xref: /openbmc/linux/block/blk-merge.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 #include "blk-rq-qos.h"
15 
16 static inline bool bio_will_gap(struct request_queue *q,
17 		struct request *prev_rq, struct bio *prev, struct bio *next)
18 {
19 	struct bio_vec pb, nb;
20 
21 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
22 		return false;
23 
24 	/*
25 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
26 	 * is quite difficult to respect the sg gap limit.  We work hard to
27 	 * merge a huge number of small single bios in case of mkfs.
28 	 */
29 	if (prev_rq)
30 		bio_get_first_bvec(prev_rq->bio, &pb);
31 	else
32 		bio_get_first_bvec(prev, &pb);
33 	if (pb.bv_offset & queue_virt_boundary(q))
34 		return true;
35 
36 	/*
37 	 * We don't need to worry about the situation that the merged segment
38 	 * ends in unaligned virt boundary:
39 	 *
40 	 * - if 'pb' ends aligned, the merged segment ends aligned
41 	 * - if 'pb' ends unaligned, the next bio must include
42 	 *   one single bvec of 'nb', otherwise the 'nb' can't
43 	 *   merge with 'pb'
44 	 */
45 	bio_get_last_bvec(prev, &pb);
46 	bio_get_first_bvec(next, &nb);
47 	if (biovec_phys_mergeable(q, &pb, &nb))
48 		return false;
49 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
50 }
51 
52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
53 {
54 	return bio_will_gap(req->q, req, req->biotail, bio);
55 }
56 
57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
58 {
59 	return bio_will_gap(req->q, NULL, bio, req->bio);
60 }
61 
62 static struct bio *blk_bio_discard_split(struct request_queue *q,
63 					 struct bio *bio,
64 					 struct bio_set *bs,
65 					 unsigned *nsegs)
66 {
67 	unsigned int max_discard_sectors, granularity;
68 	int alignment;
69 	sector_t tmp;
70 	unsigned split_sectors;
71 
72 	*nsegs = 1;
73 
74 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
75 	granularity = max(q->limits.discard_granularity >> 9, 1U);
76 
77 	max_discard_sectors = min(q->limits.max_discard_sectors,
78 			bio_allowed_max_sectors(q));
79 	max_discard_sectors -= max_discard_sectors % granularity;
80 
81 	if (unlikely(!max_discard_sectors)) {
82 		/* XXX: warn */
83 		return NULL;
84 	}
85 
86 	if (bio_sectors(bio) <= max_discard_sectors)
87 		return NULL;
88 
89 	split_sectors = max_discard_sectors;
90 
91 	/*
92 	 * If the next starting sector would be misaligned, stop the discard at
93 	 * the previous aligned sector.
94 	 */
95 	alignment = (q->limits.discard_alignment >> 9) % granularity;
96 
97 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
98 	tmp = sector_div(tmp, granularity);
99 
100 	if (split_sectors > tmp)
101 		split_sectors -= tmp;
102 
103 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
104 }
105 
106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
107 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
108 {
109 	*nsegs = 0;
110 
111 	if (!q->limits.max_write_zeroes_sectors)
112 		return NULL;
113 
114 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
115 		return NULL;
116 
117 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
118 }
119 
120 static struct bio *blk_bio_write_same_split(struct request_queue *q,
121 					    struct bio *bio,
122 					    struct bio_set *bs,
123 					    unsigned *nsegs)
124 {
125 	*nsegs = 1;
126 
127 	if (!q->limits.max_write_same_sectors)
128 		return NULL;
129 
130 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
131 		return NULL;
132 
133 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
134 }
135 
136 /*
137  * Return the maximum number of sectors from the start of a bio that may be
138  * submitted as a single request to a block device. If enough sectors remain,
139  * align the end to the physical block size. Otherwise align the end to the
140  * logical block size. This approach minimizes the number of non-aligned
141  * requests that are submitted to a block device if the start of a bio is not
142  * aligned to a physical block boundary.
143  */
144 static inline unsigned get_max_io_size(struct request_queue *q,
145 				       struct bio *bio)
146 {
147 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
148 	unsigned max_sectors = sectors;
149 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
150 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
151 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152 
153 	max_sectors += start_offset;
154 	max_sectors &= ~(pbs - 1);
155 	if (max_sectors > start_offset)
156 		return max_sectors - start_offset;
157 
158 	return sectors & ~(lbs - 1);
159 }
160 
161 static inline unsigned get_max_segment_size(const struct request_queue *q,
162 					    struct page *start_page,
163 					    unsigned long offset)
164 {
165 	unsigned long mask = queue_segment_boundary(q);
166 
167 	offset = mask & (page_to_phys(start_page) + offset);
168 
169 	/*
170 	 * overflow may be triggered in case of zero page physical address
171 	 * on 32bit arch, use queue's max segment size when that happens.
172 	 */
173 	return min_not_zero(mask - offset + 1,
174 			(unsigned long)queue_max_segment_size(q));
175 }
176 
177 /**
178  * bvec_split_segs - verify whether or not a bvec should be split in the middle
179  * @q:        [in] request queue associated with the bio associated with @bv
180  * @bv:       [in] bvec to examine
181  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
182  *            by the number of segments from @bv that may be appended to that
183  *            bio without exceeding @max_segs
184  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
185  *            by the number of sectors from @bv that may be appended to that
186  *            bio without exceeding @max_sectors
187  * @max_segs: [in] upper bound for *@nsegs
188  * @max_sectors: [in] upper bound for *@sectors
189  *
190  * When splitting a bio, it can happen that a bvec is encountered that is too
191  * big to fit in a single segment and hence that it has to be split in the
192  * middle. This function verifies whether or not that should happen. The value
193  * %true is returned if and only if appending the entire @bv to a bio with
194  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
195  * the block driver.
196  */
197 static bool bvec_split_segs(const struct request_queue *q,
198 			    const struct bio_vec *bv, unsigned *nsegs,
199 			    unsigned *sectors, unsigned max_segs,
200 			    unsigned max_sectors)
201 {
202 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
203 	unsigned len = min(bv->bv_len, max_len);
204 	unsigned total_len = 0;
205 	unsigned seg_size = 0;
206 
207 	while (len && *nsegs < max_segs) {
208 		seg_size = get_max_segment_size(q, bv->bv_page,
209 						bv->bv_offset + total_len);
210 		seg_size = min(seg_size, len);
211 
212 		(*nsegs)++;
213 		total_len += seg_size;
214 		len -= seg_size;
215 
216 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
217 			break;
218 	}
219 
220 	*sectors += total_len >> 9;
221 
222 	/* tell the caller to split the bvec if it is too big to fit */
223 	return len > 0 || bv->bv_len > max_len;
224 }
225 
226 /**
227  * blk_bio_segment_split - split a bio in two bios
228  * @q:    [in] request queue pointer
229  * @bio:  [in] bio to be split
230  * @bs:	  [in] bio set to allocate the clone from
231  * @segs: [out] number of segments in the bio with the first half of the sectors
232  *
233  * Clone @bio, update the bi_iter of the clone to represent the first sectors
234  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
235  * following is guaranteed for the cloned bio:
236  * - That it has at most get_max_io_size(@q, @bio) sectors.
237  * - That it has at most queue_max_segments(@q) segments.
238  *
239  * Except for discard requests the cloned bio will point at the bi_io_vec of
240  * the original bio. It is the responsibility of the caller to ensure that the
241  * original bio is not freed before the cloned bio. The caller is also
242  * responsible for ensuring that @bs is only destroyed after processing of the
243  * split bio has finished.
244  */
245 static struct bio *blk_bio_segment_split(struct request_queue *q,
246 					 struct bio *bio,
247 					 struct bio_set *bs,
248 					 unsigned *segs)
249 {
250 	struct bio_vec bv, bvprv, *bvprvp = NULL;
251 	struct bvec_iter iter;
252 	unsigned nsegs = 0, sectors = 0;
253 	const unsigned max_sectors = get_max_io_size(q, bio);
254 	const unsigned max_segs = queue_max_segments(q);
255 
256 	bio_for_each_bvec(bv, bio, iter) {
257 		/*
258 		 * If the queue doesn't support SG gaps and adding this
259 		 * offset would create a gap, disallow it.
260 		 */
261 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
262 			goto split;
263 
264 		if (nsegs < max_segs &&
265 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
266 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
267 			nsegs++;
268 			sectors += bv.bv_len >> 9;
269 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
270 					 max_sectors)) {
271 			goto split;
272 		}
273 
274 		bvprv = bv;
275 		bvprvp = &bvprv;
276 	}
277 
278 	*segs = nsegs;
279 	return NULL;
280 split:
281 	*segs = nsegs;
282 
283 	/*
284 	 * Bio splitting may cause subtle trouble such as hang when doing sync
285 	 * iopoll in direct IO routine. Given performance gain of iopoll for
286 	 * big IO can be trival, disable iopoll when split needed.
287 	 */
288 	bio->bi_opf &= ~REQ_HIPRI;
289 
290 	return bio_split(bio, sectors, GFP_NOIO, bs);
291 }
292 
293 /**
294  * __blk_queue_split - split a bio and submit the second half
295  * @bio:     [in, out] bio to be split
296  * @nr_segs: [out] number of segments in the first bio
297  *
298  * Split a bio into two bios, chain the two bios, submit the second half and
299  * store a pointer to the first half in *@bio. If the second bio is still too
300  * big it will be split by a recursive call to this function. Since this
301  * function may allocate a new bio from q->bio_split, it is the responsibility
302  * of the caller to ensure that q->bio_split is only released after processing
303  * of the split bio has finished.
304  */
305 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
306 {
307 	struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue;
308 	struct bio *split = NULL;
309 
310 	switch (bio_op(*bio)) {
311 	case REQ_OP_DISCARD:
312 	case REQ_OP_SECURE_ERASE:
313 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
314 		break;
315 	case REQ_OP_WRITE_ZEROES:
316 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
317 				nr_segs);
318 		break;
319 	case REQ_OP_WRITE_SAME:
320 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
321 				nr_segs);
322 		break;
323 	default:
324 		/*
325 		 * All drivers must accept single-segments bios that are <=
326 		 * PAGE_SIZE.  This is a quick and dirty check that relies on
327 		 * the fact that bi_io_vec[0] is always valid if a bio has data.
328 		 * The check might lead to occasional false negatives when bios
329 		 * are cloned, but compared to the performance impact of cloned
330 		 * bios themselves the loop below doesn't matter anyway.
331 		 */
332 		if (!q->limits.chunk_sectors &&
333 		    (*bio)->bi_vcnt == 1 &&
334 		    ((*bio)->bi_io_vec[0].bv_len +
335 		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
336 			*nr_segs = 1;
337 			break;
338 		}
339 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
340 		break;
341 	}
342 
343 	if (split) {
344 		/* there isn't chance to merge the splitted bio */
345 		split->bi_opf |= REQ_NOMERGE;
346 
347 		bio_chain(split, *bio);
348 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
349 		submit_bio_noacct(*bio);
350 		*bio = split;
351 	}
352 }
353 
354 /**
355  * blk_queue_split - split a bio and submit the second half
356  * @bio: [in, out] bio to be split
357  *
358  * Split a bio into two bios, chains the two bios, submit the second half and
359  * store a pointer to the first half in *@bio. Since this function may allocate
360  * a new bio from q->bio_split, it is the responsibility of the caller to ensure
361  * that q->bio_split is only released after processing of the split bio has
362  * finished.
363  */
364 void blk_queue_split(struct bio **bio)
365 {
366 	unsigned int nr_segs;
367 
368 	__blk_queue_split(bio, &nr_segs);
369 }
370 EXPORT_SYMBOL(blk_queue_split);
371 
372 unsigned int blk_recalc_rq_segments(struct request *rq)
373 {
374 	unsigned int nr_phys_segs = 0;
375 	unsigned int nr_sectors = 0;
376 	struct req_iterator iter;
377 	struct bio_vec bv;
378 
379 	if (!rq->bio)
380 		return 0;
381 
382 	switch (bio_op(rq->bio)) {
383 	case REQ_OP_DISCARD:
384 	case REQ_OP_SECURE_ERASE:
385 		if (queue_max_discard_segments(rq->q) > 1) {
386 			struct bio *bio = rq->bio;
387 
388 			for_each_bio(bio)
389 				nr_phys_segs++;
390 			return nr_phys_segs;
391 		}
392 		return 1;
393 	case REQ_OP_WRITE_ZEROES:
394 		return 0;
395 	case REQ_OP_WRITE_SAME:
396 		return 1;
397 	}
398 
399 	rq_for_each_bvec(bv, rq, iter)
400 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
401 				UINT_MAX, UINT_MAX);
402 	return nr_phys_segs;
403 }
404 
405 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
406 		struct scatterlist *sglist)
407 {
408 	if (!*sg)
409 		return sglist;
410 
411 	/*
412 	 * If the driver previously mapped a shorter list, we could see a
413 	 * termination bit prematurely unless it fully inits the sg table
414 	 * on each mapping. We KNOW that there must be more entries here
415 	 * or the driver would be buggy, so force clear the termination bit
416 	 * to avoid doing a full sg_init_table() in drivers for each command.
417 	 */
418 	sg_unmark_end(*sg);
419 	return sg_next(*sg);
420 }
421 
422 static unsigned blk_bvec_map_sg(struct request_queue *q,
423 		struct bio_vec *bvec, struct scatterlist *sglist,
424 		struct scatterlist **sg)
425 {
426 	unsigned nbytes = bvec->bv_len;
427 	unsigned nsegs = 0, total = 0;
428 
429 	while (nbytes > 0) {
430 		unsigned offset = bvec->bv_offset + total;
431 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
432 					offset), nbytes);
433 		struct page *page = bvec->bv_page;
434 
435 		/*
436 		 * Unfortunately a fair number of drivers barf on scatterlists
437 		 * that have an offset larger than PAGE_SIZE, despite other
438 		 * subsystems dealing with that invariant just fine.  For now
439 		 * stick to the legacy format where we never present those from
440 		 * the block layer, but the code below should be removed once
441 		 * these offenders (mostly MMC/SD drivers) are fixed.
442 		 */
443 		page += (offset >> PAGE_SHIFT);
444 		offset &= ~PAGE_MASK;
445 
446 		*sg = blk_next_sg(sg, sglist);
447 		sg_set_page(*sg, page, len, offset);
448 
449 		total += len;
450 		nbytes -= len;
451 		nsegs++;
452 	}
453 
454 	return nsegs;
455 }
456 
457 static inline int __blk_bvec_map_sg(struct bio_vec bv,
458 		struct scatterlist *sglist, struct scatterlist **sg)
459 {
460 	*sg = blk_next_sg(sg, sglist);
461 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
462 	return 1;
463 }
464 
465 /* only try to merge bvecs into one sg if they are from two bios */
466 static inline bool
467 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
468 			   struct bio_vec *bvprv, struct scatterlist **sg)
469 {
470 
471 	int nbytes = bvec->bv_len;
472 
473 	if (!*sg)
474 		return false;
475 
476 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
477 		return false;
478 
479 	if (!biovec_phys_mergeable(q, bvprv, bvec))
480 		return false;
481 
482 	(*sg)->length += nbytes;
483 
484 	return true;
485 }
486 
487 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
488 			     struct scatterlist *sglist,
489 			     struct scatterlist **sg)
490 {
491 	struct bio_vec bvec, bvprv = { NULL };
492 	struct bvec_iter iter;
493 	int nsegs = 0;
494 	bool new_bio = false;
495 
496 	for_each_bio(bio) {
497 		bio_for_each_bvec(bvec, bio, iter) {
498 			/*
499 			 * Only try to merge bvecs from two bios given we
500 			 * have done bio internal merge when adding pages
501 			 * to bio
502 			 */
503 			if (new_bio &&
504 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
505 				goto next_bvec;
506 
507 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
508 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
509 			else
510 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
511  next_bvec:
512 			new_bio = false;
513 		}
514 		if (likely(bio->bi_iter.bi_size)) {
515 			bvprv = bvec;
516 			new_bio = true;
517 		}
518 	}
519 
520 	return nsegs;
521 }
522 
523 /*
524  * map a request to scatterlist, return number of sg entries setup. Caller
525  * must make sure sg can hold rq->nr_phys_segments entries
526  */
527 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
528 		struct scatterlist *sglist, struct scatterlist **last_sg)
529 {
530 	int nsegs = 0;
531 
532 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
533 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
534 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
535 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
536 	else if (rq->bio)
537 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
538 
539 	if (*last_sg)
540 		sg_mark_end(*last_sg);
541 
542 	/*
543 	 * Something must have been wrong if the figured number of
544 	 * segment is bigger than number of req's physical segments
545 	 */
546 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
547 
548 	return nsegs;
549 }
550 EXPORT_SYMBOL(__blk_rq_map_sg);
551 
552 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
553 {
554 	if (req_op(rq) == REQ_OP_DISCARD)
555 		return queue_max_discard_segments(rq->q);
556 	return queue_max_segments(rq->q);
557 }
558 
559 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
560 		unsigned int nr_phys_segs)
561 {
562 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
563 		goto no_merge;
564 
565 	/* discard request merge won't add new segment */
566 	if (req_op(req) == REQ_OP_DISCARD)
567 		return 1;
568 
569 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
570 		goto no_merge;
571 
572 	/*
573 	 * This will form the start of a new hw segment.  Bump both
574 	 * counters.
575 	 */
576 	req->nr_phys_segments += nr_phys_segs;
577 	return 1;
578 
579 no_merge:
580 	req_set_nomerge(req->q, req);
581 	return 0;
582 }
583 
584 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
585 {
586 	if (req_gap_back_merge(req, bio))
587 		return 0;
588 	if (blk_integrity_rq(req) &&
589 	    integrity_req_gap_back_merge(req, bio))
590 		return 0;
591 	if (!bio_crypt_ctx_back_mergeable(req, bio))
592 		return 0;
593 	if (blk_rq_sectors(req) + bio_sectors(bio) >
594 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
595 		req_set_nomerge(req->q, req);
596 		return 0;
597 	}
598 
599 	return ll_new_hw_segment(req, bio, nr_segs);
600 }
601 
602 static int ll_front_merge_fn(struct request *req, struct bio *bio,
603 		unsigned int nr_segs)
604 {
605 	if (req_gap_front_merge(req, bio))
606 		return 0;
607 	if (blk_integrity_rq(req) &&
608 	    integrity_req_gap_front_merge(req, bio))
609 		return 0;
610 	if (!bio_crypt_ctx_front_mergeable(req, bio))
611 		return 0;
612 	if (blk_rq_sectors(req) + bio_sectors(bio) >
613 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
614 		req_set_nomerge(req->q, req);
615 		return 0;
616 	}
617 
618 	return ll_new_hw_segment(req, bio, nr_segs);
619 }
620 
621 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
622 		struct request *next)
623 {
624 	unsigned short segments = blk_rq_nr_discard_segments(req);
625 
626 	if (segments >= queue_max_discard_segments(q))
627 		goto no_merge;
628 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
629 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
630 		goto no_merge;
631 
632 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
633 	return true;
634 no_merge:
635 	req_set_nomerge(q, req);
636 	return false;
637 }
638 
639 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
640 				struct request *next)
641 {
642 	int total_phys_segments;
643 
644 	if (req_gap_back_merge(req, next->bio))
645 		return 0;
646 
647 	/*
648 	 * Will it become too large?
649 	 */
650 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
651 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
652 		return 0;
653 
654 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
655 	if (total_phys_segments > blk_rq_get_max_segments(req))
656 		return 0;
657 
658 	if (blk_integrity_merge_rq(q, req, next) == false)
659 		return 0;
660 
661 	if (!bio_crypt_ctx_merge_rq(req, next))
662 		return 0;
663 
664 	/* Merge is OK... */
665 	req->nr_phys_segments = total_phys_segments;
666 	return 1;
667 }
668 
669 /**
670  * blk_rq_set_mixed_merge - mark a request as mixed merge
671  * @rq: request to mark as mixed merge
672  *
673  * Description:
674  *     @rq is about to be mixed merged.  Make sure the attributes
675  *     which can be mixed are set in each bio and mark @rq as mixed
676  *     merged.
677  */
678 void blk_rq_set_mixed_merge(struct request *rq)
679 {
680 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
681 	struct bio *bio;
682 
683 	if (rq->rq_flags & RQF_MIXED_MERGE)
684 		return;
685 
686 	/*
687 	 * @rq will no longer represent mixable attributes for all the
688 	 * contained bios.  It will just track those of the first one.
689 	 * Distributes the attributs to each bio.
690 	 */
691 	for (bio = rq->bio; bio; bio = bio->bi_next) {
692 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
693 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
694 		bio->bi_opf |= ff;
695 	}
696 	rq->rq_flags |= RQF_MIXED_MERGE;
697 }
698 
699 static void blk_account_io_merge_request(struct request *req)
700 {
701 	if (blk_do_io_stat(req)) {
702 		part_stat_lock();
703 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
704 		part_stat_unlock();
705 	}
706 }
707 
708 /*
709  * Two cases of handling DISCARD merge:
710  * If max_discard_segments > 1, the driver takes every bio
711  * as a range and send them to controller together. The ranges
712  * needn't to be contiguous.
713  * Otherwise, the bios/requests will be handled as same as
714  * others which should be contiguous.
715  */
716 static inline bool blk_discard_mergable(struct request *req)
717 {
718 	if (req_op(req) == REQ_OP_DISCARD &&
719 	    queue_max_discard_segments(req->q) > 1)
720 		return true;
721 	return false;
722 }
723 
724 static enum elv_merge blk_try_req_merge(struct request *req,
725 					struct request *next)
726 {
727 	if (blk_discard_mergable(req))
728 		return ELEVATOR_DISCARD_MERGE;
729 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
730 		return ELEVATOR_BACK_MERGE;
731 
732 	return ELEVATOR_NO_MERGE;
733 }
734 
735 /*
736  * For non-mq, this has to be called with the request spinlock acquired.
737  * For mq with scheduling, the appropriate queue wide lock should be held.
738  */
739 static struct request *attempt_merge(struct request_queue *q,
740 				     struct request *req, struct request *next)
741 {
742 	if (!rq_mergeable(req) || !rq_mergeable(next))
743 		return NULL;
744 
745 	if (req_op(req) != req_op(next))
746 		return NULL;
747 
748 	if (rq_data_dir(req) != rq_data_dir(next)
749 	    || req->rq_disk != next->rq_disk)
750 		return NULL;
751 
752 	if (req_op(req) == REQ_OP_WRITE_SAME &&
753 	    !blk_write_same_mergeable(req->bio, next->bio))
754 		return NULL;
755 
756 	/*
757 	 * Don't allow merge of different write hints, or for a hint with
758 	 * non-hint IO.
759 	 */
760 	if (req->write_hint != next->write_hint)
761 		return NULL;
762 
763 	if (req->ioprio != next->ioprio)
764 		return NULL;
765 
766 	/*
767 	 * If we are allowed to merge, then append bio list
768 	 * from next to rq and release next. merge_requests_fn
769 	 * will have updated segment counts, update sector
770 	 * counts here. Handle DISCARDs separately, as they
771 	 * have separate settings.
772 	 */
773 
774 	switch (blk_try_req_merge(req, next)) {
775 	case ELEVATOR_DISCARD_MERGE:
776 		if (!req_attempt_discard_merge(q, req, next))
777 			return NULL;
778 		break;
779 	case ELEVATOR_BACK_MERGE:
780 		if (!ll_merge_requests_fn(q, req, next))
781 			return NULL;
782 		break;
783 	default:
784 		return NULL;
785 	}
786 
787 	/*
788 	 * If failfast settings disagree or any of the two is already
789 	 * a mixed merge, mark both as mixed before proceeding.  This
790 	 * makes sure that all involved bios have mixable attributes
791 	 * set properly.
792 	 */
793 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
794 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
795 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
796 		blk_rq_set_mixed_merge(req);
797 		blk_rq_set_mixed_merge(next);
798 	}
799 
800 	/*
801 	 * At this point we have either done a back merge or front merge. We
802 	 * need the smaller start_time_ns of the merged requests to be the
803 	 * current request for accounting purposes.
804 	 */
805 	if (next->start_time_ns < req->start_time_ns)
806 		req->start_time_ns = next->start_time_ns;
807 
808 	req->biotail->bi_next = next->bio;
809 	req->biotail = next->biotail;
810 
811 	req->__data_len += blk_rq_bytes(next);
812 
813 	if (!blk_discard_mergable(req))
814 		elv_merge_requests(q, req, next);
815 
816 	/*
817 	 * 'next' is going away, so update stats accordingly
818 	 */
819 	blk_account_io_merge_request(next);
820 
821 	trace_block_rq_merge(next);
822 
823 	/*
824 	 * ownership of bio passed from next to req, return 'next' for
825 	 * the caller to free
826 	 */
827 	next->bio = NULL;
828 	return next;
829 }
830 
831 static struct request *attempt_back_merge(struct request_queue *q,
832 		struct request *rq)
833 {
834 	struct request *next = elv_latter_request(q, rq);
835 
836 	if (next)
837 		return attempt_merge(q, rq, next);
838 
839 	return NULL;
840 }
841 
842 static struct request *attempt_front_merge(struct request_queue *q,
843 		struct request *rq)
844 {
845 	struct request *prev = elv_former_request(q, rq);
846 
847 	if (prev)
848 		return attempt_merge(q, prev, rq);
849 
850 	return NULL;
851 }
852 
853 /*
854  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
855  * otherwise. The caller is responsible for freeing 'next' if the merge
856  * happened.
857  */
858 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
859 			   struct request *next)
860 {
861 	return attempt_merge(q, rq, next);
862 }
863 
864 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
865 {
866 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
867 		return false;
868 
869 	if (req_op(rq) != bio_op(bio))
870 		return false;
871 
872 	/* different data direction or already started, don't merge */
873 	if (bio_data_dir(bio) != rq_data_dir(rq))
874 		return false;
875 
876 	/* must be same device */
877 	if (rq->rq_disk != bio->bi_bdev->bd_disk)
878 		return false;
879 
880 	/* only merge integrity protected bio into ditto rq */
881 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
882 		return false;
883 
884 	/* Only merge if the crypt contexts are compatible */
885 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
886 		return false;
887 
888 	/* must be using the same buffer */
889 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
890 	    !blk_write_same_mergeable(rq->bio, bio))
891 		return false;
892 
893 	/*
894 	 * Don't allow merge of different write hints, or for a hint with
895 	 * non-hint IO.
896 	 */
897 	if (rq->write_hint != bio->bi_write_hint)
898 		return false;
899 
900 	if (rq->ioprio != bio_prio(bio))
901 		return false;
902 
903 	return true;
904 }
905 
906 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
907 {
908 	if (blk_discard_mergable(rq))
909 		return ELEVATOR_DISCARD_MERGE;
910 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
911 		return ELEVATOR_BACK_MERGE;
912 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
913 		return ELEVATOR_FRONT_MERGE;
914 	return ELEVATOR_NO_MERGE;
915 }
916 
917 static void blk_account_io_merge_bio(struct request *req)
918 {
919 	if (!blk_do_io_stat(req))
920 		return;
921 
922 	part_stat_lock();
923 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
924 	part_stat_unlock();
925 }
926 
927 enum bio_merge_status {
928 	BIO_MERGE_OK,
929 	BIO_MERGE_NONE,
930 	BIO_MERGE_FAILED,
931 };
932 
933 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
934 		struct bio *bio, unsigned int nr_segs)
935 {
936 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
937 
938 	if (!ll_back_merge_fn(req, bio, nr_segs))
939 		return BIO_MERGE_FAILED;
940 
941 	trace_block_bio_backmerge(bio);
942 	rq_qos_merge(req->q, req, bio);
943 
944 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
945 		blk_rq_set_mixed_merge(req);
946 
947 	req->biotail->bi_next = bio;
948 	req->biotail = bio;
949 	req->__data_len += bio->bi_iter.bi_size;
950 
951 	bio_crypt_free_ctx(bio);
952 
953 	blk_account_io_merge_bio(req);
954 	return BIO_MERGE_OK;
955 }
956 
957 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
958 		struct bio *bio, unsigned int nr_segs)
959 {
960 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
961 
962 	if (!ll_front_merge_fn(req, bio, nr_segs))
963 		return BIO_MERGE_FAILED;
964 
965 	trace_block_bio_frontmerge(bio);
966 	rq_qos_merge(req->q, req, bio);
967 
968 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
969 		blk_rq_set_mixed_merge(req);
970 
971 	bio->bi_next = req->bio;
972 	req->bio = bio;
973 
974 	req->__sector = bio->bi_iter.bi_sector;
975 	req->__data_len += bio->bi_iter.bi_size;
976 
977 	bio_crypt_do_front_merge(req, bio);
978 
979 	blk_account_io_merge_bio(req);
980 	return BIO_MERGE_OK;
981 }
982 
983 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
984 		struct request *req, struct bio *bio)
985 {
986 	unsigned short segments = blk_rq_nr_discard_segments(req);
987 
988 	if (segments >= queue_max_discard_segments(q))
989 		goto no_merge;
990 	if (blk_rq_sectors(req) + bio_sectors(bio) >
991 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
992 		goto no_merge;
993 
994 	rq_qos_merge(q, req, bio);
995 
996 	req->biotail->bi_next = bio;
997 	req->biotail = bio;
998 	req->__data_len += bio->bi_iter.bi_size;
999 	req->nr_phys_segments = segments + 1;
1000 
1001 	blk_account_io_merge_bio(req);
1002 	return BIO_MERGE_OK;
1003 no_merge:
1004 	req_set_nomerge(q, req);
1005 	return BIO_MERGE_FAILED;
1006 }
1007 
1008 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1009 						   struct request *rq,
1010 						   struct bio *bio,
1011 						   unsigned int nr_segs,
1012 						   bool sched_allow_merge)
1013 {
1014 	if (!blk_rq_merge_ok(rq, bio))
1015 		return BIO_MERGE_NONE;
1016 
1017 	switch (blk_try_merge(rq, bio)) {
1018 	case ELEVATOR_BACK_MERGE:
1019 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1020 			return bio_attempt_back_merge(rq, bio, nr_segs);
1021 		break;
1022 	case ELEVATOR_FRONT_MERGE:
1023 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1024 			return bio_attempt_front_merge(rq, bio, nr_segs);
1025 		break;
1026 	case ELEVATOR_DISCARD_MERGE:
1027 		return bio_attempt_discard_merge(q, rq, bio);
1028 	default:
1029 		return BIO_MERGE_NONE;
1030 	}
1031 
1032 	return BIO_MERGE_FAILED;
1033 }
1034 
1035 /**
1036  * blk_attempt_plug_merge - try to merge with %current's plugged list
1037  * @q: request_queue new bio is being queued at
1038  * @bio: new bio being queued
1039  * @nr_segs: number of segments in @bio
1040  * @same_queue_rq: pointer to &struct request that gets filled in when
1041  * another request associated with @q is found on the plug list
1042  * (optional, may be %NULL)
1043  *
1044  * Determine whether @bio being queued on @q can be merged with a request
1045  * on %current's plugged list.  Returns %true if merge was successful,
1046  * otherwise %false.
1047  *
1048  * Plugging coalesces IOs from the same issuer for the same purpose without
1049  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1050  * than scheduling, and the request, while may have elvpriv data, is not
1051  * added on the elevator at this point.  In addition, we don't have
1052  * reliable access to the elevator outside queue lock.  Only check basic
1053  * merging parameters without querying the elevator.
1054  *
1055  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1056  */
1057 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1058 		unsigned int nr_segs, struct request **same_queue_rq)
1059 {
1060 	struct blk_plug *plug;
1061 	struct request *rq;
1062 	struct list_head *plug_list;
1063 
1064 	plug = blk_mq_plug(q, bio);
1065 	if (!plug)
1066 		return false;
1067 
1068 	plug_list = &plug->mq_list;
1069 
1070 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1071 		if (rq->q == q && same_queue_rq) {
1072 			/*
1073 			 * Only blk-mq multiple hardware queues case checks the
1074 			 * rq in the same queue, there should be only one such
1075 			 * rq in a queue
1076 			 **/
1077 			*same_queue_rq = rq;
1078 		}
1079 
1080 		if (rq->q != q)
1081 			continue;
1082 
1083 		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1084 		    BIO_MERGE_OK)
1085 			return true;
1086 	}
1087 
1088 	return false;
1089 }
1090 
1091 /*
1092  * Iterate list of requests and see if we can merge this bio with any
1093  * of them.
1094  */
1095 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1096 			struct bio *bio, unsigned int nr_segs)
1097 {
1098 	struct request *rq;
1099 	int checked = 8;
1100 
1101 	list_for_each_entry_reverse(rq, list, queuelist) {
1102 		if (!checked--)
1103 			break;
1104 
1105 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1106 		case BIO_MERGE_NONE:
1107 			continue;
1108 		case BIO_MERGE_OK:
1109 			return true;
1110 		case BIO_MERGE_FAILED:
1111 			return false;
1112 		}
1113 
1114 	}
1115 
1116 	return false;
1117 }
1118 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1119 
1120 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1121 		unsigned int nr_segs, struct request **merged_request)
1122 {
1123 	struct request *rq;
1124 
1125 	switch (elv_merge(q, &rq, bio)) {
1126 	case ELEVATOR_BACK_MERGE:
1127 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1128 			return false;
1129 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1130 			return false;
1131 		*merged_request = attempt_back_merge(q, rq);
1132 		if (!*merged_request)
1133 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1134 		return true;
1135 	case ELEVATOR_FRONT_MERGE:
1136 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1137 			return false;
1138 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1139 			return false;
1140 		*merged_request = attempt_front_merge(q, rq);
1141 		if (!*merged_request)
1142 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1143 		return true;
1144 	case ELEVATOR_DISCARD_MERGE:
1145 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1146 	default:
1147 		return false;
1148 	}
1149 }
1150 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1151