xref: /openbmc/linux/block/blk-merge.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 
15 static inline bool bio_will_gap(struct request_queue *q,
16 		struct request *prev_rq, struct bio *prev, struct bio *next)
17 {
18 	struct bio_vec pb, nb;
19 
20 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
21 		return false;
22 
23 	/*
24 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
25 	 * is quite difficult to respect the sg gap limit.  We work hard to
26 	 * merge a huge number of small single bios in case of mkfs.
27 	 */
28 	if (prev_rq)
29 		bio_get_first_bvec(prev_rq->bio, &pb);
30 	else
31 		bio_get_first_bvec(prev, &pb);
32 	if (pb.bv_offset & queue_virt_boundary(q))
33 		return true;
34 
35 	/*
36 	 * We don't need to worry about the situation that the merged segment
37 	 * ends in unaligned virt boundary:
38 	 *
39 	 * - if 'pb' ends aligned, the merged segment ends aligned
40 	 * - if 'pb' ends unaligned, the next bio must include
41 	 *   one single bvec of 'nb', otherwise the 'nb' can't
42 	 *   merge with 'pb'
43 	 */
44 	bio_get_last_bvec(prev, &pb);
45 	bio_get_first_bvec(next, &nb);
46 	if (biovec_phys_mergeable(q, &pb, &nb))
47 		return false;
48 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
49 }
50 
51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
52 {
53 	return bio_will_gap(req->q, req, req->biotail, bio);
54 }
55 
56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
57 {
58 	return bio_will_gap(req->q, NULL, bio, req->bio);
59 }
60 
61 static struct bio *blk_bio_discard_split(struct request_queue *q,
62 					 struct bio *bio,
63 					 struct bio_set *bs,
64 					 unsigned *nsegs)
65 {
66 	unsigned int max_discard_sectors, granularity;
67 	int alignment;
68 	sector_t tmp;
69 	unsigned split_sectors;
70 
71 	*nsegs = 1;
72 
73 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
74 	granularity = max(q->limits.discard_granularity >> 9, 1U);
75 
76 	max_discard_sectors = min(q->limits.max_discard_sectors,
77 			bio_allowed_max_sectors(q));
78 	max_discard_sectors -= max_discard_sectors % granularity;
79 
80 	if (unlikely(!max_discard_sectors)) {
81 		/* XXX: warn */
82 		return NULL;
83 	}
84 
85 	if (bio_sectors(bio) <= max_discard_sectors)
86 		return NULL;
87 
88 	split_sectors = max_discard_sectors;
89 
90 	/*
91 	 * If the next starting sector would be misaligned, stop the discard at
92 	 * the previous aligned sector.
93 	 */
94 	alignment = (q->limits.discard_alignment >> 9) % granularity;
95 
96 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
97 	tmp = sector_div(tmp, granularity);
98 
99 	if (split_sectors > tmp)
100 		split_sectors -= tmp;
101 
102 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
103 }
104 
105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
106 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
107 {
108 	*nsegs = 0;
109 
110 	if (!q->limits.max_write_zeroes_sectors)
111 		return NULL;
112 
113 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
114 		return NULL;
115 
116 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
117 }
118 
119 static struct bio *blk_bio_write_same_split(struct request_queue *q,
120 					    struct bio *bio,
121 					    struct bio_set *bs,
122 					    unsigned *nsegs)
123 {
124 	*nsegs = 1;
125 
126 	if (!q->limits.max_write_same_sectors)
127 		return NULL;
128 
129 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
130 		return NULL;
131 
132 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
133 }
134 
135 /*
136  * Return the maximum number of sectors from the start of a bio that may be
137  * submitted as a single request to a block device. If enough sectors remain,
138  * align the end to the physical block size. Otherwise align the end to the
139  * logical block size. This approach minimizes the number of non-aligned
140  * requests that are submitted to a block device if the start of a bio is not
141  * aligned to a physical block boundary.
142  */
143 static inline unsigned get_max_io_size(struct request_queue *q,
144 				       struct bio *bio)
145 {
146 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
147 	unsigned max_sectors = sectors;
148 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
149 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
150 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
151 
152 	max_sectors += start_offset;
153 	max_sectors &= ~(pbs - 1);
154 	if (max_sectors > start_offset)
155 		return max_sectors - start_offset;
156 
157 	return sectors & (lbs - 1);
158 }
159 
160 static inline unsigned get_max_segment_size(const struct request_queue *q,
161 					    struct page *start_page,
162 					    unsigned long offset)
163 {
164 	unsigned long mask = queue_segment_boundary(q);
165 
166 	offset = mask & (page_to_phys(start_page) + offset);
167 	return min_t(unsigned long, mask - offset + 1,
168 		     queue_max_segment_size(q));
169 }
170 
171 /**
172  * bvec_split_segs - verify whether or not a bvec should be split in the middle
173  * @q:        [in] request queue associated with the bio associated with @bv
174  * @bv:       [in] bvec to examine
175  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
176  *            by the number of segments from @bv that may be appended to that
177  *            bio without exceeding @max_segs
178  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
179  *            by the number of sectors from @bv that may be appended to that
180  *            bio without exceeding @max_sectors
181  * @max_segs: [in] upper bound for *@nsegs
182  * @max_sectors: [in] upper bound for *@sectors
183  *
184  * When splitting a bio, it can happen that a bvec is encountered that is too
185  * big to fit in a single segment and hence that it has to be split in the
186  * middle. This function verifies whether or not that should happen. The value
187  * %true is returned if and only if appending the entire @bv to a bio with
188  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
189  * the block driver.
190  */
191 static bool bvec_split_segs(const struct request_queue *q,
192 			    const struct bio_vec *bv, unsigned *nsegs,
193 			    unsigned *sectors, unsigned max_segs,
194 			    unsigned max_sectors)
195 {
196 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
197 	unsigned len = min(bv->bv_len, max_len);
198 	unsigned total_len = 0;
199 	unsigned seg_size = 0;
200 
201 	while (len && *nsegs < max_segs) {
202 		seg_size = get_max_segment_size(q, bv->bv_page,
203 						bv->bv_offset + total_len);
204 		seg_size = min(seg_size, len);
205 
206 		(*nsegs)++;
207 		total_len += seg_size;
208 		len -= seg_size;
209 
210 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
211 			break;
212 	}
213 
214 	*sectors += total_len >> 9;
215 
216 	/* tell the caller to split the bvec if it is too big to fit */
217 	return len > 0 || bv->bv_len > max_len;
218 }
219 
220 /**
221  * blk_bio_segment_split - split a bio in two bios
222  * @q:    [in] request queue pointer
223  * @bio:  [in] bio to be split
224  * @bs:	  [in] bio set to allocate the clone from
225  * @segs: [out] number of segments in the bio with the first half of the sectors
226  *
227  * Clone @bio, update the bi_iter of the clone to represent the first sectors
228  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
229  * following is guaranteed for the cloned bio:
230  * - That it has at most get_max_io_size(@q, @bio) sectors.
231  * - That it has at most queue_max_segments(@q) segments.
232  *
233  * Except for discard requests the cloned bio will point at the bi_io_vec of
234  * the original bio. It is the responsibility of the caller to ensure that the
235  * original bio is not freed before the cloned bio. The caller is also
236  * responsible for ensuring that @bs is only destroyed after processing of the
237  * split bio has finished.
238  */
239 static struct bio *blk_bio_segment_split(struct request_queue *q,
240 					 struct bio *bio,
241 					 struct bio_set *bs,
242 					 unsigned *segs)
243 {
244 	struct bio_vec bv, bvprv, *bvprvp = NULL;
245 	struct bvec_iter iter;
246 	unsigned nsegs = 0, sectors = 0;
247 	const unsigned max_sectors = get_max_io_size(q, bio);
248 	const unsigned max_segs = queue_max_segments(q);
249 
250 	bio_for_each_bvec(bv, bio, iter) {
251 		/*
252 		 * If the queue doesn't support SG gaps and adding this
253 		 * offset would create a gap, disallow it.
254 		 */
255 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
256 			goto split;
257 
258 		if (nsegs < max_segs &&
259 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
260 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
261 			nsegs++;
262 			sectors += bv.bv_len >> 9;
263 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
264 					 max_sectors)) {
265 			goto split;
266 		}
267 
268 		bvprv = bv;
269 		bvprvp = &bvprv;
270 	}
271 
272 	*segs = nsegs;
273 	return NULL;
274 split:
275 	*segs = nsegs;
276 	return bio_split(bio, sectors, GFP_NOIO, bs);
277 }
278 
279 /**
280  * __blk_queue_split - split a bio and submit the second half
281  * @q:       [in] request queue pointer
282  * @bio:     [in, out] bio to be split
283  * @nr_segs: [out] number of segments in the first bio
284  *
285  * Split a bio into two bios, chain the two bios, submit the second half and
286  * store a pointer to the first half in *@bio. If the second bio is still too
287  * big it will be split by a recursive call to this function. Since this
288  * function may allocate a new bio from @q->bio_split, it is the responsibility
289  * of the caller to ensure that @q is only released after processing of the
290  * split bio has finished.
291  */
292 void __blk_queue_split(struct request_queue *q, struct bio **bio,
293 		unsigned int *nr_segs)
294 {
295 	struct bio *split = NULL;
296 
297 	switch (bio_op(*bio)) {
298 	case REQ_OP_DISCARD:
299 	case REQ_OP_SECURE_ERASE:
300 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
301 		break;
302 	case REQ_OP_WRITE_ZEROES:
303 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
304 				nr_segs);
305 		break;
306 	case REQ_OP_WRITE_SAME:
307 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
308 				nr_segs);
309 		break;
310 	default:
311 		/*
312 		 * All drivers must accept single-segments bios that are <=
313 		 * PAGE_SIZE.  This is a quick and dirty check that relies on
314 		 * the fact that bi_io_vec[0] is always valid if a bio has data.
315 		 * The check might lead to occasional false negatives when bios
316 		 * are cloned, but compared to the performance impact of cloned
317 		 * bios themselves the loop below doesn't matter anyway.
318 		 */
319 		if (!q->limits.chunk_sectors &&
320 		    (*bio)->bi_vcnt == 1 &&
321 		    ((*bio)->bi_io_vec[0].bv_len +
322 		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
323 			*nr_segs = 1;
324 			break;
325 		}
326 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
327 		break;
328 	}
329 
330 	if (split) {
331 		/* there isn't chance to merge the splitted bio */
332 		split->bi_opf |= REQ_NOMERGE;
333 
334 		/*
335 		 * Since we're recursing into make_request here, ensure
336 		 * that we mark this bio as already having entered the queue.
337 		 * If not, and the queue is going away, we can get stuck
338 		 * forever on waiting for the queue reference to drop. But
339 		 * that will never happen, as we're already holding a
340 		 * reference to it.
341 		 */
342 		bio_set_flag(*bio, BIO_QUEUE_ENTERED);
343 
344 		bio_chain(split, *bio);
345 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
346 		generic_make_request(*bio);
347 		*bio = split;
348 	}
349 }
350 
351 /**
352  * blk_queue_split - split a bio and submit the second half
353  * @q:   [in] request queue pointer
354  * @bio: [in, out] bio to be split
355  *
356  * Split a bio into two bios, chains the two bios, submit the second half and
357  * store a pointer to the first half in *@bio. Since this function may allocate
358  * a new bio from @q->bio_split, it is the responsibility of the caller to
359  * ensure that @q is only released after processing of the split bio has
360  * finished.
361  */
362 void blk_queue_split(struct request_queue *q, struct bio **bio)
363 {
364 	unsigned int nr_segs;
365 
366 	__blk_queue_split(q, bio, &nr_segs);
367 }
368 EXPORT_SYMBOL(blk_queue_split);
369 
370 unsigned int blk_recalc_rq_segments(struct request *rq)
371 {
372 	unsigned int nr_phys_segs = 0;
373 	unsigned int nr_sectors = 0;
374 	struct req_iterator iter;
375 	struct bio_vec bv;
376 
377 	if (!rq->bio)
378 		return 0;
379 
380 	switch (bio_op(rq->bio)) {
381 	case REQ_OP_DISCARD:
382 	case REQ_OP_SECURE_ERASE:
383 	case REQ_OP_WRITE_ZEROES:
384 		return 0;
385 	case REQ_OP_WRITE_SAME:
386 		return 1;
387 	}
388 
389 	rq_for_each_bvec(bv, rq, iter)
390 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
391 				UINT_MAX, UINT_MAX);
392 	return nr_phys_segs;
393 }
394 
395 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
396 		struct scatterlist *sglist)
397 {
398 	if (!*sg)
399 		return sglist;
400 
401 	/*
402 	 * If the driver previously mapped a shorter list, we could see a
403 	 * termination bit prematurely unless it fully inits the sg table
404 	 * on each mapping. We KNOW that there must be more entries here
405 	 * or the driver would be buggy, so force clear the termination bit
406 	 * to avoid doing a full sg_init_table() in drivers for each command.
407 	 */
408 	sg_unmark_end(*sg);
409 	return sg_next(*sg);
410 }
411 
412 static unsigned blk_bvec_map_sg(struct request_queue *q,
413 		struct bio_vec *bvec, struct scatterlist *sglist,
414 		struct scatterlist **sg)
415 {
416 	unsigned nbytes = bvec->bv_len;
417 	unsigned nsegs = 0, total = 0;
418 
419 	while (nbytes > 0) {
420 		unsigned offset = bvec->bv_offset + total;
421 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
422 					offset), nbytes);
423 		struct page *page = bvec->bv_page;
424 
425 		/*
426 		 * Unfortunately a fair number of drivers barf on scatterlists
427 		 * that have an offset larger than PAGE_SIZE, despite other
428 		 * subsystems dealing with that invariant just fine.  For now
429 		 * stick to the legacy format where we never present those from
430 		 * the block layer, but the code below should be removed once
431 		 * these offenders (mostly MMC/SD drivers) are fixed.
432 		 */
433 		page += (offset >> PAGE_SHIFT);
434 		offset &= ~PAGE_MASK;
435 
436 		*sg = blk_next_sg(sg, sglist);
437 		sg_set_page(*sg, page, len, offset);
438 
439 		total += len;
440 		nbytes -= len;
441 		nsegs++;
442 	}
443 
444 	return nsegs;
445 }
446 
447 static inline int __blk_bvec_map_sg(struct bio_vec bv,
448 		struct scatterlist *sglist, struct scatterlist **sg)
449 {
450 	*sg = blk_next_sg(sg, sglist);
451 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
452 	return 1;
453 }
454 
455 /* only try to merge bvecs into one sg if they are from two bios */
456 static inline bool
457 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
458 			   struct bio_vec *bvprv, struct scatterlist **sg)
459 {
460 
461 	int nbytes = bvec->bv_len;
462 
463 	if (!*sg)
464 		return false;
465 
466 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
467 		return false;
468 
469 	if (!biovec_phys_mergeable(q, bvprv, bvec))
470 		return false;
471 
472 	(*sg)->length += nbytes;
473 
474 	return true;
475 }
476 
477 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
478 			     struct scatterlist *sglist,
479 			     struct scatterlist **sg)
480 {
481 	struct bio_vec uninitialized_var(bvec), bvprv = { NULL };
482 	struct bvec_iter iter;
483 	int nsegs = 0;
484 	bool new_bio = false;
485 
486 	for_each_bio(bio) {
487 		bio_for_each_bvec(bvec, bio, iter) {
488 			/*
489 			 * Only try to merge bvecs from two bios given we
490 			 * have done bio internal merge when adding pages
491 			 * to bio
492 			 */
493 			if (new_bio &&
494 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
495 				goto next_bvec;
496 
497 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
498 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
499 			else
500 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
501  next_bvec:
502 			new_bio = false;
503 		}
504 		if (likely(bio->bi_iter.bi_size)) {
505 			bvprv = bvec;
506 			new_bio = true;
507 		}
508 	}
509 
510 	return nsegs;
511 }
512 
513 /*
514  * map a request to scatterlist, return number of sg entries setup. Caller
515  * must make sure sg can hold rq->nr_phys_segments entries
516  */
517 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
518 		  struct scatterlist *sglist)
519 {
520 	struct scatterlist *sg = NULL;
521 	int nsegs = 0;
522 
523 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
524 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg);
525 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
526 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg);
527 	else if (rq->bio)
528 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
529 
530 	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
531 	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
532 		unsigned int pad_len =
533 			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
534 
535 		sg->length += pad_len;
536 		rq->extra_len += pad_len;
537 	}
538 
539 	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
540 		if (op_is_write(req_op(rq)))
541 			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
542 
543 		sg_unmark_end(sg);
544 		sg = sg_next(sg);
545 		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
546 			    q->dma_drain_size,
547 			    ((unsigned long)q->dma_drain_buffer) &
548 			    (PAGE_SIZE - 1));
549 		nsegs++;
550 		rq->extra_len += q->dma_drain_size;
551 	}
552 
553 	if (sg)
554 		sg_mark_end(sg);
555 
556 	/*
557 	 * Something must have been wrong if the figured number of
558 	 * segment is bigger than number of req's physical segments
559 	 */
560 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
561 
562 	return nsegs;
563 }
564 EXPORT_SYMBOL(blk_rq_map_sg);
565 
566 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
567 		unsigned int nr_phys_segs)
568 {
569 	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q))
570 		goto no_merge;
571 
572 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
573 		goto no_merge;
574 
575 	/*
576 	 * This will form the start of a new hw segment.  Bump both
577 	 * counters.
578 	 */
579 	req->nr_phys_segments += nr_phys_segs;
580 	return 1;
581 
582 no_merge:
583 	req_set_nomerge(req->q, req);
584 	return 0;
585 }
586 
587 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
588 {
589 	if (req_gap_back_merge(req, bio))
590 		return 0;
591 	if (blk_integrity_rq(req) &&
592 	    integrity_req_gap_back_merge(req, bio))
593 		return 0;
594 	if (blk_rq_sectors(req) + bio_sectors(bio) >
595 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
596 		req_set_nomerge(req->q, req);
597 		return 0;
598 	}
599 
600 	return ll_new_hw_segment(req, bio, nr_segs);
601 }
602 
603 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
604 {
605 	if (req_gap_front_merge(req, bio))
606 		return 0;
607 	if (blk_integrity_rq(req) &&
608 	    integrity_req_gap_front_merge(req, bio))
609 		return 0;
610 	if (blk_rq_sectors(req) + bio_sectors(bio) >
611 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
612 		req_set_nomerge(req->q, req);
613 		return 0;
614 	}
615 
616 	return ll_new_hw_segment(req, bio, nr_segs);
617 }
618 
619 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
620 		struct request *next)
621 {
622 	unsigned short segments = blk_rq_nr_discard_segments(req);
623 
624 	if (segments >= queue_max_discard_segments(q))
625 		goto no_merge;
626 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
627 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
628 		goto no_merge;
629 
630 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
631 	return true;
632 no_merge:
633 	req_set_nomerge(q, req);
634 	return false;
635 }
636 
637 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
638 				struct request *next)
639 {
640 	int total_phys_segments;
641 
642 	if (req_gap_back_merge(req, next->bio))
643 		return 0;
644 
645 	/*
646 	 * Will it become too large?
647 	 */
648 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
649 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
650 		return 0;
651 
652 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
653 	if (total_phys_segments > queue_max_segments(q))
654 		return 0;
655 
656 	if (blk_integrity_merge_rq(q, req, next) == false)
657 		return 0;
658 
659 	/* Merge is OK... */
660 	req->nr_phys_segments = total_phys_segments;
661 	return 1;
662 }
663 
664 /**
665  * blk_rq_set_mixed_merge - mark a request as mixed merge
666  * @rq: request to mark as mixed merge
667  *
668  * Description:
669  *     @rq is about to be mixed merged.  Make sure the attributes
670  *     which can be mixed are set in each bio and mark @rq as mixed
671  *     merged.
672  */
673 void blk_rq_set_mixed_merge(struct request *rq)
674 {
675 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
676 	struct bio *bio;
677 
678 	if (rq->rq_flags & RQF_MIXED_MERGE)
679 		return;
680 
681 	/*
682 	 * @rq will no longer represent mixable attributes for all the
683 	 * contained bios.  It will just track those of the first one.
684 	 * Distributes the attributs to each bio.
685 	 */
686 	for (bio = rq->bio; bio; bio = bio->bi_next) {
687 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
688 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
689 		bio->bi_opf |= ff;
690 	}
691 	rq->rq_flags |= RQF_MIXED_MERGE;
692 }
693 
694 static void blk_account_io_merge(struct request *req)
695 {
696 	if (blk_do_io_stat(req)) {
697 		struct hd_struct *part;
698 
699 		part_stat_lock();
700 		part = req->part;
701 
702 		part_dec_in_flight(req->q, part, rq_data_dir(req));
703 
704 		hd_struct_put(part);
705 		part_stat_unlock();
706 	}
707 }
708 /*
709  * Two cases of handling DISCARD merge:
710  * If max_discard_segments > 1, the driver takes every bio
711  * as a range and send them to controller together. The ranges
712  * needn't to be contiguous.
713  * Otherwise, the bios/requests will be handled as same as
714  * others which should be contiguous.
715  */
716 static inline bool blk_discard_mergable(struct request *req)
717 {
718 	if (req_op(req) == REQ_OP_DISCARD &&
719 	    queue_max_discard_segments(req->q) > 1)
720 		return true;
721 	return false;
722 }
723 
724 static enum elv_merge blk_try_req_merge(struct request *req,
725 					struct request *next)
726 {
727 	if (blk_discard_mergable(req))
728 		return ELEVATOR_DISCARD_MERGE;
729 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
730 		return ELEVATOR_BACK_MERGE;
731 
732 	return ELEVATOR_NO_MERGE;
733 }
734 
735 /*
736  * For non-mq, this has to be called with the request spinlock acquired.
737  * For mq with scheduling, the appropriate queue wide lock should be held.
738  */
739 static struct request *attempt_merge(struct request_queue *q,
740 				     struct request *req, struct request *next)
741 {
742 	if (!rq_mergeable(req) || !rq_mergeable(next))
743 		return NULL;
744 
745 	if (req_op(req) != req_op(next))
746 		return NULL;
747 
748 	if (rq_data_dir(req) != rq_data_dir(next)
749 	    || req->rq_disk != next->rq_disk)
750 		return NULL;
751 
752 	if (req_op(req) == REQ_OP_WRITE_SAME &&
753 	    !blk_write_same_mergeable(req->bio, next->bio))
754 		return NULL;
755 
756 	/*
757 	 * Don't allow merge of different write hints, or for a hint with
758 	 * non-hint IO.
759 	 */
760 	if (req->write_hint != next->write_hint)
761 		return NULL;
762 
763 	if (req->ioprio != next->ioprio)
764 		return NULL;
765 
766 	/*
767 	 * If we are allowed to merge, then append bio list
768 	 * from next to rq and release next. merge_requests_fn
769 	 * will have updated segment counts, update sector
770 	 * counts here. Handle DISCARDs separately, as they
771 	 * have separate settings.
772 	 */
773 
774 	switch (blk_try_req_merge(req, next)) {
775 	case ELEVATOR_DISCARD_MERGE:
776 		if (!req_attempt_discard_merge(q, req, next))
777 			return NULL;
778 		break;
779 	case ELEVATOR_BACK_MERGE:
780 		if (!ll_merge_requests_fn(q, req, next))
781 			return NULL;
782 		break;
783 	default:
784 		return NULL;
785 	}
786 
787 	/*
788 	 * If failfast settings disagree or any of the two is already
789 	 * a mixed merge, mark both as mixed before proceeding.  This
790 	 * makes sure that all involved bios have mixable attributes
791 	 * set properly.
792 	 */
793 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
794 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
795 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
796 		blk_rq_set_mixed_merge(req);
797 		blk_rq_set_mixed_merge(next);
798 	}
799 
800 	/*
801 	 * At this point we have either done a back merge or front merge. We
802 	 * need the smaller start_time_ns of the merged requests to be the
803 	 * current request for accounting purposes.
804 	 */
805 	if (next->start_time_ns < req->start_time_ns)
806 		req->start_time_ns = next->start_time_ns;
807 
808 	req->biotail->bi_next = next->bio;
809 	req->biotail = next->biotail;
810 
811 	req->__data_len += blk_rq_bytes(next);
812 
813 	if (!blk_discard_mergable(req))
814 		elv_merge_requests(q, req, next);
815 
816 	/*
817 	 * 'next' is going away, so update stats accordingly
818 	 */
819 	blk_account_io_merge(next);
820 
821 	/*
822 	 * ownership of bio passed from next to req, return 'next' for
823 	 * the caller to free
824 	 */
825 	next->bio = NULL;
826 	return next;
827 }
828 
829 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
830 {
831 	struct request *next = elv_latter_request(q, rq);
832 
833 	if (next)
834 		return attempt_merge(q, rq, next);
835 
836 	return NULL;
837 }
838 
839 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
840 {
841 	struct request *prev = elv_former_request(q, rq);
842 
843 	if (prev)
844 		return attempt_merge(q, prev, rq);
845 
846 	return NULL;
847 }
848 
849 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
850 			  struct request *next)
851 {
852 	struct request *free;
853 
854 	free = attempt_merge(q, rq, next);
855 	if (free) {
856 		blk_put_request(free);
857 		return 1;
858 	}
859 
860 	return 0;
861 }
862 
863 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
864 {
865 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
866 		return false;
867 
868 	if (req_op(rq) != bio_op(bio))
869 		return false;
870 
871 	/* different data direction or already started, don't merge */
872 	if (bio_data_dir(bio) != rq_data_dir(rq))
873 		return false;
874 
875 	/* must be same device */
876 	if (rq->rq_disk != bio->bi_disk)
877 		return false;
878 
879 	/* only merge integrity protected bio into ditto rq */
880 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
881 		return false;
882 
883 	/* must be using the same buffer */
884 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
885 	    !blk_write_same_mergeable(rq->bio, bio))
886 		return false;
887 
888 	/*
889 	 * Don't allow merge of different write hints, or for a hint with
890 	 * non-hint IO.
891 	 */
892 	if (rq->write_hint != bio->bi_write_hint)
893 		return false;
894 
895 	if (rq->ioprio != bio_prio(bio))
896 		return false;
897 
898 	return true;
899 }
900 
901 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
902 {
903 	if (blk_discard_mergable(rq))
904 		return ELEVATOR_DISCARD_MERGE;
905 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
906 		return ELEVATOR_BACK_MERGE;
907 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
908 		return ELEVATOR_FRONT_MERGE;
909 	return ELEVATOR_NO_MERGE;
910 }
911