REQ_OP_WRITE_SAME && 738 !blk_write_same_mergeable(req->bio, next->bio)) 739 return NULL; 740 741 /* 742 * Don't allow merge of different write hints, or for a hint with 743 * non-hint IO. 744 */ 745 if (req->write_hint != next->write_hint) 746 return NULL; 747 748 if (req->ioprio != next->ioprio) 749 return NULL; 750 751 /* 752 * If we are allowed to merge, then append bio list 753 * from next to rq and release next. merge_requests_fn 754 * will have updated segment counts, update sector 755 * counts here. Handle DISCARDs separately, as they 756 * have separate settings. 757 */ 758 759 switch (blk_try_req_merge(req, next)) { 760 case ELEVATOR_DISCARD_MERGE: 761 if (!req_attempt_discard_merge(q, req, next)) 762 return NULL; 763 break; 764 case ELEVATOR_BACK_MERGE: 765 if (!ll_merge_requests_fn(q, req, next)) 766 return NULL; 767 break; 768 default: 769 return NULL; 770 } 771 772 /* 773 * If failfast settings disagree or any of the two is already 774 * a mixed merge, mark both as mixed before proceeding. This 775 * makes sure that all involved bios have mixable attributes 776 * set properly. 777 */ 778 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 779 (req->cmd_flags & REQ_FAILFAST_MASK) != 780 (next->cmd_flags & REQ_FAILFAST_MASK)) { 781 blk_rq_set_mixed_merge(req); 782 blk_rq_set_mixed_merge(next); 783 } 784 785 /* 786 * At this point we have either done a back merge or front merge. We 787 * need the smaller start_time_ns of the merged requests to be the 788 * current request for accounting purposes. 789 */ 790 if (next->start_time_ns < req->start_time_ns) 791 req->start_time_ns = next->start_time_ns; 792 793 req->biotail->bi_next = next->bio; 794 req->biotail = next->biotail; 795 796 req->__data_len += blk_rq_bytes(next); 797 798 if (!blk_discard_mergable(req)) 799 elv_merge_requests(q, req, next); 800 801 /* 802 * 'next' is going away, so update stats accordingly 803 */ 804 blk_account_io_merge(next); 805 806 /* 807 * ownership of bio passed from next to req, return 'next' for 808 * the caller to free 809 */ 810 next->bio = NULL; 811 return next; 812 } 813 814 struct request *attempt_back_merge(struct request_queue *q, struct request *rq) 815 { 816 struct request *next = elv_latter_request(q, rq); 817 818 if (next) 819 return attempt_merge(q, rq, next); 820 821 return NULL; 822 } 823 824 struct request *attempt_front_merge(struct request_queue *q, struct request *rq) 825 { 826 struct request *prev = elv_former_request(q, rq); 827 828 if (prev) 829 return attempt_merge(q, prev, rq); 830 831 return NULL; 832 } 833 834 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 835 struct request *next) 836 { 837 struct request *free; 838 839 free = attempt_merge(q, rq, next); 840 if (free) { 841 blk_put_request(free); 842 return 1; 843 } 844 845 return 0; 846 } 847 848 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 849 { 850 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 851 return false; 852 853 if (req_op(rq) != bio_op(bio)) 854 return false; 855 856 /* different data direction or already started, don't merge */ 857 if (bio_data_dir(bio) != rq_data_dir(rq)) 858 return false; 859 860 /* must be same device */ 861 if (rq->rq_disk != bio->bi_disk) 862 return false; 863 864 /* only merge integrity protected bio into ditto rq */ 865 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 866 return false; 867 868 /* must be using the same buffer */ 869 if (req_op(rq) == REQ_OP_WRITE_SAME && 870 !blk_write_same_mergeable(rq->bio, bio)) 871 return false; 872 873 /* 874 * Don't allow merge of different write hints, or for a hint with 875 * non-hint IO. 876 */ 877 if (rq->write_hint != bio->bi_write_hint) 878 return false; 879 880 if (rq->ioprio != bio_prio(bio)) 881 return false; 882 883 return true; 884 } 885 886 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 887 { 888 if (blk_discard_mergable(rq)) 889 return ELEVATOR_DISCARD_MERGE; 890 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 891 return ELEVATOR_BACK_MERGE; 892 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 893 return ELEVATOR_FRONT_MERGE; 894 return ELEVATOR_NO_MERGE; 895 } 896