xref: /openbmc/linux/block/blk-merge.c (revision 9f5ede3c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 
13 #include <trace/events/block.h>
14 
15 #include "blk.h"
16 #include "blk-mq-sched.h"
17 #include "blk-rq-qos.h"
18 #include "blk-throttle.h"
19 
20 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
21 {
22 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
23 }
24 
25 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
26 {
27 	struct bvec_iter iter = bio->bi_iter;
28 	int idx;
29 
30 	bio_get_first_bvec(bio, bv);
31 	if (bv->bv_len == bio->bi_iter.bi_size)
32 		return;		/* this bio only has a single bvec */
33 
34 	bio_advance_iter(bio, &iter, iter.bi_size);
35 
36 	if (!iter.bi_bvec_done)
37 		idx = iter.bi_idx - 1;
38 	else	/* in the middle of bvec */
39 		idx = iter.bi_idx;
40 
41 	*bv = bio->bi_io_vec[idx];
42 
43 	/*
44 	 * iter.bi_bvec_done records actual length of the last bvec
45 	 * if this bio ends in the middle of one io vector
46 	 */
47 	if (iter.bi_bvec_done)
48 		bv->bv_len = iter.bi_bvec_done;
49 }
50 
51 static inline bool bio_will_gap(struct request_queue *q,
52 		struct request *prev_rq, struct bio *prev, struct bio *next)
53 {
54 	struct bio_vec pb, nb;
55 
56 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
57 		return false;
58 
59 	/*
60 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
61 	 * is quite difficult to respect the sg gap limit.  We work hard to
62 	 * merge a huge number of small single bios in case of mkfs.
63 	 */
64 	if (prev_rq)
65 		bio_get_first_bvec(prev_rq->bio, &pb);
66 	else
67 		bio_get_first_bvec(prev, &pb);
68 	if (pb.bv_offset & queue_virt_boundary(q))
69 		return true;
70 
71 	/*
72 	 * We don't need to worry about the situation that the merged segment
73 	 * ends in unaligned virt boundary:
74 	 *
75 	 * - if 'pb' ends aligned, the merged segment ends aligned
76 	 * - if 'pb' ends unaligned, the next bio must include
77 	 *   one single bvec of 'nb', otherwise the 'nb' can't
78 	 *   merge with 'pb'
79 	 */
80 	bio_get_last_bvec(prev, &pb);
81 	bio_get_first_bvec(next, &nb);
82 	if (biovec_phys_mergeable(q, &pb, &nb))
83 		return false;
84 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
85 }
86 
87 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
88 {
89 	return bio_will_gap(req->q, req, req->biotail, bio);
90 }
91 
92 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
93 {
94 	return bio_will_gap(req->q, NULL, bio, req->bio);
95 }
96 
97 static struct bio *blk_bio_discard_split(struct request_queue *q,
98 					 struct bio *bio,
99 					 struct bio_set *bs,
100 					 unsigned *nsegs)
101 {
102 	unsigned int max_discard_sectors, granularity;
103 	int alignment;
104 	sector_t tmp;
105 	unsigned split_sectors;
106 
107 	*nsegs = 1;
108 
109 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
110 	granularity = max(q->limits.discard_granularity >> 9, 1U);
111 
112 	max_discard_sectors = min(q->limits.max_discard_sectors,
113 			bio_allowed_max_sectors(q));
114 	max_discard_sectors -= max_discard_sectors % granularity;
115 
116 	if (unlikely(!max_discard_sectors)) {
117 		/* XXX: warn */
118 		return NULL;
119 	}
120 
121 	if (bio_sectors(bio) <= max_discard_sectors)
122 		return NULL;
123 
124 	split_sectors = max_discard_sectors;
125 
126 	/*
127 	 * If the next starting sector would be misaligned, stop the discard at
128 	 * the previous aligned sector.
129 	 */
130 	alignment = (q->limits.discard_alignment >> 9) % granularity;
131 
132 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
133 	tmp = sector_div(tmp, granularity);
134 
135 	if (split_sectors > tmp)
136 		split_sectors -= tmp;
137 
138 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
139 }
140 
141 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
142 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
143 {
144 	*nsegs = 0;
145 
146 	if (!q->limits.max_write_zeroes_sectors)
147 		return NULL;
148 
149 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
150 		return NULL;
151 
152 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
153 }
154 
155 static struct bio *blk_bio_write_same_split(struct request_queue *q,
156 					    struct bio *bio,
157 					    struct bio_set *bs,
158 					    unsigned *nsegs)
159 {
160 	*nsegs = 1;
161 
162 	if (!q->limits.max_write_same_sectors)
163 		return NULL;
164 
165 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
166 		return NULL;
167 
168 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
169 }
170 
171 /*
172  * Return the maximum number of sectors from the start of a bio that may be
173  * submitted as a single request to a block device. If enough sectors remain,
174  * align the end to the physical block size. Otherwise align the end to the
175  * logical block size. This approach minimizes the number of non-aligned
176  * requests that are submitted to a block device if the start of a bio is not
177  * aligned to a physical block boundary.
178  */
179 static inline unsigned get_max_io_size(struct request_queue *q,
180 				       struct bio *bio)
181 {
182 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
183 	unsigned max_sectors = sectors;
184 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
185 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
186 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
187 
188 	max_sectors += start_offset;
189 	max_sectors &= ~(pbs - 1);
190 	if (max_sectors > start_offset)
191 		return max_sectors - start_offset;
192 
193 	return sectors & ~(lbs - 1);
194 }
195 
196 static inline unsigned get_max_segment_size(const struct request_queue *q,
197 					    struct page *start_page,
198 					    unsigned long offset)
199 {
200 	unsigned long mask = queue_segment_boundary(q);
201 
202 	offset = mask & (page_to_phys(start_page) + offset);
203 
204 	/*
205 	 * overflow may be triggered in case of zero page physical address
206 	 * on 32bit arch, use queue's max segment size when that happens.
207 	 */
208 	return min_not_zero(mask - offset + 1,
209 			(unsigned long)queue_max_segment_size(q));
210 }
211 
212 /**
213  * bvec_split_segs - verify whether or not a bvec should be split in the middle
214  * @q:        [in] request queue associated with the bio associated with @bv
215  * @bv:       [in] bvec to examine
216  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
217  *            by the number of segments from @bv that may be appended to that
218  *            bio without exceeding @max_segs
219  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
220  *            by the number of sectors from @bv that may be appended to that
221  *            bio without exceeding @max_sectors
222  * @max_segs: [in] upper bound for *@nsegs
223  * @max_sectors: [in] upper bound for *@sectors
224  *
225  * When splitting a bio, it can happen that a bvec is encountered that is too
226  * big to fit in a single segment and hence that it has to be split in the
227  * middle. This function verifies whether or not that should happen. The value
228  * %true is returned if and only if appending the entire @bv to a bio with
229  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
230  * the block driver.
231  */
232 static bool bvec_split_segs(const struct request_queue *q,
233 			    const struct bio_vec *bv, unsigned *nsegs,
234 			    unsigned *sectors, unsigned max_segs,
235 			    unsigned max_sectors)
236 {
237 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
238 	unsigned len = min(bv->bv_len, max_len);
239 	unsigned total_len = 0;
240 	unsigned seg_size = 0;
241 
242 	while (len && *nsegs < max_segs) {
243 		seg_size = get_max_segment_size(q, bv->bv_page,
244 						bv->bv_offset + total_len);
245 		seg_size = min(seg_size, len);
246 
247 		(*nsegs)++;
248 		total_len += seg_size;
249 		len -= seg_size;
250 
251 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
252 			break;
253 	}
254 
255 	*sectors += total_len >> 9;
256 
257 	/* tell the caller to split the bvec if it is too big to fit */
258 	return len > 0 || bv->bv_len > max_len;
259 }
260 
261 /**
262  * blk_bio_segment_split - split a bio in two bios
263  * @q:    [in] request queue pointer
264  * @bio:  [in] bio to be split
265  * @bs:	  [in] bio set to allocate the clone from
266  * @segs: [out] number of segments in the bio with the first half of the sectors
267  *
268  * Clone @bio, update the bi_iter of the clone to represent the first sectors
269  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
270  * following is guaranteed for the cloned bio:
271  * - That it has at most get_max_io_size(@q, @bio) sectors.
272  * - That it has at most queue_max_segments(@q) segments.
273  *
274  * Except for discard requests the cloned bio will point at the bi_io_vec of
275  * the original bio. It is the responsibility of the caller to ensure that the
276  * original bio is not freed before the cloned bio. The caller is also
277  * responsible for ensuring that @bs is only destroyed after processing of the
278  * split bio has finished.
279  */
280 static struct bio *blk_bio_segment_split(struct request_queue *q,
281 					 struct bio *bio,
282 					 struct bio_set *bs,
283 					 unsigned *segs)
284 {
285 	struct bio_vec bv, bvprv, *bvprvp = NULL;
286 	struct bvec_iter iter;
287 	unsigned nsegs = 0, sectors = 0;
288 	const unsigned max_sectors = get_max_io_size(q, bio);
289 	const unsigned max_segs = queue_max_segments(q);
290 
291 	bio_for_each_bvec(bv, bio, iter) {
292 		/*
293 		 * If the queue doesn't support SG gaps and adding this
294 		 * offset would create a gap, disallow it.
295 		 */
296 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
297 			goto split;
298 
299 		if (nsegs < max_segs &&
300 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
301 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
302 			nsegs++;
303 			sectors += bv.bv_len >> 9;
304 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
305 					 max_sectors)) {
306 			goto split;
307 		}
308 
309 		bvprv = bv;
310 		bvprvp = &bvprv;
311 	}
312 
313 	*segs = nsegs;
314 	return NULL;
315 split:
316 	*segs = nsegs;
317 
318 	/*
319 	 * Bio splitting may cause subtle trouble such as hang when doing sync
320 	 * iopoll in direct IO routine. Given performance gain of iopoll for
321 	 * big IO can be trival, disable iopoll when split needed.
322 	 */
323 	bio_clear_polled(bio);
324 	return bio_split(bio, sectors, GFP_NOIO, bs);
325 }
326 
327 /**
328  * __blk_queue_split - split a bio and submit the second half
329  * @q:       [in] request_queue new bio is being queued at
330  * @bio:     [in, out] bio to be split
331  * @nr_segs: [out] number of segments in the first bio
332  *
333  * Split a bio into two bios, chain the two bios, submit the second half and
334  * store a pointer to the first half in *@bio. If the second bio is still too
335  * big it will be split by a recursive call to this function. Since this
336  * function may allocate a new bio from q->bio_split, it is the responsibility
337  * of the caller to ensure that q->bio_split is only released after processing
338  * of the split bio has finished.
339  */
340 void __blk_queue_split(struct request_queue *q, struct bio **bio,
341 		       unsigned int *nr_segs)
342 {
343 	struct bio *split = NULL;
344 
345 	switch (bio_op(*bio)) {
346 	case REQ_OP_DISCARD:
347 	case REQ_OP_SECURE_ERASE:
348 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
349 		break;
350 	case REQ_OP_WRITE_ZEROES:
351 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
352 				nr_segs);
353 		break;
354 	case REQ_OP_WRITE_SAME:
355 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
356 				nr_segs);
357 		break;
358 	default:
359 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
360 		break;
361 	}
362 
363 	if (split) {
364 		/* there isn't chance to merge the splitted bio */
365 		split->bi_opf |= REQ_NOMERGE;
366 
367 		bio_chain(split, *bio);
368 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
369 		submit_bio_noacct(*bio);
370 		*bio = split;
371 	}
372 }
373 
374 /**
375  * blk_queue_split - split a bio and submit the second half
376  * @bio: [in, out] bio to be split
377  *
378  * Split a bio into two bios, chains the two bios, submit the second half and
379  * store a pointer to the first half in *@bio. Since this function may allocate
380  * a new bio from q->bio_split, it is the responsibility of the caller to ensure
381  * that q->bio_split is only released after processing of the split bio has
382  * finished.
383  */
384 void blk_queue_split(struct bio **bio)
385 {
386 	struct request_queue *q = bdev_get_queue((*bio)->bi_bdev);
387 	unsigned int nr_segs;
388 
389 	if (blk_may_split(q, *bio))
390 		__blk_queue_split(q, bio, &nr_segs);
391 }
392 EXPORT_SYMBOL(blk_queue_split);
393 
394 unsigned int blk_recalc_rq_segments(struct request *rq)
395 {
396 	unsigned int nr_phys_segs = 0;
397 	unsigned int nr_sectors = 0;
398 	struct req_iterator iter;
399 	struct bio_vec bv;
400 
401 	if (!rq->bio)
402 		return 0;
403 
404 	switch (bio_op(rq->bio)) {
405 	case REQ_OP_DISCARD:
406 	case REQ_OP_SECURE_ERASE:
407 		if (queue_max_discard_segments(rq->q) > 1) {
408 			struct bio *bio = rq->bio;
409 
410 			for_each_bio(bio)
411 				nr_phys_segs++;
412 			return nr_phys_segs;
413 		}
414 		return 1;
415 	case REQ_OP_WRITE_ZEROES:
416 		return 0;
417 	case REQ_OP_WRITE_SAME:
418 		return 1;
419 	}
420 
421 	rq_for_each_bvec(bv, rq, iter)
422 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
423 				UINT_MAX, UINT_MAX);
424 	return nr_phys_segs;
425 }
426 
427 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
428 		struct scatterlist *sglist)
429 {
430 	if (!*sg)
431 		return sglist;
432 
433 	/*
434 	 * If the driver previously mapped a shorter list, we could see a
435 	 * termination bit prematurely unless it fully inits the sg table
436 	 * on each mapping. We KNOW that there must be more entries here
437 	 * or the driver would be buggy, so force clear the termination bit
438 	 * to avoid doing a full sg_init_table() in drivers for each command.
439 	 */
440 	sg_unmark_end(*sg);
441 	return sg_next(*sg);
442 }
443 
444 static unsigned blk_bvec_map_sg(struct request_queue *q,
445 		struct bio_vec *bvec, struct scatterlist *sglist,
446 		struct scatterlist **sg)
447 {
448 	unsigned nbytes = bvec->bv_len;
449 	unsigned nsegs = 0, total = 0;
450 
451 	while (nbytes > 0) {
452 		unsigned offset = bvec->bv_offset + total;
453 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
454 					offset), nbytes);
455 		struct page *page = bvec->bv_page;
456 
457 		/*
458 		 * Unfortunately a fair number of drivers barf on scatterlists
459 		 * that have an offset larger than PAGE_SIZE, despite other
460 		 * subsystems dealing with that invariant just fine.  For now
461 		 * stick to the legacy format where we never present those from
462 		 * the block layer, but the code below should be removed once
463 		 * these offenders (mostly MMC/SD drivers) are fixed.
464 		 */
465 		page += (offset >> PAGE_SHIFT);
466 		offset &= ~PAGE_MASK;
467 
468 		*sg = blk_next_sg(sg, sglist);
469 		sg_set_page(*sg, page, len, offset);
470 
471 		total += len;
472 		nbytes -= len;
473 		nsegs++;
474 	}
475 
476 	return nsegs;
477 }
478 
479 static inline int __blk_bvec_map_sg(struct bio_vec bv,
480 		struct scatterlist *sglist, struct scatterlist **sg)
481 {
482 	*sg = blk_next_sg(sg, sglist);
483 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
484 	return 1;
485 }
486 
487 /* only try to merge bvecs into one sg if they are from two bios */
488 static inline bool
489 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
490 			   struct bio_vec *bvprv, struct scatterlist **sg)
491 {
492 
493 	int nbytes = bvec->bv_len;
494 
495 	if (!*sg)
496 		return false;
497 
498 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
499 		return false;
500 
501 	if (!biovec_phys_mergeable(q, bvprv, bvec))
502 		return false;
503 
504 	(*sg)->length += nbytes;
505 
506 	return true;
507 }
508 
509 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
510 			     struct scatterlist *sglist,
511 			     struct scatterlist **sg)
512 {
513 	struct bio_vec bvec, bvprv = { NULL };
514 	struct bvec_iter iter;
515 	int nsegs = 0;
516 	bool new_bio = false;
517 
518 	for_each_bio(bio) {
519 		bio_for_each_bvec(bvec, bio, iter) {
520 			/*
521 			 * Only try to merge bvecs from two bios given we
522 			 * have done bio internal merge when adding pages
523 			 * to bio
524 			 */
525 			if (new_bio &&
526 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
527 				goto next_bvec;
528 
529 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
530 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
531 			else
532 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
533  next_bvec:
534 			new_bio = false;
535 		}
536 		if (likely(bio->bi_iter.bi_size)) {
537 			bvprv = bvec;
538 			new_bio = true;
539 		}
540 	}
541 
542 	return nsegs;
543 }
544 
545 /*
546  * map a request to scatterlist, return number of sg entries setup. Caller
547  * must make sure sg can hold rq->nr_phys_segments entries
548  */
549 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
550 		struct scatterlist *sglist, struct scatterlist **last_sg)
551 {
552 	int nsegs = 0;
553 
554 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
555 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
556 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
557 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
558 	else if (rq->bio)
559 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
560 
561 	if (*last_sg)
562 		sg_mark_end(*last_sg);
563 
564 	/*
565 	 * Something must have been wrong if the figured number of
566 	 * segment is bigger than number of req's physical segments
567 	 */
568 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
569 
570 	return nsegs;
571 }
572 EXPORT_SYMBOL(__blk_rq_map_sg);
573 
574 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
575 {
576 	if (req_op(rq) == REQ_OP_DISCARD)
577 		return queue_max_discard_segments(rq->q);
578 	return queue_max_segments(rq->q);
579 }
580 
581 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
582 						  sector_t offset)
583 {
584 	struct request_queue *q = rq->q;
585 
586 	if (blk_rq_is_passthrough(rq))
587 		return q->limits.max_hw_sectors;
588 
589 	if (!q->limits.chunk_sectors ||
590 	    req_op(rq) == REQ_OP_DISCARD ||
591 	    req_op(rq) == REQ_OP_SECURE_ERASE)
592 		return blk_queue_get_max_sectors(q, req_op(rq));
593 
594 	return min(blk_max_size_offset(q, offset, 0),
595 			blk_queue_get_max_sectors(q, req_op(rq)));
596 }
597 
598 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
599 		unsigned int nr_phys_segs)
600 {
601 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
602 		goto no_merge;
603 
604 	/* discard request merge won't add new segment */
605 	if (req_op(req) == REQ_OP_DISCARD)
606 		return 1;
607 
608 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
609 		goto no_merge;
610 
611 	/*
612 	 * This will form the start of a new hw segment.  Bump both
613 	 * counters.
614 	 */
615 	req->nr_phys_segments += nr_phys_segs;
616 	return 1;
617 
618 no_merge:
619 	req_set_nomerge(req->q, req);
620 	return 0;
621 }
622 
623 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
624 {
625 	if (req_gap_back_merge(req, bio))
626 		return 0;
627 	if (blk_integrity_rq(req) &&
628 	    integrity_req_gap_back_merge(req, bio))
629 		return 0;
630 	if (!bio_crypt_ctx_back_mergeable(req, bio))
631 		return 0;
632 	if (blk_rq_sectors(req) + bio_sectors(bio) >
633 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
634 		req_set_nomerge(req->q, req);
635 		return 0;
636 	}
637 
638 	return ll_new_hw_segment(req, bio, nr_segs);
639 }
640 
641 static int ll_front_merge_fn(struct request *req, struct bio *bio,
642 		unsigned int nr_segs)
643 {
644 	if (req_gap_front_merge(req, bio))
645 		return 0;
646 	if (blk_integrity_rq(req) &&
647 	    integrity_req_gap_front_merge(req, bio))
648 		return 0;
649 	if (!bio_crypt_ctx_front_mergeable(req, bio))
650 		return 0;
651 	if (blk_rq_sectors(req) + bio_sectors(bio) >
652 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
653 		req_set_nomerge(req->q, req);
654 		return 0;
655 	}
656 
657 	return ll_new_hw_segment(req, bio, nr_segs);
658 }
659 
660 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
661 		struct request *next)
662 {
663 	unsigned short segments = blk_rq_nr_discard_segments(req);
664 
665 	if (segments >= queue_max_discard_segments(q))
666 		goto no_merge;
667 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
668 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
669 		goto no_merge;
670 
671 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
672 	return true;
673 no_merge:
674 	req_set_nomerge(q, req);
675 	return false;
676 }
677 
678 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
679 				struct request *next)
680 {
681 	int total_phys_segments;
682 
683 	if (req_gap_back_merge(req, next->bio))
684 		return 0;
685 
686 	/*
687 	 * Will it become too large?
688 	 */
689 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
690 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
691 		return 0;
692 
693 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
694 	if (total_phys_segments > blk_rq_get_max_segments(req))
695 		return 0;
696 
697 	if (blk_integrity_merge_rq(q, req, next) == false)
698 		return 0;
699 
700 	if (!bio_crypt_ctx_merge_rq(req, next))
701 		return 0;
702 
703 	/* Merge is OK... */
704 	req->nr_phys_segments = total_phys_segments;
705 	return 1;
706 }
707 
708 /**
709  * blk_rq_set_mixed_merge - mark a request as mixed merge
710  * @rq: request to mark as mixed merge
711  *
712  * Description:
713  *     @rq is about to be mixed merged.  Make sure the attributes
714  *     which can be mixed are set in each bio and mark @rq as mixed
715  *     merged.
716  */
717 void blk_rq_set_mixed_merge(struct request *rq)
718 {
719 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
720 	struct bio *bio;
721 
722 	if (rq->rq_flags & RQF_MIXED_MERGE)
723 		return;
724 
725 	/*
726 	 * @rq will no longer represent mixable attributes for all the
727 	 * contained bios.  It will just track those of the first one.
728 	 * Distributes the attributs to each bio.
729 	 */
730 	for (bio = rq->bio; bio; bio = bio->bi_next) {
731 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
732 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
733 		bio->bi_opf |= ff;
734 	}
735 	rq->rq_flags |= RQF_MIXED_MERGE;
736 }
737 
738 static void blk_account_io_merge_request(struct request *req)
739 {
740 	if (blk_do_io_stat(req)) {
741 		part_stat_lock();
742 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
743 		part_stat_unlock();
744 	}
745 }
746 
747 static enum elv_merge blk_try_req_merge(struct request *req,
748 					struct request *next)
749 {
750 	if (blk_discard_mergable(req))
751 		return ELEVATOR_DISCARD_MERGE;
752 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
753 		return ELEVATOR_BACK_MERGE;
754 
755 	return ELEVATOR_NO_MERGE;
756 }
757 
758 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
759 {
760 	if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b))
761 		return true;
762 	return false;
763 }
764 
765 /*
766  * For non-mq, this has to be called with the request spinlock acquired.
767  * For mq with scheduling, the appropriate queue wide lock should be held.
768  */
769 static struct request *attempt_merge(struct request_queue *q,
770 				     struct request *req, struct request *next)
771 {
772 	if (!rq_mergeable(req) || !rq_mergeable(next))
773 		return NULL;
774 
775 	if (req_op(req) != req_op(next))
776 		return NULL;
777 
778 	if (rq_data_dir(req) != rq_data_dir(next))
779 		return NULL;
780 
781 	if (req_op(req) == REQ_OP_WRITE_SAME &&
782 	    !blk_write_same_mergeable(req->bio, next->bio))
783 		return NULL;
784 
785 	/*
786 	 * Don't allow merge of different write hints, or for a hint with
787 	 * non-hint IO.
788 	 */
789 	if (req->write_hint != next->write_hint)
790 		return NULL;
791 
792 	if (req->ioprio != next->ioprio)
793 		return NULL;
794 
795 	/*
796 	 * If we are allowed to merge, then append bio list
797 	 * from next to rq and release next. merge_requests_fn
798 	 * will have updated segment counts, update sector
799 	 * counts here. Handle DISCARDs separately, as they
800 	 * have separate settings.
801 	 */
802 
803 	switch (blk_try_req_merge(req, next)) {
804 	case ELEVATOR_DISCARD_MERGE:
805 		if (!req_attempt_discard_merge(q, req, next))
806 			return NULL;
807 		break;
808 	case ELEVATOR_BACK_MERGE:
809 		if (!ll_merge_requests_fn(q, req, next))
810 			return NULL;
811 		break;
812 	default:
813 		return NULL;
814 	}
815 
816 	/*
817 	 * If failfast settings disagree or any of the two is already
818 	 * a mixed merge, mark both as mixed before proceeding.  This
819 	 * makes sure that all involved bios have mixable attributes
820 	 * set properly.
821 	 */
822 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
823 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
824 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
825 		blk_rq_set_mixed_merge(req);
826 		blk_rq_set_mixed_merge(next);
827 	}
828 
829 	/*
830 	 * At this point we have either done a back merge or front merge. We
831 	 * need the smaller start_time_ns of the merged requests to be the
832 	 * current request for accounting purposes.
833 	 */
834 	if (next->start_time_ns < req->start_time_ns)
835 		req->start_time_ns = next->start_time_ns;
836 
837 	req->biotail->bi_next = next->bio;
838 	req->biotail = next->biotail;
839 
840 	req->__data_len += blk_rq_bytes(next);
841 
842 	if (!blk_discard_mergable(req))
843 		elv_merge_requests(q, req, next);
844 
845 	/*
846 	 * 'next' is going away, so update stats accordingly
847 	 */
848 	blk_account_io_merge_request(next);
849 
850 	trace_block_rq_merge(next);
851 
852 	/*
853 	 * ownership of bio passed from next to req, return 'next' for
854 	 * the caller to free
855 	 */
856 	next->bio = NULL;
857 	return next;
858 }
859 
860 static struct request *attempt_back_merge(struct request_queue *q,
861 		struct request *rq)
862 {
863 	struct request *next = elv_latter_request(q, rq);
864 
865 	if (next)
866 		return attempt_merge(q, rq, next);
867 
868 	return NULL;
869 }
870 
871 static struct request *attempt_front_merge(struct request_queue *q,
872 		struct request *rq)
873 {
874 	struct request *prev = elv_former_request(q, rq);
875 
876 	if (prev)
877 		return attempt_merge(q, prev, rq);
878 
879 	return NULL;
880 }
881 
882 /*
883  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
884  * otherwise. The caller is responsible for freeing 'next' if the merge
885  * happened.
886  */
887 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
888 			   struct request *next)
889 {
890 	return attempt_merge(q, rq, next);
891 }
892 
893 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
894 {
895 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
896 		return false;
897 
898 	if (req_op(rq) != bio_op(bio))
899 		return false;
900 
901 	/* different data direction or already started, don't merge */
902 	if (bio_data_dir(bio) != rq_data_dir(rq))
903 		return false;
904 
905 	/* only merge integrity protected bio into ditto rq */
906 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
907 		return false;
908 
909 	/* Only merge if the crypt contexts are compatible */
910 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
911 		return false;
912 
913 	/* must be using the same buffer */
914 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
915 	    !blk_write_same_mergeable(rq->bio, bio))
916 		return false;
917 
918 	/*
919 	 * Don't allow merge of different write hints, or for a hint with
920 	 * non-hint IO.
921 	 */
922 	if (rq->write_hint != bio->bi_write_hint)
923 		return false;
924 
925 	if (rq->ioprio != bio_prio(bio))
926 		return false;
927 
928 	return true;
929 }
930 
931 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
932 {
933 	if (blk_discard_mergable(rq))
934 		return ELEVATOR_DISCARD_MERGE;
935 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
936 		return ELEVATOR_BACK_MERGE;
937 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
938 		return ELEVATOR_FRONT_MERGE;
939 	return ELEVATOR_NO_MERGE;
940 }
941 
942 static void blk_account_io_merge_bio(struct request *req)
943 {
944 	if (!blk_do_io_stat(req))
945 		return;
946 
947 	part_stat_lock();
948 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
949 	part_stat_unlock();
950 }
951 
952 enum bio_merge_status {
953 	BIO_MERGE_OK,
954 	BIO_MERGE_NONE,
955 	BIO_MERGE_FAILED,
956 };
957 
958 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
959 		struct bio *bio, unsigned int nr_segs)
960 {
961 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
962 
963 	if (!ll_back_merge_fn(req, bio, nr_segs))
964 		return BIO_MERGE_FAILED;
965 
966 	trace_block_bio_backmerge(bio);
967 	rq_qos_merge(req->q, req, bio);
968 
969 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
970 		blk_rq_set_mixed_merge(req);
971 
972 	req->biotail->bi_next = bio;
973 	req->biotail = bio;
974 	req->__data_len += bio->bi_iter.bi_size;
975 
976 	bio_crypt_free_ctx(bio);
977 
978 	blk_account_io_merge_bio(req);
979 	return BIO_MERGE_OK;
980 }
981 
982 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
983 		struct bio *bio, unsigned int nr_segs)
984 {
985 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
986 
987 	if (!ll_front_merge_fn(req, bio, nr_segs))
988 		return BIO_MERGE_FAILED;
989 
990 	trace_block_bio_frontmerge(bio);
991 	rq_qos_merge(req->q, req, bio);
992 
993 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
994 		blk_rq_set_mixed_merge(req);
995 
996 	bio->bi_next = req->bio;
997 	req->bio = bio;
998 
999 	req->__sector = bio->bi_iter.bi_sector;
1000 	req->__data_len += bio->bi_iter.bi_size;
1001 
1002 	bio_crypt_do_front_merge(req, bio);
1003 
1004 	blk_account_io_merge_bio(req);
1005 	return BIO_MERGE_OK;
1006 }
1007 
1008 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1009 		struct request *req, struct bio *bio)
1010 {
1011 	unsigned short segments = blk_rq_nr_discard_segments(req);
1012 
1013 	if (segments >= queue_max_discard_segments(q))
1014 		goto no_merge;
1015 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1016 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1017 		goto no_merge;
1018 
1019 	rq_qos_merge(q, req, bio);
1020 
1021 	req->biotail->bi_next = bio;
1022 	req->biotail = bio;
1023 	req->__data_len += bio->bi_iter.bi_size;
1024 	req->nr_phys_segments = segments + 1;
1025 
1026 	blk_account_io_merge_bio(req);
1027 	return BIO_MERGE_OK;
1028 no_merge:
1029 	req_set_nomerge(q, req);
1030 	return BIO_MERGE_FAILED;
1031 }
1032 
1033 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1034 						   struct request *rq,
1035 						   struct bio *bio,
1036 						   unsigned int nr_segs,
1037 						   bool sched_allow_merge)
1038 {
1039 	if (!blk_rq_merge_ok(rq, bio))
1040 		return BIO_MERGE_NONE;
1041 
1042 	switch (blk_try_merge(rq, bio)) {
1043 	case ELEVATOR_BACK_MERGE:
1044 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1045 			return bio_attempt_back_merge(rq, bio, nr_segs);
1046 		break;
1047 	case ELEVATOR_FRONT_MERGE:
1048 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1049 			return bio_attempt_front_merge(rq, bio, nr_segs);
1050 		break;
1051 	case ELEVATOR_DISCARD_MERGE:
1052 		return bio_attempt_discard_merge(q, rq, bio);
1053 	default:
1054 		return BIO_MERGE_NONE;
1055 	}
1056 
1057 	return BIO_MERGE_FAILED;
1058 }
1059 
1060 /**
1061  * blk_attempt_plug_merge - try to merge with %current's plugged list
1062  * @q: request_queue new bio is being queued at
1063  * @bio: new bio being queued
1064  * @nr_segs: number of segments in @bio
1065  * from the passed in @q already in the plug list
1066  *
1067  * Determine whether @bio being queued on @q can be merged with the previous
1068  * request on %current's plugged list.  Returns %true if merge was successful,
1069  * otherwise %false.
1070  *
1071  * Plugging coalesces IOs from the same issuer for the same purpose without
1072  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1073  * than scheduling, and the request, while may have elvpriv data, is not
1074  * added on the elevator at this point.  In addition, we don't have
1075  * reliable access to the elevator outside queue lock.  Only check basic
1076  * merging parameters without querying the elevator.
1077  *
1078  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1079  */
1080 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1081 		unsigned int nr_segs)
1082 {
1083 	struct blk_plug *plug;
1084 	struct request *rq;
1085 
1086 	plug = blk_mq_plug(q, bio);
1087 	if (!plug || rq_list_empty(plug->mq_list))
1088 		return false;
1089 
1090 	/* check the previously added entry for a quick merge attempt */
1091 	rq = rq_list_peek(&plug->mq_list);
1092 	if (rq->q == q) {
1093 		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1094 				BIO_MERGE_OK)
1095 			return true;
1096 	}
1097 	return false;
1098 }
1099 
1100 /*
1101  * Iterate list of requests and see if we can merge this bio with any
1102  * of them.
1103  */
1104 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1105 			struct bio *bio, unsigned int nr_segs)
1106 {
1107 	struct request *rq;
1108 	int checked = 8;
1109 
1110 	list_for_each_entry_reverse(rq, list, queuelist) {
1111 		if (!checked--)
1112 			break;
1113 
1114 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1115 		case BIO_MERGE_NONE:
1116 			continue;
1117 		case BIO_MERGE_OK:
1118 			return true;
1119 		case BIO_MERGE_FAILED:
1120 			return false;
1121 		}
1122 
1123 	}
1124 
1125 	return false;
1126 }
1127 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1128 
1129 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1130 		unsigned int nr_segs, struct request **merged_request)
1131 {
1132 	struct request *rq;
1133 
1134 	switch (elv_merge(q, &rq, bio)) {
1135 	case ELEVATOR_BACK_MERGE:
1136 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1137 			return false;
1138 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1139 			return false;
1140 		*merged_request = attempt_back_merge(q, rq);
1141 		if (!*merged_request)
1142 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1143 		return true;
1144 	case ELEVATOR_FRONT_MERGE:
1145 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1146 			return false;
1147 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1148 			return false;
1149 		*merged_request = attempt_front_merge(q, rq);
1150 		if (!*merged_request)
1151 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1152 		return true;
1153 	case ELEVATOR_DISCARD_MERGE:
1154 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1155 	default:
1156 		return false;
1157 	}
1158 }
1159 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1160