xref: /openbmc/linux/block/blk-merge.c (revision 90741096769bd75152a5fe397343e5893c7d905a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87 
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 /*
99  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100  * is defined as 'unsigned int', meantime it has to be aligned to with the
101  * logical block size, which is the minimum accepted unit by hardware.
102  */
103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105 	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107 
108 static struct bio *bio_split_discard(struct bio *bio,
109 				     const struct queue_limits *lim,
110 				     unsigned *nsegs, struct bio_set *bs)
111 {
112 	unsigned int max_discard_sectors, granularity;
113 	sector_t tmp;
114 	unsigned split_sectors;
115 
116 	*nsegs = 1;
117 
118 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
119 	granularity = max(lim->discard_granularity >> 9, 1U);
120 
121 	max_discard_sectors =
122 		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
123 	max_discard_sectors -= max_discard_sectors % granularity;
124 
125 	if (unlikely(!max_discard_sectors)) {
126 		/* XXX: warn */
127 		return NULL;
128 	}
129 
130 	if (bio_sectors(bio) <= max_discard_sectors)
131 		return NULL;
132 
133 	split_sectors = max_discard_sectors;
134 
135 	/*
136 	 * If the next starting sector would be misaligned, stop the discard at
137 	 * the previous aligned sector.
138 	 */
139 	tmp = bio->bi_iter.bi_sector + split_sectors -
140 		((lim->discard_alignment >> 9) % granularity);
141 	tmp = sector_div(tmp, granularity);
142 
143 	if (split_sectors > tmp)
144 		split_sectors -= tmp;
145 
146 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
147 }
148 
149 static struct bio *bio_split_write_zeroes(struct bio *bio,
150 					  const struct queue_limits *lim,
151 					  unsigned *nsegs, struct bio_set *bs)
152 {
153 	*nsegs = 0;
154 	if (!lim->max_write_zeroes_sectors)
155 		return NULL;
156 	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
157 		return NULL;
158 	return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
159 }
160 
161 /*
162  * Return the maximum number of sectors from the start of a bio that may be
163  * submitted as a single request to a block device. If enough sectors remain,
164  * align the end to the physical block size. Otherwise align the end to the
165  * logical block size. This approach minimizes the number of non-aligned
166  * requests that are submitted to a block device if the start of a bio is not
167  * aligned to a physical block boundary.
168  */
169 static inline unsigned get_max_io_size(struct bio *bio,
170 				       const struct queue_limits *lim)
171 {
172 	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
173 	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
174 	unsigned max_sectors = lim->max_sectors, start, end;
175 
176 	if (lim->chunk_sectors) {
177 		max_sectors = min(max_sectors,
178 			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
179 					       lim->chunk_sectors));
180 	}
181 
182 	start = bio->bi_iter.bi_sector & (pbs - 1);
183 	end = (start + max_sectors) & ~(pbs - 1);
184 	if (end > start)
185 		return end - start;
186 	return max_sectors & ~(lbs - 1);
187 }
188 
189 /**
190  * get_max_segment_size() - maximum number of bytes to add as a single segment
191  * @lim: Request queue limits.
192  * @start_page: See below.
193  * @offset: Offset from @start_page where to add a segment.
194  *
195  * Returns the maximum number of bytes that can be added as a single segment.
196  */
197 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
198 		struct page *start_page, unsigned long offset)
199 {
200 	unsigned long mask = lim->seg_boundary_mask;
201 
202 	offset = mask & (page_to_phys(start_page) + offset);
203 
204 	/*
205 	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
206 	 * after having calculated the minimum.
207 	 */
208 	return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1;
209 }
210 
211 /**
212  * bvec_split_segs - verify whether or not a bvec should be split in the middle
213  * @lim:      [in] queue limits to split based on
214  * @bv:       [in] bvec to examine
215  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
216  *            by the number of segments from @bv that may be appended to that
217  *            bio without exceeding @max_segs
218  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
219  *            by the number of bytes from @bv that may be appended to that
220  *            bio without exceeding @max_bytes
221  * @max_segs: [in] upper bound for *@nsegs
222  * @max_bytes: [in] upper bound for *@bytes
223  *
224  * When splitting a bio, it can happen that a bvec is encountered that is too
225  * big to fit in a single segment and hence that it has to be split in the
226  * middle. This function verifies whether or not that should happen. The value
227  * %true is returned if and only if appending the entire @bv to a bio with
228  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
229  * the block driver.
230  */
231 static bool bvec_split_segs(const struct queue_limits *lim,
232 		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
233 		unsigned max_segs, unsigned max_bytes)
234 {
235 	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
236 	unsigned len = min(bv->bv_len, max_len);
237 	unsigned total_len = 0;
238 	unsigned seg_size = 0;
239 
240 	while (len && *nsegs < max_segs) {
241 		seg_size = get_max_segment_size(lim, bv->bv_page,
242 						bv->bv_offset + total_len);
243 		seg_size = min(seg_size, len);
244 
245 		(*nsegs)++;
246 		total_len += seg_size;
247 		len -= seg_size;
248 
249 		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
250 			break;
251 	}
252 
253 	*bytes += total_len;
254 
255 	/* tell the caller to split the bvec if it is too big to fit */
256 	return len > 0 || bv->bv_len > max_len;
257 }
258 
259 /**
260  * bio_split_rw - split a bio in two bios
261  * @bio:  [in] bio to be split
262  * @lim:  [in] queue limits to split based on
263  * @segs: [out] number of segments in the bio with the first half of the sectors
264  * @bs:	  [in] bio set to allocate the clone from
265  * @max_bytes: [in] maximum number of bytes per bio
266  *
267  * Clone @bio, update the bi_iter of the clone to represent the first sectors
268  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
269  * following is guaranteed for the cloned bio:
270  * - That it has at most @max_bytes worth of data
271  * - That it has at most queue_max_segments(@q) segments.
272  *
273  * Except for discard requests the cloned bio will point at the bi_io_vec of
274  * the original bio. It is the responsibility of the caller to ensure that the
275  * original bio is not freed before the cloned bio. The caller is also
276  * responsible for ensuring that @bs is only destroyed after processing of the
277  * split bio has finished.
278  */
279 static struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
280 		unsigned *segs, struct bio_set *bs, unsigned max_bytes)
281 {
282 	struct bio_vec bv, bvprv, *bvprvp = NULL;
283 	struct bvec_iter iter;
284 	unsigned nsegs = 0, bytes = 0;
285 
286 	bio_for_each_bvec(bv, bio, iter) {
287 		/*
288 		 * If the queue doesn't support SG gaps and adding this
289 		 * offset would create a gap, disallow it.
290 		 */
291 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
292 			goto split;
293 
294 		if (nsegs < lim->max_segments &&
295 		    bytes + bv.bv_len <= max_bytes &&
296 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
297 			nsegs++;
298 			bytes += bv.bv_len;
299 		} else {
300 			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
301 					lim->max_segments, max_bytes))
302 				goto split;
303 		}
304 
305 		bvprv = bv;
306 		bvprvp = &bvprv;
307 	}
308 
309 	*segs = nsegs;
310 	return NULL;
311 split:
312 	*segs = nsegs;
313 
314 	/*
315 	 * Individual bvecs might not be logical block aligned. Round down the
316 	 * split size so that each bio is properly block size aligned, even if
317 	 * we do not use the full hardware limits.
318 	 */
319 	bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
320 
321 	/*
322 	 * Bio splitting may cause subtle trouble such as hang when doing sync
323 	 * iopoll in direct IO routine. Given performance gain of iopoll for
324 	 * big IO can be trival, disable iopoll when split needed.
325 	 */
326 	bio_clear_polled(bio);
327 	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
328 }
329 
330 /**
331  * __bio_split_to_limits - split a bio to fit the queue limits
332  * @bio:     bio to be split
333  * @lim:     queue limits to split based on
334  * @nr_segs: returns the number of segments in the returned bio
335  *
336  * Check if @bio needs splitting based on the queue limits, and if so split off
337  * a bio fitting the limits from the beginning of @bio and return it.  @bio is
338  * shortened to the remainder and re-submitted.
339  *
340  * The split bio is allocated from @q->bio_split, which is provided by the
341  * block layer.
342  */
343 struct bio *__bio_split_to_limits(struct bio *bio,
344 				  const struct queue_limits *lim,
345 				  unsigned int *nr_segs)
346 {
347 	struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
348 	struct bio *split;
349 
350 	switch (bio_op(bio)) {
351 	case REQ_OP_DISCARD:
352 	case REQ_OP_SECURE_ERASE:
353 		split = bio_split_discard(bio, lim, nr_segs, bs);
354 		break;
355 	case REQ_OP_WRITE_ZEROES:
356 		split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
357 		break;
358 	default:
359 		split = bio_split_rw(bio, lim, nr_segs, bs,
360 				get_max_io_size(bio, lim) << SECTOR_SHIFT);
361 		break;
362 	}
363 
364 	if (split) {
365 		/* there isn't chance to merge the splitted bio */
366 		split->bi_opf |= REQ_NOMERGE;
367 
368 		blkcg_bio_issue_init(split);
369 		bio_chain(split, bio);
370 		trace_block_split(split, bio->bi_iter.bi_sector);
371 		submit_bio_noacct(bio);
372 		return split;
373 	}
374 	return bio;
375 }
376 
377 /**
378  * bio_split_to_limits - split a bio to fit the queue limits
379  * @bio:     bio to be split
380  *
381  * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
382  * if so split off a bio fitting the limits from the beginning of @bio and
383  * return it.  @bio is shortened to the remainder and re-submitted.
384  *
385  * The split bio is allocated from @q->bio_split, which is provided by the
386  * block layer.
387  */
388 struct bio *bio_split_to_limits(struct bio *bio)
389 {
390 	const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
391 	unsigned int nr_segs;
392 
393 	if (bio_may_exceed_limits(bio, lim))
394 		return __bio_split_to_limits(bio, lim, &nr_segs);
395 	return bio;
396 }
397 EXPORT_SYMBOL(bio_split_to_limits);
398 
399 unsigned int blk_recalc_rq_segments(struct request *rq)
400 {
401 	unsigned int nr_phys_segs = 0;
402 	unsigned int bytes = 0;
403 	struct req_iterator iter;
404 	struct bio_vec bv;
405 
406 	if (!rq->bio)
407 		return 0;
408 
409 	switch (bio_op(rq->bio)) {
410 	case REQ_OP_DISCARD:
411 	case REQ_OP_SECURE_ERASE:
412 		if (queue_max_discard_segments(rq->q) > 1) {
413 			struct bio *bio = rq->bio;
414 
415 			for_each_bio(bio)
416 				nr_phys_segs++;
417 			return nr_phys_segs;
418 		}
419 		return 1;
420 	case REQ_OP_WRITE_ZEROES:
421 		return 0;
422 	default:
423 		break;
424 	}
425 
426 	rq_for_each_bvec(bv, rq, iter)
427 		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
428 				UINT_MAX, UINT_MAX);
429 	return nr_phys_segs;
430 }
431 
432 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
433 		struct scatterlist *sglist)
434 {
435 	if (!*sg)
436 		return sglist;
437 
438 	/*
439 	 * If the driver previously mapped a shorter list, we could see a
440 	 * termination bit prematurely unless it fully inits the sg table
441 	 * on each mapping. We KNOW that there must be more entries here
442 	 * or the driver would be buggy, so force clear the termination bit
443 	 * to avoid doing a full sg_init_table() in drivers for each command.
444 	 */
445 	sg_unmark_end(*sg);
446 	return sg_next(*sg);
447 }
448 
449 static unsigned blk_bvec_map_sg(struct request_queue *q,
450 		struct bio_vec *bvec, struct scatterlist *sglist,
451 		struct scatterlist **sg)
452 {
453 	unsigned nbytes = bvec->bv_len;
454 	unsigned nsegs = 0, total = 0;
455 
456 	while (nbytes > 0) {
457 		unsigned offset = bvec->bv_offset + total;
458 		unsigned len = min(get_max_segment_size(&q->limits,
459 				   bvec->bv_page, offset), nbytes);
460 		struct page *page = bvec->bv_page;
461 
462 		/*
463 		 * Unfortunately a fair number of drivers barf on scatterlists
464 		 * that have an offset larger than PAGE_SIZE, despite other
465 		 * subsystems dealing with that invariant just fine.  For now
466 		 * stick to the legacy format where we never present those from
467 		 * the block layer, but the code below should be removed once
468 		 * these offenders (mostly MMC/SD drivers) are fixed.
469 		 */
470 		page += (offset >> PAGE_SHIFT);
471 		offset &= ~PAGE_MASK;
472 
473 		*sg = blk_next_sg(sg, sglist);
474 		sg_set_page(*sg, page, len, offset);
475 
476 		total += len;
477 		nbytes -= len;
478 		nsegs++;
479 	}
480 
481 	return nsegs;
482 }
483 
484 static inline int __blk_bvec_map_sg(struct bio_vec bv,
485 		struct scatterlist *sglist, struct scatterlist **sg)
486 {
487 	*sg = blk_next_sg(sg, sglist);
488 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
489 	return 1;
490 }
491 
492 /* only try to merge bvecs into one sg if they are from two bios */
493 static inline bool
494 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
495 			   struct bio_vec *bvprv, struct scatterlist **sg)
496 {
497 
498 	int nbytes = bvec->bv_len;
499 
500 	if (!*sg)
501 		return false;
502 
503 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
504 		return false;
505 
506 	if (!biovec_phys_mergeable(q, bvprv, bvec))
507 		return false;
508 
509 	(*sg)->length += nbytes;
510 
511 	return true;
512 }
513 
514 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
515 			     struct scatterlist *sglist,
516 			     struct scatterlist **sg)
517 {
518 	struct bio_vec bvec, bvprv = { NULL };
519 	struct bvec_iter iter;
520 	int nsegs = 0;
521 	bool new_bio = false;
522 
523 	for_each_bio(bio) {
524 		bio_for_each_bvec(bvec, bio, iter) {
525 			/*
526 			 * Only try to merge bvecs from two bios given we
527 			 * have done bio internal merge when adding pages
528 			 * to bio
529 			 */
530 			if (new_bio &&
531 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
532 				goto next_bvec;
533 
534 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
535 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
536 			else
537 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
538  next_bvec:
539 			new_bio = false;
540 		}
541 		if (likely(bio->bi_iter.bi_size)) {
542 			bvprv = bvec;
543 			new_bio = true;
544 		}
545 	}
546 
547 	return nsegs;
548 }
549 
550 /*
551  * map a request to scatterlist, return number of sg entries setup. Caller
552  * must make sure sg can hold rq->nr_phys_segments entries
553  */
554 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
555 		struct scatterlist *sglist, struct scatterlist **last_sg)
556 {
557 	int nsegs = 0;
558 
559 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
560 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
561 	else if (rq->bio)
562 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
563 
564 	if (*last_sg)
565 		sg_mark_end(*last_sg);
566 
567 	/*
568 	 * Something must have been wrong if the figured number of
569 	 * segment is bigger than number of req's physical segments
570 	 */
571 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
572 
573 	return nsegs;
574 }
575 EXPORT_SYMBOL(__blk_rq_map_sg);
576 
577 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
578 {
579 	if (req_op(rq) == REQ_OP_DISCARD)
580 		return queue_max_discard_segments(rq->q);
581 	return queue_max_segments(rq->q);
582 }
583 
584 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
585 						  sector_t offset)
586 {
587 	struct request_queue *q = rq->q;
588 	unsigned int max_sectors;
589 
590 	if (blk_rq_is_passthrough(rq))
591 		return q->limits.max_hw_sectors;
592 
593 	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
594 	if (!q->limits.chunk_sectors ||
595 	    req_op(rq) == REQ_OP_DISCARD ||
596 	    req_op(rq) == REQ_OP_SECURE_ERASE)
597 		return max_sectors;
598 	return min(max_sectors,
599 		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
600 }
601 
602 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
603 		unsigned int nr_phys_segs)
604 {
605 	if (!blk_cgroup_mergeable(req, bio))
606 		goto no_merge;
607 
608 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
609 		goto no_merge;
610 
611 	/* discard request merge won't add new segment */
612 	if (req_op(req) == REQ_OP_DISCARD)
613 		return 1;
614 
615 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
616 		goto no_merge;
617 
618 	/*
619 	 * This will form the start of a new hw segment.  Bump both
620 	 * counters.
621 	 */
622 	req->nr_phys_segments += nr_phys_segs;
623 	return 1;
624 
625 no_merge:
626 	req_set_nomerge(req->q, req);
627 	return 0;
628 }
629 
630 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
631 {
632 	if (req_gap_back_merge(req, bio))
633 		return 0;
634 	if (blk_integrity_rq(req) &&
635 	    integrity_req_gap_back_merge(req, bio))
636 		return 0;
637 	if (!bio_crypt_ctx_back_mergeable(req, bio))
638 		return 0;
639 	if (blk_rq_sectors(req) + bio_sectors(bio) >
640 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
641 		req_set_nomerge(req->q, req);
642 		return 0;
643 	}
644 
645 	return ll_new_hw_segment(req, bio, nr_segs);
646 }
647 
648 static int ll_front_merge_fn(struct request *req, struct bio *bio,
649 		unsigned int nr_segs)
650 {
651 	if (req_gap_front_merge(req, bio))
652 		return 0;
653 	if (blk_integrity_rq(req) &&
654 	    integrity_req_gap_front_merge(req, bio))
655 		return 0;
656 	if (!bio_crypt_ctx_front_mergeable(req, bio))
657 		return 0;
658 	if (blk_rq_sectors(req) + bio_sectors(bio) >
659 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
660 		req_set_nomerge(req->q, req);
661 		return 0;
662 	}
663 
664 	return ll_new_hw_segment(req, bio, nr_segs);
665 }
666 
667 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
668 		struct request *next)
669 {
670 	unsigned short segments = blk_rq_nr_discard_segments(req);
671 
672 	if (segments >= queue_max_discard_segments(q))
673 		goto no_merge;
674 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
675 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
676 		goto no_merge;
677 
678 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
679 	return true;
680 no_merge:
681 	req_set_nomerge(q, req);
682 	return false;
683 }
684 
685 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
686 				struct request *next)
687 {
688 	int total_phys_segments;
689 
690 	if (req_gap_back_merge(req, next->bio))
691 		return 0;
692 
693 	/*
694 	 * Will it become too large?
695 	 */
696 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
697 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
698 		return 0;
699 
700 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
701 	if (total_phys_segments > blk_rq_get_max_segments(req))
702 		return 0;
703 
704 	if (!blk_cgroup_mergeable(req, next->bio))
705 		return 0;
706 
707 	if (blk_integrity_merge_rq(q, req, next) == false)
708 		return 0;
709 
710 	if (!bio_crypt_ctx_merge_rq(req, next))
711 		return 0;
712 
713 	/* Merge is OK... */
714 	req->nr_phys_segments = total_phys_segments;
715 	return 1;
716 }
717 
718 /**
719  * blk_rq_set_mixed_merge - mark a request as mixed merge
720  * @rq: request to mark as mixed merge
721  *
722  * Description:
723  *     @rq is about to be mixed merged.  Make sure the attributes
724  *     which can be mixed are set in each bio and mark @rq as mixed
725  *     merged.
726  */
727 void blk_rq_set_mixed_merge(struct request *rq)
728 {
729 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
730 	struct bio *bio;
731 
732 	if (rq->rq_flags & RQF_MIXED_MERGE)
733 		return;
734 
735 	/*
736 	 * @rq will no longer represent mixable attributes for all the
737 	 * contained bios.  It will just track those of the first one.
738 	 * Distributes the attributs to each bio.
739 	 */
740 	for (bio = rq->bio; bio; bio = bio->bi_next) {
741 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
742 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
743 		bio->bi_opf |= ff;
744 	}
745 	rq->rq_flags |= RQF_MIXED_MERGE;
746 }
747 
748 static void blk_account_io_merge_request(struct request *req)
749 {
750 	if (blk_do_io_stat(req)) {
751 		part_stat_lock();
752 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
753 		part_stat_unlock();
754 	}
755 }
756 
757 static enum elv_merge blk_try_req_merge(struct request *req,
758 					struct request *next)
759 {
760 	if (blk_discard_mergable(req))
761 		return ELEVATOR_DISCARD_MERGE;
762 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
763 		return ELEVATOR_BACK_MERGE;
764 
765 	return ELEVATOR_NO_MERGE;
766 }
767 
768 /*
769  * For non-mq, this has to be called with the request spinlock acquired.
770  * For mq with scheduling, the appropriate queue wide lock should be held.
771  */
772 static struct request *attempt_merge(struct request_queue *q,
773 				     struct request *req, struct request *next)
774 {
775 	if (!rq_mergeable(req) || !rq_mergeable(next))
776 		return NULL;
777 
778 	if (req_op(req) != req_op(next))
779 		return NULL;
780 
781 	if (rq_data_dir(req) != rq_data_dir(next))
782 		return NULL;
783 
784 	if (req->ioprio != next->ioprio)
785 		return NULL;
786 
787 	/*
788 	 * If we are allowed to merge, then append bio list
789 	 * from next to rq and release next. merge_requests_fn
790 	 * will have updated segment counts, update sector
791 	 * counts here. Handle DISCARDs separately, as they
792 	 * have separate settings.
793 	 */
794 
795 	switch (blk_try_req_merge(req, next)) {
796 	case ELEVATOR_DISCARD_MERGE:
797 		if (!req_attempt_discard_merge(q, req, next))
798 			return NULL;
799 		break;
800 	case ELEVATOR_BACK_MERGE:
801 		if (!ll_merge_requests_fn(q, req, next))
802 			return NULL;
803 		break;
804 	default:
805 		return NULL;
806 	}
807 
808 	/*
809 	 * If failfast settings disagree or any of the two is already
810 	 * a mixed merge, mark both as mixed before proceeding.  This
811 	 * makes sure that all involved bios have mixable attributes
812 	 * set properly.
813 	 */
814 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
815 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
816 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
817 		blk_rq_set_mixed_merge(req);
818 		blk_rq_set_mixed_merge(next);
819 	}
820 
821 	/*
822 	 * At this point we have either done a back merge or front merge. We
823 	 * need the smaller start_time_ns of the merged requests to be the
824 	 * current request for accounting purposes.
825 	 */
826 	if (next->start_time_ns < req->start_time_ns)
827 		req->start_time_ns = next->start_time_ns;
828 
829 	req->biotail->bi_next = next->bio;
830 	req->biotail = next->biotail;
831 
832 	req->__data_len += blk_rq_bytes(next);
833 
834 	if (!blk_discard_mergable(req))
835 		elv_merge_requests(q, req, next);
836 
837 	/*
838 	 * 'next' is going away, so update stats accordingly
839 	 */
840 	blk_account_io_merge_request(next);
841 
842 	trace_block_rq_merge(next);
843 
844 	/*
845 	 * ownership of bio passed from next to req, return 'next' for
846 	 * the caller to free
847 	 */
848 	next->bio = NULL;
849 	return next;
850 }
851 
852 static struct request *attempt_back_merge(struct request_queue *q,
853 		struct request *rq)
854 {
855 	struct request *next = elv_latter_request(q, rq);
856 
857 	if (next)
858 		return attempt_merge(q, rq, next);
859 
860 	return NULL;
861 }
862 
863 static struct request *attempt_front_merge(struct request_queue *q,
864 		struct request *rq)
865 {
866 	struct request *prev = elv_former_request(q, rq);
867 
868 	if (prev)
869 		return attempt_merge(q, prev, rq);
870 
871 	return NULL;
872 }
873 
874 /*
875  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
876  * otherwise. The caller is responsible for freeing 'next' if the merge
877  * happened.
878  */
879 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
880 			   struct request *next)
881 {
882 	return attempt_merge(q, rq, next);
883 }
884 
885 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
886 {
887 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
888 		return false;
889 
890 	if (req_op(rq) != bio_op(bio))
891 		return false;
892 
893 	/* different data direction or already started, don't merge */
894 	if (bio_data_dir(bio) != rq_data_dir(rq))
895 		return false;
896 
897 	/* don't merge across cgroup boundaries */
898 	if (!blk_cgroup_mergeable(rq, bio))
899 		return false;
900 
901 	/* only merge integrity protected bio into ditto rq */
902 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
903 		return false;
904 
905 	/* Only merge if the crypt contexts are compatible */
906 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
907 		return false;
908 
909 	if (rq->ioprio != bio_prio(bio))
910 		return false;
911 
912 	return true;
913 }
914 
915 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
916 {
917 	if (blk_discard_mergable(rq))
918 		return ELEVATOR_DISCARD_MERGE;
919 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
920 		return ELEVATOR_BACK_MERGE;
921 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
922 		return ELEVATOR_FRONT_MERGE;
923 	return ELEVATOR_NO_MERGE;
924 }
925 
926 static void blk_account_io_merge_bio(struct request *req)
927 {
928 	if (!blk_do_io_stat(req))
929 		return;
930 
931 	part_stat_lock();
932 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
933 	part_stat_unlock();
934 }
935 
936 enum bio_merge_status {
937 	BIO_MERGE_OK,
938 	BIO_MERGE_NONE,
939 	BIO_MERGE_FAILED,
940 };
941 
942 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
943 		struct bio *bio, unsigned int nr_segs)
944 {
945 	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
946 
947 	if (!ll_back_merge_fn(req, bio, nr_segs))
948 		return BIO_MERGE_FAILED;
949 
950 	trace_block_bio_backmerge(bio);
951 	rq_qos_merge(req->q, req, bio);
952 
953 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
954 		blk_rq_set_mixed_merge(req);
955 
956 	req->biotail->bi_next = bio;
957 	req->biotail = bio;
958 	req->__data_len += bio->bi_iter.bi_size;
959 
960 	bio_crypt_free_ctx(bio);
961 
962 	blk_account_io_merge_bio(req);
963 	return BIO_MERGE_OK;
964 }
965 
966 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
967 		struct bio *bio, unsigned int nr_segs)
968 {
969 	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
970 
971 	if (!ll_front_merge_fn(req, bio, nr_segs))
972 		return BIO_MERGE_FAILED;
973 
974 	trace_block_bio_frontmerge(bio);
975 	rq_qos_merge(req->q, req, bio);
976 
977 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
978 		blk_rq_set_mixed_merge(req);
979 
980 	bio->bi_next = req->bio;
981 	req->bio = bio;
982 
983 	req->__sector = bio->bi_iter.bi_sector;
984 	req->__data_len += bio->bi_iter.bi_size;
985 
986 	bio_crypt_do_front_merge(req, bio);
987 
988 	blk_account_io_merge_bio(req);
989 	return BIO_MERGE_OK;
990 }
991 
992 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
993 		struct request *req, struct bio *bio)
994 {
995 	unsigned short segments = blk_rq_nr_discard_segments(req);
996 
997 	if (segments >= queue_max_discard_segments(q))
998 		goto no_merge;
999 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1000 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1001 		goto no_merge;
1002 
1003 	rq_qos_merge(q, req, bio);
1004 
1005 	req->biotail->bi_next = bio;
1006 	req->biotail = bio;
1007 	req->__data_len += bio->bi_iter.bi_size;
1008 	req->nr_phys_segments = segments + 1;
1009 
1010 	blk_account_io_merge_bio(req);
1011 	return BIO_MERGE_OK;
1012 no_merge:
1013 	req_set_nomerge(q, req);
1014 	return BIO_MERGE_FAILED;
1015 }
1016 
1017 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1018 						   struct request *rq,
1019 						   struct bio *bio,
1020 						   unsigned int nr_segs,
1021 						   bool sched_allow_merge)
1022 {
1023 	if (!blk_rq_merge_ok(rq, bio))
1024 		return BIO_MERGE_NONE;
1025 
1026 	switch (blk_try_merge(rq, bio)) {
1027 	case ELEVATOR_BACK_MERGE:
1028 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1029 			return bio_attempt_back_merge(rq, bio, nr_segs);
1030 		break;
1031 	case ELEVATOR_FRONT_MERGE:
1032 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1033 			return bio_attempt_front_merge(rq, bio, nr_segs);
1034 		break;
1035 	case ELEVATOR_DISCARD_MERGE:
1036 		return bio_attempt_discard_merge(q, rq, bio);
1037 	default:
1038 		return BIO_MERGE_NONE;
1039 	}
1040 
1041 	return BIO_MERGE_FAILED;
1042 }
1043 
1044 /**
1045  * blk_attempt_plug_merge - try to merge with %current's plugged list
1046  * @q: request_queue new bio is being queued at
1047  * @bio: new bio being queued
1048  * @nr_segs: number of segments in @bio
1049  * from the passed in @q already in the plug list
1050  *
1051  * Determine whether @bio being queued on @q can be merged with the previous
1052  * request on %current's plugged list.  Returns %true if merge was successful,
1053  * otherwise %false.
1054  *
1055  * Plugging coalesces IOs from the same issuer for the same purpose without
1056  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1057  * than scheduling, and the request, while may have elvpriv data, is not
1058  * added on the elevator at this point.  In addition, we don't have
1059  * reliable access to the elevator outside queue lock.  Only check basic
1060  * merging parameters without querying the elevator.
1061  *
1062  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1063  */
1064 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1065 		unsigned int nr_segs)
1066 {
1067 	struct blk_plug *plug;
1068 	struct request *rq;
1069 
1070 	plug = blk_mq_plug(bio);
1071 	if (!plug || rq_list_empty(plug->mq_list))
1072 		return false;
1073 
1074 	rq_list_for_each(&plug->mq_list, rq) {
1075 		if (rq->q == q) {
1076 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1077 			    BIO_MERGE_OK)
1078 				return true;
1079 			break;
1080 		}
1081 
1082 		/*
1083 		 * Only keep iterating plug list for merges if we have multiple
1084 		 * queues
1085 		 */
1086 		if (!plug->multiple_queues)
1087 			break;
1088 	}
1089 	return false;
1090 }
1091 
1092 /*
1093  * Iterate list of requests and see if we can merge this bio with any
1094  * of them.
1095  */
1096 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1097 			struct bio *bio, unsigned int nr_segs)
1098 {
1099 	struct request *rq;
1100 	int checked = 8;
1101 
1102 	list_for_each_entry_reverse(rq, list, queuelist) {
1103 		if (!checked--)
1104 			break;
1105 
1106 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1107 		case BIO_MERGE_NONE:
1108 			continue;
1109 		case BIO_MERGE_OK:
1110 			return true;
1111 		case BIO_MERGE_FAILED:
1112 			return false;
1113 		}
1114 
1115 	}
1116 
1117 	return false;
1118 }
1119 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1120 
1121 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1122 		unsigned int nr_segs, struct request **merged_request)
1123 {
1124 	struct request *rq;
1125 
1126 	switch (elv_merge(q, &rq, bio)) {
1127 	case ELEVATOR_BACK_MERGE:
1128 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1129 			return false;
1130 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1131 			return false;
1132 		*merged_request = attempt_back_merge(q, rq);
1133 		if (!*merged_request)
1134 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1135 		return true;
1136 	case ELEVATOR_FRONT_MERGE:
1137 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1138 			return false;
1139 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1140 			return false;
1141 		*merged_request = attempt_front_merge(q, rq);
1142 		if (!*merged_request)
1143 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1144 		return true;
1145 	case ELEVATOR_DISCARD_MERGE:
1146 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1147 	default:
1148 		return false;
1149 	}
1150 }
1151 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1152