xref: /openbmc/linux/block/blk-merge.c (revision 885fa13f)
1 /*
2  * Functions related to segment and merge handling
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/bio.h>
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 
14 static struct bio *blk_bio_discard_split(struct request_queue *q,
15 					 struct bio *bio,
16 					 struct bio_set *bs,
17 					 unsigned *nsegs)
18 {
19 	unsigned int max_discard_sectors, granularity;
20 	int alignment;
21 	sector_t tmp;
22 	unsigned split_sectors;
23 
24 	*nsegs = 1;
25 
26 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
27 	granularity = max(q->limits.discard_granularity >> 9, 1U);
28 
29 	max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
30 	max_discard_sectors -= max_discard_sectors % granularity;
31 
32 	if (unlikely(!max_discard_sectors)) {
33 		/* XXX: warn */
34 		return NULL;
35 	}
36 
37 	if (bio_sectors(bio) <= max_discard_sectors)
38 		return NULL;
39 
40 	split_sectors = max_discard_sectors;
41 
42 	/*
43 	 * If the next starting sector would be misaligned, stop the discard at
44 	 * the previous aligned sector.
45 	 */
46 	alignment = (q->limits.discard_alignment >> 9) % granularity;
47 
48 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
49 	tmp = sector_div(tmp, granularity);
50 
51 	if (split_sectors > tmp)
52 		split_sectors -= tmp;
53 
54 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
55 }
56 
57 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
58 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
59 {
60 	*nsegs = 1;
61 
62 	if (!q->limits.max_write_zeroes_sectors)
63 		return NULL;
64 
65 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
66 		return NULL;
67 
68 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
69 }
70 
71 static struct bio *blk_bio_write_same_split(struct request_queue *q,
72 					    struct bio *bio,
73 					    struct bio_set *bs,
74 					    unsigned *nsegs)
75 {
76 	*nsegs = 1;
77 
78 	if (!q->limits.max_write_same_sectors)
79 		return NULL;
80 
81 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
82 		return NULL;
83 
84 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
85 }
86 
87 static inline unsigned get_max_io_size(struct request_queue *q,
88 				       struct bio *bio)
89 {
90 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
91 	unsigned mask = queue_logical_block_size(q) - 1;
92 
93 	/* aligned to logical block size */
94 	sectors &= ~(mask >> 9);
95 
96 	return sectors;
97 }
98 
99 static struct bio *blk_bio_segment_split(struct request_queue *q,
100 					 struct bio *bio,
101 					 struct bio_set *bs,
102 					 unsigned *segs)
103 {
104 	struct bio_vec bv, bvprv, *bvprvp = NULL;
105 	struct bvec_iter iter;
106 	unsigned seg_size = 0, nsegs = 0, sectors = 0;
107 	unsigned front_seg_size = bio->bi_seg_front_size;
108 	bool do_split = true;
109 	struct bio *new = NULL;
110 	const unsigned max_sectors = get_max_io_size(q, bio);
111 	unsigned bvecs = 0;
112 
113 	bio_for_each_segment(bv, bio, iter) {
114 		/*
115 		 * With arbitrary bio size, the incoming bio may be very
116 		 * big. We have to split the bio into small bios so that
117 		 * each holds at most BIO_MAX_PAGES bvecs because
118 		 * bio_clone() can fail to allocate big bvecs.
119 		 *
120 		 * It should have been better to apply the limit per
121 		 * request queue in which bio_clone() is involved,
122 		 * instead of globally. The biggest blocker is the
123 		 * bio_clone() in bio bounce.
124 		 *
125 		 * If bio is splitted by this reason, we should have
126 		 * allowed to continue bios merging, but don't do
127 		 * that now for making the change simple.
128 		 *
129 		 * TODO: deal with bio bounce's bio_clone() gracefully
130 		 * and convert the global limit into per-queue limit.
131 		 */
132 		if (bvecs++ >= BIO_MAX_PAGES)
133 			goto split;
134 
135 		/*
136 		 * If the queue doesn't support SG gaps and adding this
137 		 * offset would create a gap, disallow it.
138 		 */
139 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
140 			goto split;
141 
142 		if (sectors + (bv.bv_len >> 9) > max_sectors) {
143 			/*
144 			 * Consider this a new segment if we're splitting in
145 			 * the middle of this vector.
146 			 */
147 			if (nsegs < queue_max_segments(q) &&
148 			    sectors < max_sectors) {
149 				nsegs++;
150 				sectors = max_sectors;
151 			}
152 			if (sectors)
153 				goto split;
154 			/* Make this single bvec as the 1st segment */
155 		}
156 
157 		if (bvprvp && blk_queue_cluster(q)) {
158 			if (seg_size + bv.bv_len > queue_max_segment_size(q))
159 				goto new_segment;
160 			if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
161 				goto new_segment;
162 			if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
163 				goto new_segment;
164 
165 			seg_size += bv.bv_len;
166 			bvprv = bv;
167 			bvprvp = &bvprv;
168 			sectors += bv.bv_len >> 9;
169 
170 			if (nsegs == 1 && seg_size > front_seg_size)
171 				front_seg_size = seg_size;
172 			continue;
173 		}
174 new_segment:
175 		if (nsegs == queue_max_segments(q))
176 			goto split;
177 
178 		nsegs++;
179 		bvprv = bv;
180 		bvprvp = &bvprv;
181 		seg_size = bv.bv_len;
182 		sectors += bv.bv_len >> 9;
183 
184 		if (nsegs == 1 && seg_size > front_seg_size)
185 			front_seg_size = seg_size;
186 	}
187 
188 	do_split = false;
189 split:
190 	*segs = nsegs;
191 
192 	if (do_split) {
193 		new = bio_split(bio, sectors, GFP_NOIO, bs);
194 		if (new)
195 			bio = new;
196 	}
197 
198 	bio->bi_seg_front_size = front_seg_size;
199 	if (seg_size > bio->bi_seg_back_size)
200 		bio->bi_seg_back_size = seg_size;
201 
202 	return do_split ? new : NULL;
203 }
204 
205 void blk_queue_split(struct request_queue *q, struct bio **bio,
206 		     struct bio_set *bs)
207 {
208 	struct bio *split, *res;
209 	unsigned nsegs;
210 
211 	switch (bio_op(*bio)) {
212 	case REQ_OP_DISCARD:
213 	case REQ_OP_SECURE_ERASE:
214 		split = blk_bio_discard_split(q, *bio, bs, &nsegs);
215 		break;
216 	case REQ_OP_WRITE_ZEROES:
217 		split = blk_bio_write_zeroes_split(q, *bio, bs, &nsegs);
218 		break;
219 	case REQ_OP_WRITE_SAME:
220 		split = blk_bio_write_same_split(q, *bio, bs, &nsegs);
221 		break;
222 	default:
223 		split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs);
224 		break;
225 	}
226 
227 	/* physical segments can be figured out during splitting */
228 	res = split ? split : *bio;
229 	res->bi_phys_segments = nsegs;
230 	bio_set_flag(res, BIO_SEG_VALID);
231 
232 	if (split) {
233 		/* there isn't chance to merge the splitted bio */
234 		split->bi_opf |= REQ_NOMERGE;
235 
236 		bio_chain(split, *bio);
237 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
238 		generic_make_request(*bio);
239 		*bio = split;
240 	}
241 }
242 EXPORT_SYMBOL(blk_queue_split);
243 
244 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
245 					     struct bio *bio,
246 					     bool no_sg_merge)
247 {
248 	struct bio_vec bv, bvprv = { NULL };
249 	int cluster, prev = 0;
250 	unsigned int seg_size, nr_phys_segs;
251 	struct bio *fbio, *bbio;
252 	struct bvec_iter iter;
253 
254 	if (!bio)
255 		return 0;
256 
257 	switch (bio_op(bio)) {
258 	case REQ_OP_DISCARD:
259 	case REQ_OP_SECURE_ERASE:
260 	case REQ_OP_WRITE_ZEROES:
261 		return 0;
262 	case REQ_OP_WRITE_SAME:
263 		return 1;
264 	}
265 
266 	fbio = bio;
267 	cluster = blk_queue_cluster(q);
268 	seg_size = 0;
269 	nr_phys_segs = 0;
270 	for_each_bio(bio) {
271 		bio_for_each_segment(bv, bio, iter) {
272 			/*
273 			 * If SG merging is disabled, each bio vector is
274 			 * a segment
275 			 */
276 			if (no_sg_merge)
277 				goto new_segment;
278 
279 			if (prev && cluster) {
280 				if (seg_size + bv.bv_len
281 				    > queue_max_segment_size(q))
282 					goto new_segment;
283 				if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
284 					goto new_segment;
285 				if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
286 					goto new_segment;
287 
288 				seg_size += bv.bv_len;
289 				bvprv = bv;
290 				continue;
291 			}
292 new_segment:
293 			if (nr_phys_segs == 1 && seg_size >
294 			    fbio->bi_seg_front_size)
295 				fbio->bi_seg_front_size = seg_size;
296 
297 			nr_phys_segs++;
298 			bvprv = bv;
299 			prev = 1;
300 			seg_size = bv.bv_len;
301 		}
302 		bbio = bio;
303 	}
304 
305 	if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
306 		fbio->bi_seg_front_size = seg_size;
307 	if (seg_size > bbio->bi_seg_back_size)
308 		bbio->bi_seg_back_size = seg_size;
309 
310 	return nr_phys_segs;
311 }
312 
313 void blk_recalc_rq_segments(struct request *rq)
314 {
315 	bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
316 			&rq->q->queue_flags);
317 
318 	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
319 			no_sg_merge);
320 }
321 
322 void blk_recount_segments(struct request_queue *q, struct bio *bio)
323 {
324 	unsigned short seg_cnt;
325 
326 	/* estimate segment number by bi_vcnt for non-cloned bio */
327 	if (bio_flagged(bio, BIO_CLONED))
328 		seg_cnt = bio_segments(bio);
329 	else
330 		seg_cnt = bio->bi_vcnt;
331 
332 	if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
333 			(seg_cnt < queue_max_segments(q)))
334 		bio->bi_phys_segments = seg_cnt;
335 	else {
336 		struct bio *nxt = bio->bi_next;
337 
338 		bio->bi_next = NULL;
339 		bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
340 		bio->bi_next = nxt;
341 	}
342 
343 	bio_set_flag(bio, BIO_SEG_VALID);
344 }
345 EXPORT_SYMBOL(blk_recount_segments);
346 
347 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
348 				   struct bio *nxt)
349 {
350 	struct bio_vec end_bv = { NULL }, nxt_bv;
351 
352 	if (!blk_queue_cluster(q))
353 		return 0;
354 
355 	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
356 	    queue_max_segment_size(q))
357 		return 0;
358 
359 	if (!bio_has_data(bio))
360 		return 1;
361 
362 	bio_get_last_bvec(bio, &end_bv);
363 	bio_get_first_bvec(nxt, &nxt_bv);
364 
365 	if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
366 		return 0;
367 
368 	/*
369 	 * bio and nxt are contiguous in memory; check if the queue allows
370 	 * these two to be merged into one
371 	 */
372 	if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
373 		return 1;
374 
375 	return 0;
376 }
377 
378 static inline void
379 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
380 		     struct scatterlist *sglist, struct bio_vec *bvprv,
381 		     struct scatterlist **sg, int *nsegs, int *cluster)
382 {
383 
384 	int nbytes = bvec->bv_len;
385 
386 	if (*sg && *cluster) {
387 		if ((*sg)->length + nbytes > queue_max_segment_size(q))
388 			goto new_segment;
389 
390 		if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
391 			goto new_segment;
392 		if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
393 			goto new_segment;
394 
395 		(*sg)->length += nbytes;
396 	} else {
397 new_segment:
398 		if (!*sg)
399 			*sg = sglist;
400 		else {
401 			/*
402 			 * If the driver previously mapped a shorter
403 			 * list, we could see a termination bit
404 			 * prematurely unless it fully inits the sg
405 			 * table on each mapping. We KNOW that there
406 			 * must be more entries here or the driver
407 			 * would be buggy, so force clear the
408 			 * termination bit to avoid doing a full
409 			 * sg_init_table() in drivers for each command.
410 			 */
411 			sg_unmark_end(*sg);
412 			*sg = sg_next(*sg);
413 		}
414 
415 		sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
416 		(*nsegs)++;
417 	}
418 	*bvprv = *bvec;
419 }
420 
421 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
422 		struct scatterlist *sglist, struct scatterlist **sg)
423 {
424 	*sg = sglist;
425 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
426 	return 1;
427 }
428 
429 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
430 			     struct scatterlist *sglist,
431 			     struct scatterlist **sg)
432 {
433 	struct bio_vec bvec, bvprv = { NULL };
434 	struct bvec_iter iter;
435 	int cluster = blk_queue_cluster(q), nsegs = 0;
436 
437 	for_each_bio(bio)
438 		bio_for_each_segment(bvec, bio, iter)
439 			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
440 					     &nsegs, &cluster);
441 
442 	return nsegs;
443 }
444 
445 /*
446  * map a request to scatterlist, return number of sg entries setup. Caller
447  * must make sure sg can hold rq->nr_phys_segments entries
448  */
449 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
450 		  struct scatterlist *sglist)
451 {
452 	struct scatterlist *sg = NULL;
453 	int nsegs = 0;
454 
455 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
456 		nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
457 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
458 		nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
459 	else if (rq->bio)
460 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
461 
462 	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
463 	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
464 		unsigned int pad_len =
465 			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
466 
467 		sg->length += pad_len;
468 		rq->extra_len += pad_len;
469 	}
470 
471 	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
472 		if (op_is_write(req_op(rq)))
473 			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
474 
475 		sg_unmark_end(sg);
476 		sg = sg_next(sg);
477 		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
478 			    q->dma_drain_size,
479 			    ((unsigned long)q->dma_drain_buffer) &
480 			    (PAGE_SIZE - 1));
481 		nsegs++;
482 		rq->extra_len += q->dma_drain_size;
483 	}
484 
485 	if (sg)
486 		sg_mark_end(sg);
487 
488 	/*
489 	 * Something must have been wrong if the figured number of
490 	 * segment is bigger than number of req's physical segments
491 	 */
492 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
493 
494 	return nsegs;
495 }
496 EXPORT_SYMBOL(blk_rq_map_sg);
497 
498 static inline int ll_new_hw_segment(struct request_queue *q,
499 				    struct request *req,
500 				    struct bio *bio)
501 {
502 	int nr_phys_segs = bio_phys_segments(q, bio);
503 
504 	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
505 		goto no_merge;
506 
507 	if (blk_integrity_merge_bio(q, req, bio) == false)
508 		goto no_merge;
509 
510 	/*
511 	 * This will form the start of a new hw segment.  Bump both
512 	 * counters.
513 	 */
514 	req->nr_phys_segments += nr_phys_segs;
515 	return 1;
516 
517 no_merge:
518 	req_set_nomerge(q, req);
519 	return 0;
520 }
521 
522 int ll_back_merge_fn(struct request_queue *q, struct request *req,
523 		     struct bio *bio)
524 {
525 	if (req_gap_back_merge(req, bio))
526 		return 0;
527 	if (blk_integrity_rq(req) &&
528 	    integrity_req_gap_back_merge(req, bio))
529 		return 0;
530 	if (blk_rq_sectors(req) + bio_sectors(bio) >
531 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
532 		req_set_nomerge(q, req);
533 		return 0;
534 	}
535 	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
536 		blk_recount_segments(q, req->biotail);
537 	if (!bio_flagged(bio, BIO_SEG_VALID))
538 		blk_recount_segments(q, bio);
539 
540 	return ll_new_hw_segment(q, req, bio);
541 }
542 
543 int ll_front_merge_fn(struct request_queue *q, struct request *req,
544 		      struct bio *bio)
545 {
546 
547 	if (req_gap_front_merge(req, bio))
548 		return 0;
549 	if (blk_integrity_rq(req) &&
550 	    integrity_req_gap_front_merge(req, bio))
551 		return 0;
552 	if (blk_rq_sectors(req) + bio_sectors(bio) >
553 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
554 		req_set_nomerge(q, req);
555 		return 0;
556 	}
557 	if (!bio_flagged(bio, BIO_SEG_VALID))
558 		blk_recount_segments(q, bio);
559 	if (!bio_flagged(req->bio, BIO_SEG_VALID))
560 		blk_recount_segments(q, req->bio);
561 
562 	return ll_new_hw_segment(q, req, bio);
563 }
564 
565 /*
566  * blk-mq uses req->special to carry normal driver per-request payload, it
567  * does not indicate a prepared command that we cannot merge with.
568  */
569 static bool req_no_special_merge(struct request *req)
570 {
571 	struct request_queue *q = req->q;
572 
573 	return !q->mq_ops && req->special;
574 }
575 
576 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
577 				struct request *next)
578 {
579 	int total_phys_segments;
580 	unsigned int seg_size =
581 		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
582 
583 	/*
584 	 * First check if the either of the requests are re-queued
585 	 * requests.  Can't merge them if they are.
586 	 */
587 	if (req_no_special_merge(req) || req_no_special_merge(next))
588 		return 0;
589 
590 	if (req_gap_back_merge(req, next->bio))
591 		return 0;
592 
593 	/*
594 	 * Will it become too large?
595 	 */
596 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
597 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
598 		return 0;
599 
600 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
601 	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
602 		if (req->nr_phys_segments == 1)
603 			req->bio->bi_seg_front_size = seg_size;
604 		if (next->nr_phys_segments == 1)
605 			next->biotail->bi_seg_back_size = seg_size;
606 		total_phys_segments--;
607 	}
608 
609 	if (total_phys_segments > queue_max_segments(q))
610 		return 0;
611 
612 	if (blk_integrity_merge_rq(q, req, next) == false)
613 		return 0;
614 
615 	/* Merge is OK... */
616 	req->nr_phys_segments = total_phys_segments;
617 	return 1;
618 }
619 
620 /**
621  * blk_rq_set_mixed_merge - mark a request as mixed merge
622  * @rq: request to mark as mixed merge
623  *
624  * Description:
625  *     @rq is about to be mixed merged.  Make sure the attributes
626  *     which can be mixed are set in each bio and mark @rq as mixed
627  *     merged.
628  */
629 void blk_rq_set_mixed_merge(struct request *rq)
630 {
631 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
632 	struct bio *bio;
633 
634 	if (rq->rq_flags & RQF_MIXED_MERGE)
635 		return;
636 
637 	/*
638 	 * @rq will no longer represent mixable attributes for all the
639 	 * contained bios.  It will just track those of the first one.
640 	 * Distributes the attributs to each bio.
641 	 */
642 	for (bio = rq->bio; bio; bio = bio->bi_next) {
643 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
644 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
645 		bio->bi_opf |= ff;
646 	}
647 	rq->rq_flags |= RQF_MIXED_MERGE;
648 }
649 
650 static void blk_account_io_merge(struct request *req)
651 {
652 	if (blk_do_io_stat(req)) {
653 		struct hd_struct *part;
654 		int cpu;
655 
656 		cpu = part_stat_lock();
657 		part = req->part;
658 
659 		part_round_stats(cpu, part);
660 		part_dec_in_flight(part, rq_data_dir(req));
661 
662 		hd_struct_put(part);
663 		part_stat_unlock();
664 	}
665 }
666 
667 /*
668  * For non-mq, this has to be called with the request spinlock acquired.
669  * For mq with scheduling, the appropriate queue wide lock should be held.
670  */
671 static struct request *attempt_merge(struct request_queue *q,
672 				     struct request *req, struct request *next)
673 {
674 	if (!rq_mergeable(req) || !rq_mergeable(next))
675 		return NULL;
676 
677 	if (req_op(req) != req_op(next))
678 		return NULL;
679 
680 	/*
681 	 * not contiguous
682 	 */
683 	if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
684 		return NULL;
685 
686 	if (rq_data_dir(req) != rq_data_dir(next)
687 	    || req->rq_disk != next->rq_disk
688 	    || req_no_special_merge(next))
689 		return NULL;
690 
691 	if (req_op(req) == REQ_OP_WRITE_SAME &&
692 	    !blk_write_same_mergeable(req->bio, next->bio))
693 		return NULL;
694 
695 	/*
696 	 * If we are allowed to merge, then append bio list
697 	 * from next to rq and release next. merge_requests_fn
698 	 * will have updated segment counts, update sector
699 	 * counts here.
700 	 */
701 	if (!ll_merge_requests_fn(q, req, next))
702 		return NULL;
703 
704 	/*
705 	 * If failfast settings disagree or any of the two is already
706 	 * a mixed merge, mark both as mixed before proceeding.  This
707 	 * makes sure that all involved bios have mixable attributes
708 	 * set properly.
709 	 */
710 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
711 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
712 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
713 		blk_rq_set_mixed_merge(req);
714 		blk_rq_set_mixed_merge(next);
715 	}
716 
717 	/*
718 	 * At this point we have either done a back merge
719 	 * or front merge. We need the smaller start_time of
720 	 * the merged requests to be the current request
721 	 * for accounting purposes.
722 	 */
723 	if (time_after(req->start_time, next->start_time))
724 		req->start_time = next->start_time;
725 
726 	req->biotail->bi_next = next->bio;
727 	req->biotail = next->biotail;
728 
729 	req->__data_len += blk_rq_bytes(next);
730 
731 	elv_merge_requests(q, req, next);
732 
733 	/*
734 	 * 'next' is going away, so update stats accordingly
735 	 */
736 	blk_account_io_merge(next);
737 
738 	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
739 	if (blk_rq_cpu_valid(next))
740 		req->cpu = next->cpu;
741 
742 	/*
743 	 * ownership of bio passed from next to req, return 'next' for
744 	 * the caller to free
745 	 */
746 	next->bio = NULL;
747 	return next;
748 }
749 
750 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
751 {
752 	struct request *next = elv_latter_request(q, rq);
753 
754 	if (next)
755 		return attempt_merge(q, rq, next);
756 
757 	return NULL;
758 }
759 
760 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
761 {
762 	struct request *prev = elv_former_request(q, rq);
763 
764 	if (prev)
765 		return attempt_merge(q, prev, rq);
766 
767 	return NULL;
768 }
769 
770 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
771 			  struct request *next)
772 {
773 	struct elevator_queue *e = q->elevator;
774 	struct request *free;
775 
776 	if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn)
777 		if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next))
778 			return 0;
779 
780 	free = attempt_merge(q, rq, next);
781 	if (free) {
782 		__blk_put_request(q, free);
783 		return 1;
784 	}
785 
786 	return 0;
787 }
788 
789 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
790 {
791 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
792 		return false;
793 
794 	if (req_op(rq) != bio_op(bio))
795 		return false;
796 
797 	/* different data direction or already started, don't merge */
798 	if (bio_data_dir(bio) != rq_data_dir(rq))
799 		return false;
800 
801 	/* must be same device and not a special request */
802 	if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq))
803 		return false;
804 
805 	/* only merge integrity protected bio into ditto rq */
806 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
807 		return false;
808 
809 	/* must be using the same buffer */
810 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
811 	    !blk_write_same_mergeable(rq->bio, bio))
812 		return false;
813 
814 	return true;
815 }
816 
817 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
818 {
819 	if (req_op(rq) == REQ_OP_DISCARD &&
820 	    queue_max_discard_segments(rq->q) > 1)
821 		return ELEVATOR_DISCARD_MERGE;
822 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
823 		return ELEVATOR_BACK_MERGE;
824 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
825 		return ELEVATOR_FRONT_MERGE;
826 	return ELEVATOR_NO_MERGE;
827 }
828