xref: /openbmc/linux/block/blk-merge.c (revision 89aba575)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87 
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 /*
99  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100  * is defined as 'unsigned int', meantime it has to be aligned to with the
101  * logical block size, which is the minimum accepted unit by hardware.
102  */
103 static unsigned int bio_allowed_max_sectors(struct queue_limits *lim)
104 {
105 	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107 
108 static struct bio *bio_split_discard(struct bio *bio, struct queue_limits *lim,
109 		unsigned *nsegs, struct bio_set *bs)
110 {
111 	unsigned int max_discard_sectors, granularity;
112 	sector_t tmp;
113 	unsigned split_sectors;
114 
115 	*nsegs = 1;
116 
117 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
118 	granularity = max(lim->discard_granularity >> 9, 1U);
119 
120 	max_discard_sectors =
121 		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
122 	max_discard_sectors -= max_discard_sectors % granularity;
123 
124 	if (unlikely(!max_discard_sectors)) {
125 		/* XXX: warn */
126 		return NULL;
127 	}
128 
129 	if (bio_sectors(bio) <= max_discard_sectors)
130 		return NULL;
131 
132 	split_sectors = max_discard_sectors;
133 
134 	/*
135 	 * If the next starting sector would be misaligned, stop the discard at
136 	 * the previous aligned sector.
137 	 */
138 	tmp = bio->bi_iter.bi_sector + split_sectors -
139 		((lim->discard_alignment >> 9) % granularity);
140 	tmp = sector_div(tmp, granularity);
141 
142 	if (split_sectors > tmp)
143 		split_sectors -= tmp;
144 
145 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
146 }
147 
148 static struct bio *bio_split_write_zeroes(struct bio *bio,
149 		struct queue_limits *lim, unsigned *nsegs, struct bio_set *bs)
150 {
151 	*nsegs = 0;
152 	if (!lim->max_write_zeroes_sectors)
153 		return NULL;
154 	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
155 		return NULL;
156 	return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
157 }
158 
159 /*
160  * Return the maximum number of sectors from the start of a bio that may be
161  * submitted as a single request to a block device. If enough sectors remain,
162  * align the end to the physical block size. Otherwise align the end to the
163  * logical block size. This approach minimizes the number of non-aligned
164  * requests that are submitted to a block device if the start of a bio is not
165  * aligned to a physical block boundary.
166  */
167 static inline unsigned get_max_io_size(struct bio *bio,
168 		struct queue_limits *lim)
169 {
170 	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
171 	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
172 	unsigned max_sectors = lim->max_sectors, start, end;
173 
174 	if (lim->chunk_sectors) {
175 		max_sectors = min(max_sectors,
176 			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
177 					       lim->chunk_sectors));
178 	}
179 
180 	start = bio->bi_iter.bi_sector & (pbs - 1);
181 	end = (start + max_sectors) & ~(pbs - 1);
182 	if (end > start)
183 		return end - start;
184 	return max_sectors & ~(lbs - 1);
185 }
186 
187 static inline unsigned get_max_segment_size(struct queue_limits *lim,
188 		struct page *start_page, unsigned long offset)
189 {
190 	unsigned long mask = lim->seg_boundary_mask;
191 
192 	offset = mask & (page_to_phys(start_page) + offset);
193 
194 	/*
195 	 * overflow may be triggered in case of zero page physical address
196 	 * on 32bit arch, use queue's max segment size when that happens.
197 	 */
198 	return min_not_zero(mask - offset + 1,
199 			(unsigned long)lim->max_segment_size);
200 }
201 
202 /**
203  * bvec_split_segs - verify whether or not a bvec should be split in the middle
204  * @lim:      [in] queue limits to split based on
205  * @bv:       [in] bvec to examine
206  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
207  *            by the number of segments from @bv that may be appended to that
208  *            bio without exceeding @max_segs
209  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
210  *            by the number of bytes from @bv that may be appended to that
211  *            bio without exceeding @max_bytes
212  * @max_segs: [in] upper bound for *@nsegs
213  * @max_bytes: [in] upper bound for *@bytes
214  *
215  * When splitting a bio, it can happen that a bvec is encountered that is too
216  * big to fit in a single segment and hence that it has to be split in the
217  * middle. This function verifies whether or not that should happen. The value
218  * %true is returned if and only if appending the entire @bv to a bio with
219  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
220  * the block driver.
221  */
222 static bool bvec_split_segs(struct queue_limits *lim, const struct bio_vec *bv,
223 		unsigned *nsegs, unsigned *bytes, unsigned max_segs,
224 		unsigned max_bytes)
225 {
226 	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
227 	unsigned len = min(bv->bv_len, max_len);
228 	unsigned total_len = 0;
229 	unsigned seg_size = 0;
230 
231 	while (len && *nsegs < max_segs) {
232 		seg_size = get_max_segment_size(lim, bv->bv_page,
233 						bv->bv_offset + total_len);
234 		seg_size = min(seg_size, len);
235 
236 		(*nsegs)++;
237 		total_len += seg_size;
238 		len -= seg_size;
239 
240 		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
241 			break;
242 	}
243 
244 	*bytes += total_len;
245 
246 	/* tell the caller to split the bvec if it is too big to fit */
247 	return len > 0 || bv->bv_len > max_len;
248 }
249 
250 /**
251  * bio_split_rw - split a bio in two bios
252  * @bio:  [in] bio to be split
253  * @lim:  [in] queue limits to split based on
254  * @segs: [out] number of segments in the bio with the first half of the sectors
255  * @bs:	  [in] bio set to allocate the clone from
256  * @max_bytes: [in] maximum number of bytes per bio
257  *
258  * Clone @bio, update the bi_iter of the clone to represent the first sectors
259  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
260  * following is guaranteed for the cloned bio:
261  * - That it has at most @max_bytes worth of data
262  * - That it has at most queue_max_segments(@q) segments.
263  *
264  * Except for discard requests the cloned bio will point at the bi_io_vec of
265  * the original bio. It is the responsibility of the caller to ensure that the
266  * original bio is not freed before the cloned bio. The caller is also
267  * responsible for ensuring that @bs is only destroyed after processing of the
268  * split bio has finished.
269  */
270 static struct bio *bio_split_rw(struct bio *bio, struct queue_limits *lim,
271 		unsigned *segs, struct bio_set *bs, unsigned max_bytes)
272 {
273 	struct bio_vec bv, bvprv, *bvprvp = NULL;
274 	struct bvec_iter iter;
275 	unsigned nsegs = 0, bytes = 0;
276 
277 	bio_for_each_bvec(bv, bio, iter) {
278 		/*
279 		 * If the queue doesn't support SG gaps and adding this
280 		 * offset would create a gap, disallow it.
281 		 */
282 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
283 			goto split;
284 
285 		if (nsegs < lim->max_segments &&
286 		    bytes + bv.bv_len <= max_bytes &&
287 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
288 			nsegs++;
289 			bytes += bv.bv_len;
290 		} else {
291 			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
292 					lim->max_segments, max_bytes))
293 				goto split;
294 		}
295 
296 		bvprv = bv;
297 		bvprvp = &bvprv;
298 	}
299 
300 	*segs = nsegs;
301 	return NULL;
302 split:
303 	*segs = nsegs;
304 
305 	/*
306 	 * Individual bvecs might not be logical block aligned. Round down the
307 	 * split size so that each bio is properly block size aligned, even if
308 	 * we do not use the full hardware limits.
309 	 */
310 	bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
311 
312 	/*
313 	 * Bio splitting may cause subtle trouble such as hang when doing sync
314 	 * iopoll in direct IO routine. Given performance gain of iopoll for
315 	 * big IO can be trival, disable iopoll when split needed.
316 	 */
317 	bio_clear_polled(bio);
318 	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
319 }
320 
321 /**
322  * __bio_split_to_limits - split a bio to fit the queue limits
323  * @bio:     bio to be split
324  * @lim:     queue limits to split based on
325  * @nr_segs: returns the number of segments in the returned bio
326  *
327  * Check if @bio needs splitting based on the queue limits, and if so split off
328  * a bio fitting the limits from the beginning of @bio and return it.  @bio is
329  * shortened to the remainder and re-submitted.
330  *
331  * The split bio is allocated from @q->bio_split, which is provided by the
332  * block layer.
333  */
334 struct bio *__bio_split_to_limits(struct bio *bio, struct queue_limits *lim,
335 		       unsigned int *nr_segs)
336 {
337 	struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
338 	struct bio *split;
339 
340 	switch (bio_op(bio)) {
341 	case REQ_OP_DISCARD:
342 	case REQ_OP_SECURE_ERASE:
343 		split = bio_split_discard(bio, lim, nr_segs, bs);
344 		break;
345 	case REQ_OP_WRITE_ZEROES:
346 		split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
347 		break;
348 	default:
349 		split = bio_split_rw(bio, lim, nr_segs, bs,
350 				get_max_io_size(bio, lim) << SECTOR_SHIFT);
351 		break;
352 	}
353 
354 	if (split) {
355 		/* there isn't chance to merge the splitted bio */
356 		split->bi_opf |= REQ_NOMERGE;
357 
358 		blkcg_bio_issue_init(split);
359 		bio_chain(split, bio);
360 		trace_block_split(split, bio->bi_iter.bi_sector);
361 		submit_bio_noacct(bio);
362 		return split;
363 	}
364 	return bio;
365 }
366 
367 /**
368  * bio_split_to_limits - split a bio to fit the queue limits
369  * @bio:     bio to be split
370  *
371  * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
372  * if so split off a bio fitting the limits from the beginning of @bio and
373  * return it.  @bio is shortened to the remainder and re-submitted.
374  *
375  * The split bio is allocated from @q->bio_split, which is provided by the
376  * block layer.
377  */
378 struct bio *bio_split_to_limits(struct bio *bio)
379 {
380 	struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
381 	unsigned int nr_segs;
382 
383 	if (bio_may_exceed_limits(bio, lim))
384 		return __bio_split_to_limits(bio, lim, &nr_segs);
385 	return bio;
386 }
387 EXPORT_SYMBOL(bio_split_to_limits);
388 
389 unsigned int blk_recalc_rq_segments(struct request *rq)
390 {
391 	unsigned int nr_phys_segs = 0;
392 	unsigned int bytes = 0;
393 	struct req_iterator iter;
394 	struct bio_vec bv;
395 
396 	if (!rq->bio)
397 		return 0;
398 
399 	switch (bio_op(rq->bio)) {
400 	case REQ_OP_DISCARD:
401 	case REQ_OP_SECURE_ERASE:
402 		if (queue_max_discard_segments(rq->q) > 1) {
403 			struct bio *bio = rq->bio;
404 
405 			for_each_bio(bio)
406 				nr_phys_segs++;
407 			return nr_phys_segs;
408 		}
409 		return 1;
410 	case REQ_OP_WRITE_ZEROES:
411 		return 0;
412 	default:
413 		break;
414 	}
415 
416 	rq_for_each_bvec(bv, rq, iter)
417 		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
418 				UINT_MAX, UINT_MAX);
419 	return nr_phys_segs;
420 }
421 
422 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
423 		struct scatterlist *sglist)
424 {
425 	if (!*sg)
426 		return sglist;
427 
428 	/*
429 	 * If the driver previously mapped a shorter list, we could see a
430 	 * termination bit prematurely unless it fully inits the sg table
431 	 * on each mapping. We KNOW that there must be more entries here
432 	 * or the driver would be buggy, so force clear the termination bit
433 	 * to avoid doing a full sg_init_table() in drivers for each command.
434 	 */
435 	sg_unmark_end(*sg);
436 	return sg_next(*sg);
437 }
438 
439 static unsigned blk_bvec_map_sg(struct request_queue *q,
440 		struct bio_vec *bvec, struct scatterlist *sglist,
441 		struct scatterlist **sg)
442 {
443 	unsigned nbytes = bvec->bv_len;
444 	unsigned nsegs = 0, total = 0;
445 
446 	while (nbytes > 0) {
447 		unsigned offset = bvec->bv_offset + total;
448 		unsigned len = min(get_max_segment_size(&q->limits,
449 				   bvec->bv_page, offset), nbytes);
450 		struct page *page = bvec->bv_page;
451 
452 		/*
453 		 * Unfortunately a fair number of drivers barf on scatterlists
454 		 * that have an offset larger than PAGE_SIZE, despite other
455 		 * subsystems dealing with that invariant just fine.  For now
456 		 * stick to the legacy format where we never present those from
457 		 * the block layer, but the code below should be removed once
458 		 * these offenders (mostly MMC/SD drivers) are fixed.
459 		 */
460 		page += (offset >> PAGE_SHIFT);
461 		offset &= ~PAGE_MASK;
462 
463 		*sg = blk_next_sg(sg, sglist);
464 		sg_set_page(*sg, page, len, offset);
465 
466 		total += len;
467 		nbytes -= len;
468 		nsegs++;
469 	}
470 
471 	return nsegs;
472 }
473 
474 static inline int __blk_bvec_map_sg(struct bio_vec bv,
475 		struct scatterlist *sglist, struct scatterlist **sg)
476 {
477 	*sg = blk_next_sg(sg, sglist);
478 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
479 	return 1;
480 }
481 
482 /* only try to merge bvecs into one sg if they are from two bios */
483 static inline bool
484 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
485 			   struct bio_vec *bvprv, struct scatterlist **sg)
486 {
487 
488 	int nbytes = bvec->bv_len;
489 
490 	if (!*sg)
491 		return false;
492 
493 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
494 		return false;
495 
496 	if (!biovec_phys_mergeable(q, bvprv, bvec))
497 		return false;
498 
499 	(*sg)->length += nbytes;
500 
501 	return true;
502 }
503 
504 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
505 			     struct scatterlist *sglist,
506 			     struct scatterlist **sg)
507 {
508 	struct bio_vec bvec, bvprv = { NULL };
509 	struct bvec_iter iter;
510 	int nsegs = 0;
511 	bool new_bio = false;
512 
513 	for_each_bio(bio) {
514 		bio_for_each_bvec(bvec, bio, iter) {
515 			/*
516 			 * Only try to merge bvecs from two bios given we
517 			 * have done bio internal merge when adding pages
518 			 * to bio
519 			 */
520 			if (new_bio &&
521 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
522 				goto next_bvec;
523 
524 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
525 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
526 			else
527 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
528  next_bvec:
529 			new_bio = false;
530 		}
531 		if (likely(bio->bi_iter.bi_size)) {
532 			bvprv = bvec;
533 			new_bio = true;
534 		}
535 	}
536 
537 	return nsegs;
538 }
539 
540 /*
541  * map a request to scatterlist, return number of sg entries setup. Caller
542  * must make sure sg can hold rq->nr_phys_segments entries
543  */
544 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
545 		struct scatterlist *sglist, struct scatterlist **last_sg)
546 {
547 	int nsegs = 0;
548 
549 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
550 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
551 	else if (rq->bio)
552 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
553 
554 	if (*last_sg)
555 		sg_mark_end(*last_sg);
556 
557 	/*
558 	 * Something must have been wrong if the figured number of
559 	 * segment is bigger than number of req's physical segments
560 	 */
561 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
562 
563 	return nsegs;
564 }
565 EXPORT_SYMBOL(__blk_rq_map_sg);
566 
567 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
568 {
569 	if (req_op(rq) == REQ_OP_DISCARD)
570 		return queue_max_discard_segments(rq->q);
571 	return queue_max_segments(rq->q);
572 }
573 
574 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
575 						  sector_t offset)
576 {
577 	struct request_queue *q = rq->q;
578 	unsigned int max_sectors;
579 
580 	if (blk_rq_is_passthrough(rq))
581 		return q->limits.max_hw_sectors;
582 
583 	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
584 	if (!q->limits.chunk_sectors ||
585 	    req_op(rq) == REQ_OP_DISCARD ||
586 	    req_op(rq) == REQ_OP_SECURE_ERASE)
587 		return max_sectors;
588 	return min(max_sectors,
589 		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
590 }
591 
592 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
593 		unsigned int nr_phys_segs)
594 {
595 	if (!blk_cgroup_mergeable(req, bio))
596 		goto no_merge;
597 
598 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
599 		goto no_merge;
600 
601 	/* discard request merge won't add new segment */
602 	if (req_op(req) == REQ_OP_DISCARD)
603 		return 1;
604 
605 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
606 		goto no_merge;
607 
608 	/*
609 	 * This will form the start of a new hw segment.  Bump both
610 	 * counters.
611 	 */
612 	req->nr_phys_segments += nr_phys_segs;
613 	return 1;
614 
615 no_merge:
616 	req_set_nomerge(req->q, req);
617 	return 0;
618 }
619 
620 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
621 {
622 	if (req_gap_back_merge(req, bio))
623 		return 0;
624 	if (blk_integrity_rq(req) &&
625 	    integrity_req_gap_back_merge(req, bio))
626 		return 0;
627 	if (!bio_crypt_ctx_back_mergeable(req, bio))
628 		return 0;
629 	if (blk_rq_sectors(req) + bio_sectors(bio) >
630 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
631 		req_set_nomerge(req->q, req);
632 		return 0;
633 	}
634 
635 	return ll_new_hw_segment(req, bio, nr_segs);
636 }
637 
638 static int ll_front_merge_fn(struct request *req, struct bio *bio,
639 		unsigned int nr_segs)
640 {
641 	if (req_gap_front_merge(req, bio))
642 		return 0;
643 	if (blk_integrity_rq(req) &&
644 	    integrity_req_gap_front_merge(req, bio))
645 		return 0;
646 	if (!bio_crypt_ctx_front_mergeable(req, bio))
647 		return 0;
648 	if (blk_rq_sectors(req) + bio_sectors(bio) >
649 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
650 		req_set_nomerge(req->q, req);
651 		return 0;
652 	}
653 
654 	return ll_new_hw_segment(req, bio, nr_segs);
655 }
656 
657 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
658 		struct request *next)
659 {
660 	unsigned short segments = blk_rq_nr_discard_segments(req);
661 
662 	if (segments >= queue_max_discard_segments(q))
663 		goto no_merge;
664 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
665 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
666 		goto no_merge;
667 
668 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
669 	return true;
670 no_merge:
671 	req_set_nomerge(q, req);
672 	return false;
673 }
674 
675 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
676 				struct request *next)
677 {
678 	int total_phys_segments;
679 
680 	if (req_gap_back_merge(req, next->bio))
681 		return 0;
682 
683 	/*
684 	 * Will it become too large?
685 	 */
686 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
687 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
688 		return 0;
689 
690 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
691 	if (total_phys_segments > blk_rq_get_max_segments(req))
692 		return 0;
693 
694 	if (!blk_cgroup_mergeable(req, next->bio))
695 		return 0;
696 
697 	if (blk_integrity_merge_rq(q, req, next) == false)
698 		return 0;
699 
700 	if (!bio_crypt_ctx_merge_rq(req, next))
701 		return 0;
702 
703 	/* Merge is OK... */
704 	req->nr_phys_segments = total_phys_segments;
705 	return 1;
706 }
707 
708 /**
709  * blk_rq_set_mixed_merge - mark a request as mixed merge
710  * @rq: request to mark as mixed merge
711  *
712  * Description:
713  *     @rq is about to be mixed merged.  Make sure the attributes
714  *     which can be mixed are set in each bio and mark @rq as mixed
715  *     merged.
716  */
717 void blk_rq_set_mixed_merge(struct request *rq)
718 {
719 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
720 	struct bio *bio;
721 
722 	if (rq->rq_flags & RQF_MIXED_MERGE)
723 		return;
724 
725 	/*
726 	 * @rq will no longer represent mixable attributes for all the
727 	 * contained bios.  It will just track those of the first one.
728 	 * Distributes the attributs to each bio.
729 	 */
730 	for (bio = rq->bio; bio; bio = bio->bi_next) {
731 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
732 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
733 		bio->bi_opf |= ff;
734 	}
735 	rq->rq_flags |= RQF_MIXED_MERGE;
736 }
737 
738 static void blk_account_io_merge_request(struct request *req)
739 {
740 	if (blk_do_io_stat(req)) {
741 		part_stat_lock();
742 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
743 		part_stat_unlock();
744 	}
745 }
746 
747 static enum elv_merge blk_try_req_merge(struct request *req,
748 					struct request *next)
749 {
750 	if (blk_discard_mergable(req))
751 		return ELEVATOR_DISCARD_MERGE;
752 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
753 		return ELEVATOR_BACK_MERGE;
754 
755 	return ELEVATOR_NO_MERGE;
756 }
757 
758 /*
759  * For non-mq, this has to be called with the request spinlock acquired.
760  * For mq with scheduling, the appropriate queue wide lock should be held.
761  */
762 static struct request *attempt_merge(struct request_queue *q,
763 				     struct request *req, struct request *next)
764 {
765 	if (!rq_mergeable(req) || !rq_mergeable(next))
766 		return NULL;
767 
768 	if (req_op(req) != req_op(next))
769 		return NULL;
770 
771 	if (rq_data_dir(req) != rq_data_dir(next))
772 		return NULL;
773 
774 	if (req->ioprio != next->ioprio)
775 		return NULL;
776 
777 	/*
778 	 * If we are allowed to merge, then append bio list
779 	 * from next to rq and release next. merge_requests_fn
780 	 * will have updated segment counts, update sector
781 	 * counts here. Handle DISCARDs separately, as they
782 	 * have separate settings.
783 	 */
784 
785 	switch (blk_try_req_merge(req, next)) {
786 	case ELEVATOR_DISCARD_MERGE:
787 		if (!req_attempt_discard_merge(q, req, next))
788 			return NULL;
789 		break;
790 	case ELEVATOR_BACK_MERGE:
791 		if (!ll_merge_requests_fn(q, req, next))
792 			return NULL;
793 		break;
794 	default:
795 		return NULL;
796 	}
797 
798 	/*
799 	 * If failfast settings disagree or any of the two is already
800 	 * a mixed merge, mark both as mixed before proceeding.  This
801 	 * makes sure that all involved bios have mixable attributes
802 	 * set properly.
803 	 */
804 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
805 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
806 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
807 		blk_rq_set_mixed_merge(req);
808 		blk_rq_set_mixed_merge(next);
809 	}
810 
811 	/*
812 	 * At this point we have either done a back merge or front merge. We
813 	 * need the smaller start_time_ns of the merged requests to be the
814 	 * current request for accounting purposes.
815 	 */
816 	if (next->start_time_ns < req->start_time_ns)
817 		req->start_time_ns = next->start_time_ns;
818 
819 	req->biotail->bi_next = next->bio;
820 	req->biotail = next->biotail;
821 
822 	req->__data_len += blk_rq_bytes(next);
823 
824 	if (!blk_discard_mergable(req))
825 		elv_merge_requests(q, req, next);
826 
827 	/*
828 	 * 'next' is going away, so update stats accordingly
829 	 */
830 	blk_account_io_merge_request(next);
831 
832 	trace_block_rq_merge(next);
833 
834 	/*
835 	 * ownership of bio passed from next to req, return 'next' for
836 	 * the caller to free
837 	 */
838 	next->bio = NULL;
839 	return next;
840 }
841 
842 static struct request *attempt_back_merge(struct request_queue *q,
843 		struct request *rq)
844 {
845 	struct request *next = elv_latter_request(q, rq);
846 
847 	if (next)
848 		return attempt_merge(q, rq, next);
849 
850 	return NULL;
851 }
852 
853 static struct request *attempt_front_merge(struct request_queue *q,
854 		struct request *rq)
855 {
856 	struct request *prev = elv_former_request(q, rq);
857 
858 	if (prev)
859 		return attempt_merge(q, prev, rq);
860 
861 	return NULL;
862 }
863 
864 /*
865  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
866  * otherwise. The caller is responsible for freeing 'next' if the merge
867  * happened.
868  */
869 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
870 			   struct request *next)
871 {
872 	return attempt_merge(q, rq, next);
873 }
874 
875 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
876 {
877 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
878 		return false;
879 
880 	if (req_op(rq) != bio_op(bio))
881 		return false;
882 
883 	/* different data direction or already started, don't merge */
884 	if (bio_data_dir(bio) != rq_data_dir(rq))
885 		return false;
886 
887 	/* don't merge across cgroup boundaries */
888 	if (!blk_cgroup_mergeable(rq, bio))
889 		return false;
890 
891 	/* only merge integrity protected bio into ditto rq */
892 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
893 		return false;
894 
895 	/* Only merge if the crypt contexts are compatible */
896 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
897 		return false;
898 
899 	if (rq->ioprio != bio_prio(bio))
900 		return false;
901 
902 	return true;
903 }
904 
905 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
906 {
907 	if (blk_discard_mergable(rq))
908 		return ELEVATOR_DISCARD_MERGE;
909 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
910 		return ELEVATOR_BACK_MERGE;
911 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
912 		return ELEVATOR_FRONT_MERGE;
913 	return ELEVATOR_NO_MERGE;
914 }
915 
916 static void blk_account_io_merge_bio(struct request *req)
917 {
918 	if (!blk_do_io_stat(req))
919 		return;
920 
921 	part_stat_lock();
922 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
923 	part_stat_unlock();
924 }
925 
926 enum bio_merge_status {
927 	BIO_MERGE_OK,
928 	BIO_MERGE_NONE,
929 	BIO_MERGE_FAILED,
930 };
931 
932 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
933 		struct bio *bio, unsigned int nr_segs)
934 {
935 	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
936 
937 	if (!ll_back_merge_fn(req, bio, nr_segs))
938 		return BIO_MERGE_FAILED;
939 
940 	trace_block_bio_backmerge(bio);
941 	rq_qos_merge(req->q, req, bio);
942 
943 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
944 		blk_rq_set_mixed_merge(req);
945 
946 	req->biotail->bi_next = bio;
947 	req->biotail = bio;
948 	req->__data_len += bio->bi_iter.bi_size;
949 
950 	bio_crypt_free_ctx(bio);
951 
952 	blk_account_io_merge_bio(req);
953 	return BIO_MERGE_OK;
954 }
955 
956 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
957 		struct bio *bio, unsigned int nr_segs)
958 {
959 	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
960 
961 	if (!ll_front_merge_fn(req, bio, nr_segs))
962 		return BIO_MERGE_FAILED;
963 
964 	trace_block_bio_frontmerge(bio);
965 	rq_qos_merge(req->q, req, bio);
966 
967 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
968 		blk_rq_set_mixed_merge(req);
969 
970 	bio->bi_next = req->bio;
971 	req->bio = bio;
972 
973 	req->__sector = bio->bi_iter.bi_sector;
974 	req->__data_len += bio->bi_iter.bi_size;
975 
976 	bio_crypt_do_front_merge(req, bio);
977 
978 	blk_account_io_merge_bio(req);
979 	return BIO_MERGE_OK;
980 }
981 
982 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
983 		struct request *req, struct bio *bio)
984 {
985 	unsigned short segments = blk_rq_nr_discard_segments(req);
986 
987 	if (segments >= queue_max_discard_segments(q))
988 		goto no_merge;
989 	if (blk_rq_sectors(req) + bio_sectors(bio) >
990 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
991 		goto no_merge;
992 
993 	rq_qos_merge(q, req, bio);
994 
995 	req->biotail->bi_next = bio;
996 	req->biotail = bio;
997 	req->__data_len += bio->bi_iter.bi_size;
998 	req->nr_phys_segments = segments + 1;
999 
1000 	blk_account_io_merge_bio(req);
1001 	return BIO_MERGE_OK;
1002 no_merge:
1003 	req_set_nomerge(q, req);
1004 	return BIO_MERGE_FAILED;
1005 }
1006 
1007 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1008 						   struct request *rq,
1009 						   struct bio *bio,
1010 						   unsigned int nr_segs,
1011 						   bool sched_allow_merge)
1012 {
1013 	if (!blk_rq_merge_ok(rq, bio))
1014 		return BIO_MERGE_NONE;
1015 
1016 	switch (blk_try_merge(rq, bio)) {
1017 	case ELEVATOR_BACK_MERGE:
1018 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1019 			return bio_attempt_back_merge(rq, bio, nr_segs);
1020 		break;
1021 	case ELEVATOR_FRONT_MERGE:
1022 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1023 			return bio_attempt_front_merge(rq, bio, nr_segs);
1024 		break;
1025 	case ELEVATOR_DISCARD_MERGE:
1026 		return bio_attempt_discard_merge(q, rq, bio);
1027 	default:
1028 		return BIO_MERGE_NONE;
1029 	}
1030 
1031 	return BIO_MERGE_FAILED;
1032 }
1033 
1034 /**
1035  * blk_attempt_plug_merge - try to merge with %current's plugged list
1036  * @q: request_queue new bio is being queued at
1037  * @bio: new bio being queued
1038  * @nr_segs: number of segments in @bio
1039  * from the passed in @q already in the plug list
1040  *
1041  * Determine whether @bio being queued on @q can be merged with the previous
1042  * request on %current's plugged list.  Returns %true if merge was successful,
1043  * otherwise %false.
1044  *
1045  * Plugging coalesces IOs from the same issuer for the same purpose without
1046  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1047  * than scheduling, and the request, while may have elvpriv data, is not
1048  * added on the elevator at this point.  In addition, we don't have
1049  * reliable access to the elevator outside queue lock.  Only check basic
1050  * merging parameters without querying the elevator.
1051  *
1052  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1053  */
1054 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1055 		unsigned int nr_segs)
1056 {
1057 	struct blk_plug *plug;
1058 	struct request *rq;
1059 
1060 	plug = blk_mq_plug(bio);
1061 	if (!plug || rq_list_empty(plug->mq_list))
1062 		return false;
1063 
1064 	rq_list_for_each(&plug->mq_list, rq) {
1065 		if (rq->q == q) {
1066 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1067 			    BIO_MERGE_OK)
1068 				return true;
1069 			break;
1070 		}
1071 
1072 		/*
1073 		 * Only keep iterating plug list for merges if we have multiple
1074 		 * queues
1075 		 */
1076 		if (!plug->multiple_queues)
1077 			break;
1078 	}
1079 	return false;
1080 }
1081 
1082 /*
1083  * Iterate list of requests and see if we can merge this bio with any
1084  * of them.
1085  */
1086 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1087 			struct bio *bio, unsigned int nr_segs)
1088 {
1089 	struct request *rq;
1090 	int checked = 8;
1091 
1092 	list_for_each_entry_reverse(rq, list, queuelist) {
1093 		if (!checked--)
1094 			break;
1095 
1096 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1097 		case BIO_MERGE_NONE:
1098 			continue;
1099 		case BIO_MERGE_OK:
1100 			return true;
1101 		case BIO_MERGE_FAILED:
1102 			return false;
1103 		}
1104 
1105 	}
1106 
1107 	return false;
1108 }
1109 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1110 
1111 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1112 		unsigned int nr_segs, struct request **merged_request)
1113 {
1114 	struct request *rq;
1115 
1116 	switch (elv_merge(q, &rq, bio)) {
1117 	case ELEVATOR_BACK_MERGE:
1118 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1119 			return false;
1120 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1121 			return false;
1122 		*merged_request = attempt_back_merge(q, rq);
1123 		if (!*merged_request)
1124 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1125 		return true;
1126 	case ELEVATOR_FRONT_MERGE:
1127 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1128 			return false;
1129 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1130 			return false;
1131 		*merged_request = attempt_front_merge(q, rq);
1132 		if (!*merged_request)
1133 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1134 		return true;
1135 	case ELEVATOR_DISCARD_MERGE:
1136 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1137 	default:
1138 		return false;
1139 	}
1140 }
1141 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1142