1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_split_discard(struct bio *bio, 109 const struct queue_limits *lim, 110 unsigned *nsegs, struct bio_set *bs) 111 { 112 unsigned int max_discard_sectors, granularity; 113 sector_t tmp; 114 unsigned split_sectors; 115 116 *nsegs = 1; 117 118 /* Zero-sector (unknown) and one-sector granularities are the same. */ 119 granularity = max(lim->discard_granularity >> 9, 1U); 120 121 max_discard_sectors = 122 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 123 max_discard_sectors -= max_discard_sectors % granularity; 124 125 if (unlikely(!max_discard_sectors)) { 126 /* XXX: warn */ 127 return NULL; 128 } 129 130 if (bio_sectors(bio) <= max_discard_sectors) 131 return NULL; 132 133 split_sectors = max_discard_sectors; 134 135 /* 136 * If the next starting sector would be misaligned, stop the discard at 137 * the previous aligned sector. 138 */ 139 tmp = bio->bi_iter.bi_sector + split_sectors - 140 ((lim->discard_alignment >> 9) % granularity); 141 tmp = sector_div(tmp, granularity); 142 143 if (split_sectors > tmp) 144 split_sectors -= tmp; 145 146 return bio_split(bio, split_sectors, GFP_NOIO, bs); 147 } 148 149 static struct bio *bio_split_write_zeroes(struct bio *bio, 150 const struct queue_limits *lim, 151 unsigned *nsegs, struct bio_set *bs) 152 { 153 *nsegs = 0; 154 if (!lim->max_write_zeroes_sectors) 155 return NULL; 156 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors) 157 return NULL; 158 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs); 159 } 160 161 /* 162 * Return the maximum number of sectors from the start of a bio that may be 163 * submitted as a single request to a block device. If enough sectors remain, 164 * align the end to the physical block size. Otherwise align the end to the 165 * logical block size. This approach minimizes the number of non-aligned 166 * requests that are submitted to a block device if the start of a bio is not 167 * aligned to a physical block boundary. 168 */ 169 static inline unsigned get_max_io_size(struct bio *bio, 170 const struct queue_limits *lim) 171 { 172 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 173 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 174 unsigned max_sectors = lim->max_sectors, start, end; 175 176 if (lim->chunk_sectors) { 177 max_sectors = min(max_sectors, 178 blk_chunk_sectors_left(bio->bi_iter.bi_sector, 179 lim->chunk_sectors)); 180 } 181 182 start = bio->bi_iter.bi_sector & (pbs - 1); 183 end = (start + max_sectors) & ~(pbs - 1); 184 if (end > start) 185 return end - start; 186 return max_sectors & ~(lbs - 1); 187 } 188 189 /** 190 * get_max_segment_size() - maximum number of bytes to add as a single segment 191 * @lim: Request queue limits. 192 * @start_page: See below. 193 * @offset: Offset from @start_page where to add a segment. 194 * 195 * Returns the maximum number of bytes that can be added as a single segment. 196 */ 197 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 198 struct page *start_page, unsigned long offset) 199 { 200 unsigned long mask = lim->seg_boundary_mask; 201 202 offset = mask & (page_to_phys(start_page) + offset); 203 204 /* 205 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 206 * after having calculated the minimum. 207 */ 208 return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1; 209 } 210 211 /** 212 * bvec_split_segs - verify whether or not a bvec should be split in the middle 213 * @lim: [in] queue limits to split based on 214 * @bv: [in] bvec to examine 215 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 216 * by the number of segments from @bv that may be appended to that 217 * bio without exceeding @max_segs 218 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 219 * by the number of bytes from @bv that may be appended to that 220 * bio without exceeding @max_bytes 221 * @max_segs: [in] upper bound for *@nsegs 222 * @max_bytes: [in] upper bound for *@bytes 223 * 224 * When splitting a bio, it can happen that a bvec is encountered that is too 225 * big to fit in a single segment and hence that it has to be split in the 226 * middle. This function verifies whether or not that should happen. The value 227 * %true is returned if and only if appending the entire @bv to a bio with 228 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 229 * the block driver. 230 */ 231 static bool bvec_split_segs(const struct queue_limits *lim, 232 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, 233 unsigned max_segs, unsigned max_bytes) 234 { 235 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 236 unsigned len = min(bv->bv_len, max_len); 237 unsigned total_len = 0; 238 unsigned seg_size = 0; 239 240 while (len && *nsegs < max_segs) { 241 seg_size = get_max_segment_size(lim, bv->bv_page, 242 bv->bv_offset + total_len); 243 seg_size = min(seg_size, len); 244 245 (*nsegs)++; 246 total_len += seg_size; 247 len -= seg_size; 248 249 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 250 break; 251 } 252 253 *bytes += total_len; 254 255 /* tell the caller to split the bvec if it is too big to fit */ 256 return len > 0 || bv->bv_len > max_len; 257 } 258 259 /** 260 * bio_split_rw - split a bio in two bios 261 * @bio: [in] bio to be split 262 * @lim: [in] queue limits to split based on 263 * @segs: [out] number of segments in the bio with the first half of the sectors 264 * @bs: [in] bio set to allocate the clone from 265 * @max_bytes: [in] maximum number of bytes per bio 266 * 267 * Clone @bio, update the bi_iter of the clone to represent the first sectors 268 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 269 * following is guaranteed for the cloned bio: 270 * - That it has at most @max_bytes worth of data 271 * - That it has at most queue_max_segments(@q) segments. 272 * 273 * Except for discard requests the cloned bio will point at the bi_io_vec of 274 * the original bio. It is the responsibility of the caller to ensure that the 275 * original bio is not freed before the cloned bio. The caller is also 276 * responsible for ensuring that @bs is only destroyed after processing of the 277 * split bio has finished. 278 */ 279 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 280 unsigned *segs, struct bio_set *bs, unsigned max_bytes) 281 { 282 struct bio_vec bv, bvprv, *bvprvp = NULL; 283 struct bvec_iter iter; 284 unsigned nsegs = 0, bytes = 0; 285 286 bio_for_each_bvec(bv, bio, iter) { 287 /* 288 * If the queue doesn't support SG gaps and adding this 289 * offset would create a gap, disallow it. 290 */ 291 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 292 goto split; 293 294 if (nsegs < lim->max_segments && 295 bytes + bv.bv_len <= max_bytes && 296 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 297 nsegs++; 298 bytes += bv.bv_len; 299 } else { 300 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 301 lim->max_segments, max_bytes)) 302 goto split; 303 } 304 305 bvprv = bv; 306 bvprvp = &bvprv; 307 } 308 309 *segs = nsegs; 310 return NULL; 311 split: 312 /* 313 * We can't sanely support splitting for a REQ_NOWAIT bio. End it 314 * with EAGAIN if splitting is required and return an error pointer. 315 */ 316 if (bio->bi_opf & REQ_NOWAIT) { 317 bio->bi_status = BLK_STS_AGAIN; 318 bio_endio(bio); 319 return ERR_PTR(-EAGAIN); 320 } 321 322 *segs = nsegs; 323 324 /* 325 * Individual bvecs might not be logical block aligned. Round down the 326 * split size so that each bio is properly block size aligned, even if 327 * we do not use the full hardware limits. 328 */ 329 bytes = ALIGN_DOWN(bytes, lim->logical_block_size); 330 331 /* 332 * Bio splitting may cause subtle trouble such as hang when doing sync 333 * iopoll in direct IO routine. Given performance gain of iopoll for 334 * big IO can be trival, disable iopoll when split needed. 335 */ 336 bio_clear_polled(bio); 337 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs); 338 } 339 EXPORT_SYMBOL_GPL(bio_split_rw); 340 341 /** 342 * __bio_split_to_limits - split a bio to fit the queue limits 343 * @bio: bio to be split 344 * @lim: queue limits to split based on 345 * @nr_segs: returns the number of segments in the returned bio 346 * 347 * Check if @bio needs splitting based on the queue limits, and if so split off 348 * a bio fitting the limits from the beginning of @bio and return it. @bio is 349 * shortened to the remainder and re-submitted. 350 * 351 * The split bio is allocated from @q->bio_split, which is provided by the 352 * block layer. 353 */ 354 struct bio *__bio_split_to_limits(struct bio *bio, 355 const struct queue_limits *lim, 356 unsigned int *nr_segs) 357 { 358 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split; 359 struct bio *split; 360 361 switch (bio_op(bio)) { 362 case REQ_OP_DISCARD: 363 case REQ_OP_SECURE_ERASE: 364 split = bio_split_discard(bio, lim, nr_segs, bs); 365 break; 366 case REQ_OP_WRITE_ZEROES: 367 split = bio_split_write_zeroes(bio, lim, nr_segs, bs); 368 break; 369 default: 370 split = bio_split_rw(bio, lim, nr_segs, bs, 371 get_max_io_size(bio, lim) << SECTOR_SHIFT); 372 if (IS_ERR(split)) 373 return NULL; 374 break; 375 } 376 377 if (split) { 378 /* there isn't chance to merge the split bio */ 379 split->bi_opf |= REQ_NOMERGE; 380 381 blkcg_bio_issue_init(split); 382 bio_chain(split, bio); 383 trace_block_split(split, bio->bi_iter.bi_sector); 384 submit_bio_noacct(bio); 385 return split; 386 } 387 return bio; 388 } 389 390 /** 391 * bio_split_to_limits - split a bio to fit the queue limits 392 * @bio: bio to be split 393 * 394 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 395 * if so split off a bio fitting the limits from the beginning of @bio and 396 * return it. @bio is shortened to the remainder and re-submitted. 397 * 398 * The split bio is allocated from @q->bio_split, which is provided by the 399 * block layer. 400 */ 401 struct bio *bio_split_to_limits(struct bio *bio) 402 { 403 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits; 404 unsigned int nr_segs; 405 406 if (bio_may_exceed_limits(bio, lim)) 407 return __bio_split_to_limits(bio, lim, &nr_segs); 408 return bio; 409 } 410 EXPORT_SYMBOL(bio_split_to_limits); 411 412 unsigned int blk_recalc_rq_segments(struct request *rq) 413 { 414 unsigned int nr_phys_segs = 0; 415 unsigned int bytes = 0; 416 struct req_iterator iter; 417 struct bio_vec bv; 418 419 if (!rq->bio) 420 return 0; 421 422 switch (bio_op(rq->bio)) { 423 case REQ_OP_DISCARD: 424 case REQ_OP_SECURE_ERASE: 425 if (queue_max_discard_segments(rq->q) > 1) { 426 struct bio *bio = rq->bio; 427 428 for_each_bio(bio) 429 nr_phys_segs++; 430 return nr_phys_segs; 431 } 432 return 1; 433 case REQ_OP_WRITE_ZEROES: 434 return 0; 435 default: 436 break; 437 } 438 439 rq_for_each_bvec(bv, rq, iter) 440 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 441 UINT_MAX, UINT_MAX); 442 return nr_phys_segs; 443 } 444 445 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 446 struct scatterlist *sglist) 447 { 448 if (!*sg) 449 return sglist; 450 451 /* 452 * If the driver previously mapped a shorter list, we could see a 453 * termination bit prematurely unless it fully inits the sg table 454 * on each mapping. We KNOW that there must be more entries here 455 * or the driver would be buggy, so force clear the termination bit 456 * to avoid doing a full sg_init_table() in drivers for each command. 457 */ 458 sg_unmark_end(*sg); 459 return sg_next(*sg); 460 } 461 462 static unsigned blk_bvec_map_sg(struct request_queue *q, 463 struct bio_vec *bvec, struct scatterlist *sglist, 464 struct scatterlist **sg) 465 { 466 unsigned nbytes = bvec->bv_len; 467 unsigned nsegs = 0, total = 0; 468 469 while (nbytes > 0) { 470 unsigned offset = bvec->bv_offset + total; 471 unsigned len = min(get_max_segment_size(&q->limits, 472 bvec->bv_page, offset), nbytes); 473 struct page *page = bvec->bv_page; 474 475 /* 476 * Unfortunately a fair number of drivers barf on scatterlists 477 * that have an offset larger than PAGE_SIZE, despite other 478 * subsystems dealing with that invariant just fine. For now 479 * stick to the legacy format where we never present those from 480 * the block layer, but the code below should be removed once 481 * these offenders (mostly MMC/SD drivers) are fixed. 482 */ 483 page += (offset >> PAGE_SHIFT); 484 offset &= ~PAGE_MASK; 485 486 *sg = blk_next_sg(sg, sglist); 487 sg_set_page(*sg, page, len, offset); 488 489 total += len; 490 nbytes -= len; 491 nsegs++; 492 } 493 494 return nsegs; 495 } 496 497 static inline int __blk_bvec_map_sg(struct bio_vec bv, 498 struct scatterlist *sglist, struct scatterlist **sg) 499 { 500 *sg = blk_next_sg(sg, sglist); 501 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 502 return 1; 503 } 504 505 /* only try to merge bvecs into one sg if they are from two bios */ 506 static inline bool 507 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 508 struct bio_vec *bvprv, struct scatterlist **sg) 509 { 510 511 int nbytes = bvec->bv_len; 512 513 if (!*sg) 514 return false; 515 516 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 517 return false; 518 519 if (!biovec_phys_mergeable(q, bvprv, bvec)) 520 return false; 521 522 (*sg)->length += nbytes; 523 524 return true; 525 } 526 527 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 528 struct scatterlist *sglist, 529 struct scatterlist **sg) 530 { 531 struct bio_vec bvec, bvprv = { NULL }; 532 struct bvec_iter iter; 533 int nsegs = 0; 534 bool new_bio = false; 535 536 for_each_bio(bio) { 537 bio_for_each_bvec(bvec, bio, iter) { 538 /* 539 * Only try to merge bvecs from two bios given we 540 * have done bio internal merge when adding pages 541 * to bio 542 */ 543 if (new_bio && 544 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 545 goto next_bvec; 546 547 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 548 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 549 else 550 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 551 next_bvec: 552 new_bio = false; 553 } 554 if (likely(bio->bi_iter.bi_size)) { 555 bvprv = bvec; 556 new_bio = true; 557 } 558 } 559 560 return nsegs; 561 } 562 563 /* 564 * map a request to scatterlist, return number of sg entries setup. Caller 565 * must make sure sg can hold rq->nr_phys_segments entries 566 */ 567 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 568 struct scatterlist *sglist, struct scatterlist **last_sg) 569 { 570 int nsegs = 0; 571 572 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 573 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 574 else if (rq->bio) 575 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 576 577 if (*last_sg) 578 sg_mark_end(*last_sg); 579 580 /* 581 * Something must have been wrong if the figured number of 582 * segment is bigger than number of req's physical segments 583 */ 584 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 585 586 return nsegs; 587 } 588 EXPORT_SYMBOL(__blk_rq_map_sg); 589 590 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 591 sector_t offset) 592 { 593 struct request_queue *q = rq->q; 594 unsigned int max_sectors; 595 596 if (blk_rq_is_passthrough(rq)) 597 return q->limits.max_hw_sectors; 598 599 max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 600 if (!q->limits.chunk_sectors || 601 req_op(rq) == REQ_OP_DISCARD || 602 req_op(rq) == REQ_OP_SECURE_ERASE) 603 return max_sectors; 604 return min(max_sectors, 605 blk_chunk_sectors_left(offset, q->limits.chunk_sectors)); 606 } 607 608 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 609 unsigned int nr_phys_segs) 610 { 611 if (!blk_cgroup_mergeable(req, bio)) 612 goto no_merge; 613 614 if (blk_integrity_merge_bio(req->q, req, bio) == false) 615 goto no_merge; 616 617 /* discard request merge won't add new segment */ 618 if (req_op(req) == REQ_OP_DISCARD) 619 return 1; 620 621 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 622 goto no_merge; 623 624 /* 625 * This will form the start of a new hw segment. Bump both 626 * counters. 627 */ 628 req->nr_phys_segments += nr_phys_segs; 629 return 1; 630 631 no_merge: 632 req_set_nomerge(req->q, req); 633 return 0; 634 } 635 636 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 637 { 638 if (req_gap_back_merge(req, bio)) 639 return 0; 640 if (blk_integrity_rq(req) && 641 integrity_req_gap_back_merge(req, bio)) 642 return 0; 643 if (!bio_crypt_ctx_back_mergeable(req, bio)) 644 return 0; 645 if (blk_rq_sectors(req) + bio_sectors(bio) > 646 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 647 req_set_nomerge(req->q, req); 648 return 0; 649 } 650 651 return ll_new_hw_segment(req, bio, nr_segs); 652 } 653 654 static int ll_front_merge_fn(struct request *req, struct bio *bio, 655 unsigned int nr_segs) 656 { 657 if (req_gap_front_merge(req, bio)) 658 return 0; 659 if (blk_integrity_rq(req) && 660 integrity_req_gap_front_merge(req, bio)) 661 return 0; 662 if (!bio_crypt_ctx_front_mergeable(req, bio)) 663 return 0; 664 if (blk_rq_sectors(req) + bio_sectors(bio) > 665 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 666 req_set_nomerge(req->q, req); 667 return 0; 668 } 669 670 return ll_new_hw_segment(req, bio, nr_segs); 671 } 672 673 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 674 struct request *next) 675 { 676 unsigned short segments = blk_rq_nr_discard_segments(req); 677 678 if (segments >= queue_max_discard_segments(q)) 679 goto no_merge; 680 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 681 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 682 goto no_merge; 683 684 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 685 return true; 686 no_merge: 687 req_set_nomerge(q, req); 688 return false; 689 } 690 691 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 692 struct request *next) 693 { 694 int total_phys_segments; 695 696 if (req_gap_back_merge(req, next->bio)) 697 return 0; 698 699 /* 700 * Will it become too large? 701 */ 702 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 703 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 704 return 0; 705 706 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 707 if (total_phys_segments > blk_rq_get_max_segments(req)) 708 return 0; 709 710 if (!blk_cgroup_mergeable(req, next->bio)) 711 return 0; 712 713 if (blk_integrity_merge_rq(q, req, next) == false) 714 return 0; 715 716 if (!bio_crypt_ctx_merge_rq(req, next)) 717 return 0; 718 719 /* Merge is OK... */ 720 req->nr_phys_segments = total_phys_segments; 721 return 1; 722 } 723 724 /** 725 * blk_rq_set_mixed_merge - mark a request as mixed merge 726 * @rq: request to mark as mixed merge 727 * 728 * Description: 729 * @rq is about to be mixed merged. Make sure the attributes 730 * which can be mixed are set in each bio and mark @rq as mixed 731 * merged. 732 */ 733 void blk_rq_set_mixed_merge(struct request *rq) 734 { 735 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 736 struct bio *bio; 737 738 if (rq->rq_flags & RQF_MIXED_MERGE) 739 return; 740 741 /* 742 * @rq will no longer represent mixable attributes for all the 743 * contained bios. It will just track those of the first one. 744 * Distributes the attributs to each bio. 745 */ 746 for (bio = rq->bio; bio; bio = bio->bi_next) { 747 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 748 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 749 bio->bi_opf |= ff; 750 } 751 rq->rq_flags |= RQF_MIXED_MERGE; 752 } 753 754 static inline blk_opf_t bio_failfast(const struct bio *bio) 755 { 756 if (bio->bi_opf & REQ_RAHEAD) 757 return REQ_FAILFAST_MASK; 758 759 return bio->bi_opf & REQ_FAILFAST_MASK; 760 } 761 762 /* 763 * After we are marked as MIXED_MERGE, any new RA bio has to be updated 764 * as failfast, and request's failfast has to be updated in case of 765 * front merge. 766 */ 767 static inline void blk_update_mixed_merge(struct request *req, 768 struct bio *bio, bool front_merge) 769 { 770 if (req->rq_flags & RQF_MIXED_MERGE) { 771 if (bio->bi_opf & REQ_RAHEAD) 772 bio->bi_opf |= REQ_FAILFAST_MASK; 773 774 if (front_merge) { 775 req->cmd_flags &= ~REQ_FAILFAST_MASK; 776 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK; 777 } 778 } 779 } 780 781 static void blk_account_io_merge_request(struct request *req) 782 { 783 if (blk_do_io_stat(req)) { 784 part_stat_lock(); 785 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 786 part_stat_local_dec(req->part, 787 in_flight[op_is_write(req_op(req))]); 788 part_stat_unlock(); 789 } 790 } 791 792 static enum elv_merge blk_try_req_merge(struct request *req, 793 struct request *next) 794 { 795 if (blk_discard_mergable(req)) 796 return ELEVATOR_DISCARD_MERGE; 797 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 798 return ELEVATOR_BACK_MERGE; 799 800 return ELEVATOR_NO_MERGE; 801 } 802 803 /* 804 * For non-mq, this has to be called with the request spinlock acquired. 805 * For mq with scheduling, the appropriate queue wide lock should be held. 806 */ 807 static struct request *attempt_merge(struct request_queue *q, 808 struct request *req, struct request *next) 809 { 810 if (!rq_mergeable(req) || !rq_mergeable(next)) 811 return NULL; 812 813 if (req_op(req) != req_op(next)) 814 return NULL; 815 816 if (rq_data_dir(req) != rq_data_dir(next)) 817 return NULL; 818 819 if (req->ioprio != next->ioprio) 820 return NULL; 821 822 /* 823 * If we are allowed to merge, then append bio list 824 * from next to rq and release next. merge_requests_fn 825 * will have updated segment counts, update sector 826 * counts here. Handle DISCARDs separately, as they 827 * have separate settings. 828 */ 829 830 switch (blk_try_req_merge(req, next)) { 831 case ELEVATOR_DISCARD_MERGE: 832 if (!req_attempt_discard_merge(q, req, next)) 833 return NULL; 834 break; 835 case ELEVATOR_BACK_MERGE: 836 if (!ll_merge_requests_fn(q, req, next)) 837 return NULL; 838 break; 839 default: 840 return NULL; 841 } 842 843 /* 844 * If failfast settings disagree or any of the two is already 845 * a mixed merge, mark both as mixed before proceeding. This 846 * makes sure that all involved bios have mixable attributes 847 * set properly. 848 */ 849 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 850 (req->cmd_flags & REQ_FAILFAST_MASK) != 851 (next->cmd_flags & REQ_FAILFAST_MASK)) { 852 blk_rq_set_mixed_merge(req); 853 blk_rq_set_mixed_merge(next); 854 } 855 856 /* 857 * At this point we have either done a back merge or front merge. We 858 * need the smaller start_time_ns of the merged requests to be the 859 * current request for accounting purposes. 860 */ 861 if (next->start_time_ns < req->start_time_ns) 862 req->start_time_ns = next->start_time_ns; 863 864 req->biotail->bi_next = next->bio; 865 req->biotail = next->biotail; 866 867 req->__data_len += blk_rq_bytes(next); 868 869 if (!blk_discard_mergable(req)) 870 elv_merge_requests(q, req, next); 871 872 blk_crypto_rq_put_keyslot(next); 873 874 /* 875 * 'next' is going away, so update stats accordingly 876 */ 877 blk_account_io_merge_request(next); 878 879 trace_block_rq_merge(next); 880 881 /* 882 * ownership of bio passed from next to req, return 'next' for 883 * the caller to free 884 */ 885 next->bio = NULL; 886 return next; 887 } 888 889 static struct request *attempt_back_merge(struct request_queue *q, 890 struct request *rq) 891 { 892 struct request *next = elv_latter_request(q, rq); 893 894 if (next) 895 return attempt_merge(q, rq, next); 896 897 return NULL; 898 } 899 900 static struct request *attempt_front_merge(struct request_queue *q, 901 struct request *rq) 902 { 903 struct request *prev = elv_former_request(q, rq); 904 905 if (prev) 906 return attempt_merge(q, prev, rq); 907 908 return NULL; 909 } 910 911 /* 912 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 913 * otherwise. The caller is responsible for freeing 'next' if the merge 914 * happened. 915 */ 916 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 917 struct request *next) 918 { 919 return attempt_merge(q, rq, next); 920 } 921 922 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 923 { 924 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 925 return false; 926 927 if (req_op(rq) != bio_op(bio)) 928 return false; 929 930 /* different data direction or already started, don't merge */ 931 if (bio_data_dir(bio) != rq_data_dir(rq)) 932 return false; 933 934 /* don't merge across cgroup boundaries */ 935 if (!blk_cgroup_mergeable(rq, bio)) 936 return false; 937 938 /* only merge integrity protected bio into ditto rq */ 939 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 940 return false; 941 942 /* Only merge if the crypt contexts are compatible */ 943 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 944 return false; 945 946 if (rq->ioprio != bio_prio(bio)) 947 return false; 948 949 return true; 950 } 951 952 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 953 { 954 if (blk_discard_mergable(rq)) 955 return ELEVATOR_DISCARD_MERGE; 956 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 957 return ELEVATOR_BACK_MERGE; 958 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 959 return ELEVATOR_FRONT_MERGE; 960 return ELEVATOR_NO_MERGE; 961 } 962 963 static void blk_account_io_merge_bio(struct request *req) 964 { 965 if (!blk_do_io_stat(req)) 966 return; 967 968 part_stat_lock(); 969 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 970 part_stat_unlock(); 971 } 972 973 enum bio_merge_status { 974 BIO_MERGE_OK, 975 BIO_MERGE_NONE, 976 BIO_MERGE_FAILED, 977 }; 978 979 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 980 struct bio *bio, unsigned int nr_segs) 981 { 982 const blk_opf_t ff = bio_failfast(bio); 983 984 if (!ll_back_merge_fn(req, bio, nr_segs)) 985 return BIO_MERGE_FAILED; 986 987 trace_block_bio_backmerge(bio); 988 rq_qos_merge(req->q, req, bio); 989 990 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 991 blk_rq_set_mixed_merge(req); 992 993 blk_update_mixed_merge(req, bio, false); 994 995 req->biotail->bi_next = bio; 996 req->biotail = bio; 997 req->__data_len += bio->bi_iter.bi_size; 998 999 bio_crypt_free_ctx(bio); 1000 1001 blk_account_io_merge_bio(req); 1002 return BIO_MERGE_OK; 1003 } 1004 1005 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 1006 struct bio *bio, unsigned int nr_segs) 1007 { 1008 const blk_opf_t ff = bio_failfast(bio); 1009 1010 if (!ll_front_merge_fn(req, bio, nr_segs)) 1011 return BIO_MERGE_FAILED; 1012 1013 trace_block_bio_frontmerge(bio); 1014 rq_qos_merge(req->q, req, bio); 1015 1016 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1017 blk_rq_set_mixed_merge(req); 1018 1019 blk_update_mixed_merge(req, bio, true); 1020 1021 bio->bi_next = req->bio; 1022 req->bio = bio; 1023 1024 req->__sector = bio->bi_iter.bi_sector; 1025 req->__data_len += bio->bi_iter.bi_size; 1026 1027 bio_crypt_do_front_merge(req, bio); 1028 1029 blk_account_io_merge_bio(req); 1030 return BIO_MERGE_OK; 1031 } 1032 1033 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1034 struct request *req, struct bio *bio) 1035 { 1036 unsigned short segments = blk_rq_nr_discard_segments(req); 1037 1038 if (segments >= queue_max_discard_segments(q)) 1039 goto no_merge; 1040 if (blk_rq_sectors(req) + bio_sectors(bio) > 1041 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1042 goto no_merge; 1043 1044 rq_qos_merge(q, req, bio); 1045 1046 req->biotail->bi_next = bio; 1047 req->biotail = bio; 1048 req->__data_len += bio->bi_iter.bi_size; 1049 req->nr_phys_segments = segments + 1; 1050 1051 blk_account_io_merge_bio(req); 1052 return BIO_MERGE_OK; 1053 no_merge: 1054 req_set_nomerge(q, req); 1055 return BIO_MERGE_FAILED; 1056 } 1057 1058 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1059 struct request *rq, 1060 struct bio *bio, 1061 unsigned int nr_segs, 1062 bool sched_allow_merge) 1063 { 1064 if (!blk_rq_merge_ok(rq, bio)) 1065 return BIO_MERGE_NONE; 1066 1067 switch (blk_try_merge(rq, bio)) { 1068 case ELEVATOR_BACK_MERGE: 1069 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1070 return bio_attempt_back_merge(rq, bio, nr_segs); 1071 break; 1072 case ELEVATOR_FRONT_MERGE: 1073 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1074 return bio_attempt_front_merge(rq, bio, nr_segs); 1075 break; 1076 case ELEVATOR_DISCARD_MERGE: 1077 return bio_attempt_discard_merge(q, rq, bio); 1078 default: 1079 return BIO_MERGE_NONE; 1080 } 1081 1082 return BIO_MERGE_FAILED; 1083 } 1084 1085 /** 1086 * blk_attempt_plug_merge - try to merge with %current's plugged list 1087 * @q: request_queue new bio is being queued at 1088 * @bio: new bio being queued 1089 * @nr_segs: number of segments in @bio 1090 * from the passed in @q already in the plug list 1091 * 1092 * Determine whether @bio being queued on @q can be merged with the previous 1093 * request on %current's plugged list. Returns %true if merge was successful, 1094 * otherwise %false. 1095 * 1096 * Plugging coalesces IOs from the same issuer for the same purpose without 1097 * going through @q->queue_lock. As such it's more of an issuing mechanism 1098 * than scheduling, and the request, while may have elvpriv data, is not 1099 * added on the elevator at this point. In addition, we don't have 1100 * reliable access to the elevator outside queue lock. Only check basic 1101 * merging parameters without querying the elevator. 1102 * 1103 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1104 */ 1105 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1106 unsigned int nr_segs) 1107 { 1108 struct blk_plug *plug; 1109 struct request *rq; 1110 1111 plug = blk_mq_plug(bio); 1112 if (!plug || rq_list_empty(plug->mq_list)) 1113 return false; 1114 1115 rq_list_for_each(&plug->mq_list, rq) { 1116 if (rq->q == q) { 1117 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1118 BIO_MERGE_OK) 1119 return true; 1120 break; 1121 } 1122 1123 /* 1124 * Only keep iterating plug list for merges if we have multiple 1125 * queues 1126 */ 1127 if (!plug->multiple_queues) 1128 break; 1129 } 1130 return false; 1131 } 1132 1133 /* 1134 * Iterate list of requests and see if we can merge this bio with any 1135 * of them. 1136 */ 1137 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1138 struct bio *bio, unsigned int nr_segs) 1139 { 1140 struct request *rq; 1141 int checked = 8; 1142 1143 list_for_each_entry_reverse(rq, list, queuelist) { 1144 if (!checked--) 1145 break; 1146 1147 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1148 case BIO_MERGE_NONE: 1149 continue; 1150 case BIO_MERGE_OK: 1151 return true; 1152 case BIO_MERGE_FAILED: 1153 return false; 1154 } 1155 1156 } 1157 1158 return false; 1159 } 1160 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1161 1162 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1163 unsigned int nr_segs, struct request **merged_request) 1164 { 1165 struct request *rq; 1166 1167 switch (elv_merge(q, &rq, bio)) { 1168 case ELEVATOR_BACK_MERGE: 1169 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1170 return false; 1171 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1172 return false; 1173 *merged_request = attempt_back_merge(q, rq); 1174 if (!*merged_request) 1175 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1176 return true; 1177 case ELEVATOR_FRONT_MERGE: 1178 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1179 return false; 1180 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1181 return false; 1182 *merged_request = attempt_front_merge(q, rq); 1183 if (!*merged_request) 1184 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1185 return true; 1186 case ELEVATOR_DISCARD_MERGE: 1187 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1188 default: 1189 return false; 1190 } 1191 } 1192 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1193