xref: /openbmc/linux/block/blk-merge.c (revision 8440bb9b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 
15 /*
16  * Check if the two bvecs from two bios can be merged to one segment.  If yes,
17  * no need to check gap between the two bios since the 1st bio and the 1st bvec
18  * in the 2nd bio can be handled in one segment.
19  */
20 static inline bool bios_segs_mergeable(struct request_queue *q,
21 		struct bio *prev, struct bio_vec *prev_last_bv,
22 		struct bio_vec *next_first_bv)
23 {
24 	if (!biovec_phys_mergeable(q, prev_last_bv, next_first_bv))
25 		return false;
26 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
27 			queue_max_segment_size(q))
28 		return false;
29 	return true;
30 }
31 
32 static inline bool bio_will_gap(struct request_queue *q,
33 		struct request *prev_rq, struct bio *prev, struct bio *next)
34 {
35 	struct bio_vec pb, nb;
36 
37 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
38 		return false;
39 
40 	/*
41 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
42 	 * is quite difficult to respect the sg gap limit.  We work hard to
43 	 * merge a huge number of small single bios in case of mkfs.
44 	 */
45 	if (prev_rq)
46 		bio_get_first_bvec(prev_rq->bio, &pb);
47 	else
48 		bio_get_first_bvec(prev, &pb);
49 	if (pb.bv_offset & queue_virt_boundary(q))
50 		return true;
51 
52 	/*
53 	 * We don't need to worry about the situation that the merged segment
54 	 * ends in unaligned virt boundary:
55 	 *
56 	 * - if 'pb' ends aligned, the merged segment ends aligned
57 	 * - if 'pb' ends unaligned, the next bio must include
58 	 *   one single bvec of 'nb', otherwise the 'nb' can't
59 	 *   merge with 'pb'
60 	 */
61 	bio_get_last_bvec(prev, &pb);
62 	bio_get_first_bvec(next, &nb);
63 	if (bios_segs_mergeable(q, prev, &pb, &nb))
64 		return false;
65 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
66 }
67 
68 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
69 {
70 	return bio_will_gap(req->q, req, req->biotail, bio);
71 }
72 
73 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
74 {
75 	return bio_will_gap(req->q, NULL, bio, req->bio);
76 }
77 
78 static struct bio *blk_bio_discard_split(struct request_queue *q,
79 					 struct bio *bio,
80 					 struct bio_set *bs,
81 					 unsigned *nsegs)
82 {
83 	unsigned int max_discard_sectors, granularity;
84 	int alignment;
85 	sector_t tmp;
86 	unsigned split_sectors;
87 
88 	*nsegs = 1;
89 
90 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
91 	granularity = max(q->limits.discard_granularity >> 9, 1U);
92 
93 	max_discard_sectors = min(q->limits.max_discard_sectors,
94 			bio_allowed_max_sectors(q));
95 	max_discard_sectors -= max_discard_sectors % granularity;
96 
97 	if (unlikely(!max_discard_sectors)) {
98 		/* XXX: warn */
99 		return NULL;
100 	}
101 
102 	if (bio_sectors(bio) <= max_discard_sectors)
103 		return NULL;
104 
105 	split_sectors = max_discard_sectors;
106 
107 	/*
108 	 * If the next starting sector would be misaligned, stop the discard at
109 	 * the previous aligned sector.
110 	 */
111 	alignment = (q->limits.discard_alignment >> 9) % granularity;
112 
113 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
114 	tmp = sector_div(tmp, granularity);
115 
116 	if (split_sectors > tmp)
117 		split_sectors -= tmp;
118 
119 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
120 }
121 
122 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
123 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
124 {
125 	*nsegs = 1;
126 
127 	if (!q->limits.max_write_zeroes_sectors)
128 		return NULL;
129 
130 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
131 		return NULL;
132 
133 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
134 }
135 
136 static struct bio *blk_bio_write_same_split(struct request_queue *q,
137 					    struct bio *bio,
138 					    struct bio_set *bs,
139 					    unsigned *nsegs)
140 {
141 	*nsegs = 1;
142 
143 	if (!q->limits.max_write_same_sectors)
144 		return NULL;
145 
146 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
147 		return NULL;
148 
149 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
150 }
151 
152 static inline unsigned get_max_io_size(struct request_queue *q,
153 				       struct bio *bio)
154 {
155 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
156 	unsigned mask = queue_logical_block_size(q) - 1;
157 
158 	/* aligned to logical block size */
159 	sectors &= ~(mask >> 9);
160 
161 	return sectors;
162 }
163 
164 static unsigned get_max_segment_size(struct request_queue *q,
165 				     unsigned offset)
166 {
167 	unsigned long mask = queue_segment_boundary(q);
168 
169 	/* default segment boundary mask means no boundary limit */
170 	if (mask == BLK_SEG_BOUNDARY_MASK)
171 		return queue_max_segment_size(q);
172 
173 	return min_t(unsigned long, mask - (mask & offset) + 1,
174 		     queue_max_segment_size(q));
175 }
176 
177 /*
178  * Split the bvec @bv into segments, and update all kinds of
179  * variables.
180  */
181 static bool bvec_split_segs(struct request_queue *q, struct bio_vec *bv,
182 		unsigned *nsegs, unsigned *last_seg_size,
183 		unsigned *front_seg_size, unsigned *sectors, unsigned max_segs)
184 {
185 	unsigned len = bv->bv_len;
186 	unsigned total_len = 0;
187 	unsigned new_nsegs = 0, seg_size = 0;
188 
189 	/*
190 	 * Multi-page bvec may be too big to hold in one segment, so the
191 	 * current bvec has to be splitted as multiple segments.
192 	 */
193 	while (len && new_nsegs + *nsegs < max_segs) {
194 		seg_size = get_max_segment_size(q, bv->bv_offset + total_len);
195 		seg_size = min(seg_size, len);
196 
197 		new_nsegs++;
198 		total_len += seg_size;
199 		len -= seg_size;
200 
201 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
202 			break;
203 	}
204 
205 	if (!new_nsegs)
206 		return !!len;
207 
208 	/* update front segment size */
209 	if (!*nsegs) {
210 		unsigned first_seg_size;
211 
212 		if (new_nsegs == 1)
213 			first_seg_size = get_max_segment_size(q, bv->bv_offset);
214 		else
215 			first_seg_size = queue_max_segment_size(q);
216 
217 		if (*front_seg_size < first_seg_size)
218 			*front_seg_size = first_seg_size;
219 	}
220 
221 	/* update other varibles */
222 	*last_seg_size = seg_size;
223 	*nsegs += new_nsegs;
224 	if (sectors)
225 		*sectors += total_len >> 9;
226 
227 	/* split in the middle of the bvec if len != 0 */
228 	return !!len;
229 }
230 
231 static struct bio *blk_bio_segment_split(struct request_queue *q,
232 					 struct bio *bio,
233 					 struct bio_set *bs,
234 					 unsigned *segs)
235 {
236 	struct bio_vec bv, bvprv, *bvprvp = NULL;
237 	struct bvec_iter iter;
238 	unsigned seg_size = 0, nsegs = 0, sectors = 0;
239 	unsigned front_seg_size = bio->bi_seg_front_size;
240 	bool do_split = true;
241 	struct bio *new = NULL;
242 	const unsigned max_sectors = get_max_io_size(q, bio);
243 	const unsigned max_segs = queue_max_segments(q);
244 
245 	bio_for_each_bvec(bv, bio, iter) {
246 		/*
247 		 * If the queue doesn't support SG gaps and adding this
248 		 * offset would create a gap, disallow it.
249 		 */
250 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
251 			goto split;
252 
253 		if (sectors + (bv.bv_len >> 9) > max_sectors) {
254 			/*
255 			 * Consider this a new segment if we're splitting in
256 			 * the middle of this vector.
257 			 */
258 			if (nsegs < max_segs &&
259 			    sectors < max_sectors) {
260 				/* split in the middle of bvec */
261 				bv.bv_len = (max_sectors - sectors) << 9;
262 				bvec_split_segs(q, &bv, &nsegs,
263 						&seg_size,
264 						&front_seg_size,
265 						&sectors, max_segs);
266 			}
267 			goto split;
268 		}
269 
270 		if (bvprvp) {
271 			if (seg_size + bv.bv_len > queue_max_segment_size(q))
272 				goto new_segment;
273 			if (!biovec_phys_mergeable(q, bvprvp, &bv))
274 				goto new_segment;
275 
276 			seg_size += bv.bv_len;
277 			bvprv = bv;
278 			bvprvp = &bvprv;
279 			sectors += bv.bv_len >> 9;
280 
281 			if (nsegs == 1 && seg_size > front_seg_size)
282 				front_seg_size = seg_size;
283 
284 			continue;
285 		}
286 new_segment:
287 		if (nsegs == max_segs)
288 			goto split;
289 
290 		bvprv = bv;
291 		bvprvp = &bvprv;
292 
293 		if (bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
294 			nsegs++;
295 			seg_size = bv.bv_len;
296 			sectors += bv.bv_len >> 9;
297 			if (nsegs == 1 && seg_size > front_seg_size)
298 				front_seg_size = seg_size;
299 		} else if (bvec_split_segs(q, &bv, &nsegs, &seg_size,
300 				    &front_seg_size, &sectors, max_segs)) {
301 			goto split;
302 		}
303 	}
304 
305 	do_split = false;
306 split:
307 	*segs = nsegs;
308 
309 	if (do_split) {
310 		new = bio_split(bio, sectors, GFP_NOIO, bs);
311 		if (new)
312 			bio = new;
313 	}
314 
315 	bio->bi_seg_front_size = front_seg_size;
316 	if (seg_size > bio->bi_seg_back_size)
317 		bio->bi_seg_back_size = seg_size;
318 
319 	return do_split ? new : NULL;
320 }
321 
322 void blk_queue_split(struct request_queue *q, struct bio **bio)
323 {
324 	struct bio *split, *res;
325 	unsigned nsegs;
326 
327 	switch (bio_op(*bio)) {
328 	case REQ_OP_DISCARD:
329 	case REQ_OP_SECURE_ERASE:
330 		split = blk_bio_discard_split(q, *bio, &q->bio_split, &nsegs);
331 		break;
332 	case REQ_OP_WRITE_ZEROES:
333 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, &nsegs);
334 		break;
335 	case REQ_OP_WRITE_SAME:
336 		split = blk_bio_write_same_split(q, *bio, &q->bio_split, &nsegs);
337 		break;
338 	default:
339 		split = blk_bio_segment_split(q, *bio, &q->bio_split, &nsegs);
340 		break;
341 	}
342 
343 	/* physical segments can be figured out during splitting */
344 	res = split ? split : *bio;
345 	res->bi_phys_segments = nsegs;
346 	bio_set_flag(res, BIO_SEG_VALID);
347 
348 	if (split) {
349 		/* there isn't chance to merge the splitted bio */
350 		split->bi_opf |= REQ_NOMERGE;
351 
352 		/*
353 		 * Since we're recursing into make_request here, ensure
354 		 * that we mark this bio as already having entered the queue.
355 		 * If not, and the queue is going away, we can get stuck
356 		 * forever on waiting for the queue reference to drop. But
357 		 * that will never happen, as we're already holding a
358 		 * reference to it.
359 		 */
360 		bio_set_flag(*bio, BIO_QUEUE_ENTERED);
361 
362 		bio_chain(split, *bio);
363 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
364 		generic_make_request(*bio);
365 		*bio = split;
366 	}
367 }
368 EXPORT_SYMBOL(blk_queue_split);
369 
370 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
371 					     struct bio *bio)
372 {
373 	struct bio_vec bv, bvprv = { NULL };
374 	int prev = 0;
375 	unsigned int seg_size, nr_phys_segs;
376 	unsigned front_seg_size;
377 	struct bio *fbio, *bbio;
378 	struct bvec_iter iter;
379 
380 	if (!bio)
381 		return 0;
382 
383 	front_seg_size = bio->bi_seg_front_size;
384 
385 	switch (bio_op(bio)) {
386 	case REQ_OP_DISCARD:
387 	case REQ_OP_SECURE_ERASE:
388 	case REQ_OP_WRITE_ZEROES:
389 		return 0;
390 	case REQ_OP_WRITE_SAME:
391 		return 1;
392 	}
393 
394 	fbio = bio;
395 	seg_size = 0;
396 	nr_phys_segs = 0;
397 	for_each_bio(bio) {
398 		bio_for_each_bvec(bv, bio, iter) {
399 			if (prev) {
400 				if (seg_size + bv.bv_len
401 				    > queue_max_segment_size(q))
402 					goto new_segment;
403 				if (!biovec_phys_mergeable(q, &bvprv, &bv))
404 					goto new_segment;
405 
406 				seg_size += bv.bv_len;
407 				bvprv = bv;
408 
409 				if (nr_phys_segs == 1 && seg_size >
410 						front_seg_size)
411 					front_seg_size = seg_size;
412 
413 				continue;
414 			}
415 new_segment:
416 			bvprv = bv;
417 			prev = 1;
418 			bvec_split_segs(q, &bv, &nr_phys_segs, &seg_size,
419 					&front_seg_size, NULL, UINT_MAX);
420 		}
421 		bbio = bio;
422 	}
423 
424 	fbio->bi_seg_front_size = front_seg_size;
425 	if (seg_size > bbio->bi_seg_back_size)
426 		bbio->bi_seg_back_size = seg_size;
427 
428 	return nr_phys_segs;
429 }
430 
431 void blk_recalc_rq_segments(struct request *rq)
432 {
433 	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio);
434 }
435 
436 void blk_recount_segments(struct request_queue *q, struct bio *bio)
437 {
438 	struct bio *nxt = bio->bi_next;
439 
440 	bio->bi_next = NULL;
441 	bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio);
442 	bio->bi_next = nxt;
443 
444 	bio_set_flag(bio, BIO_SEG_VALID);
445 }
446 
447 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
448 				   struct bio *nxt)
449 {
450 	struct bio_vec end_bv = { NULL }, nxt_bv;
451 
452 	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
453 	    queue_max_segment_size(q))
454 		return 0;
455 
456 	if (!bio_has_data(bio))
457 		return 1;
458 
459 	bio_get_last_bvec(bio, &end_bv);
460 	bio_get_first_bvec(nxt, &nxt_bv);
461 
462 	return biovec_phys_mergeable(q, &end_bv, &nxt_bv);
463 }
464 
465 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
466 		struct scatterlist *sglist)
467 {
468 	if (!*sg)
469 		return sglist;
470 
471 	/*
472 	 * If the driver previously mapped a shorter list, we could see a
473 	 * termination bit prematurely unless it fully inits the sg table
474 	 * on each mapping. We KNOW that there must be more entries here
475 	 * or the driver would be buggy, so force clear the termination bit
476 	 * to avoid doing a full sg_init_table() in drivers for each command.
477 	 */
478 	sg_unmark_end(*sg);
479 	return sg_next(*sg);
480 }
481 
482 static unsigned blk_bvec_map_sg(struct request_queue *q,
483 		struct bio_vec *bvec, struct scatterlist *sglist,
484 		struct scatterlist **sg)
485 {
486 	unsigned nbytes = bvec->bv_len;
487 	unsigned nsegs = 0, total = 0, offset = 0;
488 
489 	while (nbytes > 0) {
490 		unsigned seg_size;
491 		struct page *pg;
492 		unsigned idx;
493 
494 		*sg = blk_next_sg(sg, sglist);
495 
496 		seg_size = get_max_segment_size(q, bvec->bv_offset + total);
497 		seg_size = min(nbytes, seg_size);
498 
499 		offset = (total + bvec->bv_offset) % PAGE_SIZE;
500 		idx = (total + bvec->bv_offset) / PAGE_SIZE;
501 		pg = bvec_nth_page(bvec->bv_page, idx);
502 
503 		sg_set_page(*sg, pg, seg_size, offset);
504 
505 		total += seg_size;
506 		nbytes -= seg_size;
507 		nsegs++;
508 	}
509 
510 	return nsegs;
511 }
512 
513 static inline void
514 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
515 		     struct scatterlist *sglist, struct bio_vec *bvprv,
516 		     struct scatterlist **sg, int *nsegs)
517 {
518 
519 	int nbytes = bvec->bv_len;
520 
521 	if (*sg) {
522 		if ((*sg)->length + nbytes > queue_max_segment_size(q))
523 			goto new_segment;
524 		if (!biovec_phys_mergeable(q, bvprv, bvec))
525 			goto new_segment;
526 
527 		(*sg)->length += nbytes;
528 	} else {
529 new_segment:
530 		if (bvec->bv_offset + bvec->bv_len <= PAGE_SIZE) {
531 			*sg = blk_next_sg(sg, sglist);
532 			sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
533 			(*nsegs) += 1;
534 		} else
535 			(*nsegs) += blk_bvec_map_sg(q, bvec, sglist, sg);
536 	}
537 	*bvprv = *bvec;
538 }
539 
540 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
541 		struct scatterlist *sglist, struct scatterlist **sg)
542 {
543 	*sg = sglist;
544 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
545 	return 1;
546 }
547 
548 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
549 			     struct scatterlist *sglist,
550 			     struct scatterlist **sg)
551 {
552 	struct bio_vec bvec, bvprv = { NULL };
553 	struct bvec_iter iter;
554 	int nsegs = 0;
555 
556 	for_each_bio(bio)
557 		bio_for_each_bvec(bvec, bio, iter)
558 			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
559 					     &nsegs);
560 
561 	return nsegs;
562 }
563 
564 /*
565  * map a request to scatterlist, return number of sg entries setup. Caller
566  * must make sure sg can hold rq->nr_phys_segments entries
567  */
568 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
569 		  struct scatterlist *sglist)
570 {
571 	struct scatterlist *sg = NULL;
572 	int nsegs = 0;
573 
574 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
575 		nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
576 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
577 		nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
578 	else if (rq->bio)
579 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
580 
581 	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
582 	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
583 		unsigned int pad_len =
584 			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
585 
586 		sg->length += pad_len;
587 		rq->extra_len += pad_len;
588 	}
589 
590 	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
591 		if (op_is_write(req_op(rq)))
592 			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
593 
594 		sg_unmark_end(sg);
595 		sg = sg_next(sg);
596 		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
597 			    q->dma_drain_size,
598 			    ((unsigned long)q->dma_drain_buffer) &
599 			    (PAGE_SIZE - 1));
600 		nsegs++;
601 		rq->extra_len += q->dma_drain_size;
602 	}
603 
604 	if (sg)
605 		sg_mark_end(sg);
606 
607 	/*
608 	 * Something must have been wrong if the figured number of
609 	 * segment is bigger than number of req's physical segments
610 	 */
611 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
612 
613 	return nsegs;
614 }
615 EXPORT_SYMBOL(blk_rq_map_sg);
616 
617 static inline int ll_new_hw_segment(struct request_queue *q,
618 				    struct request *req,
619 				    struct bio *bio)
620 {
621 	int nr_phys_segs = bio_phys_segments(q, bio);
622 
623 	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
624 		goto no_merge;
625 
626 	if (blk_integrity_merge_bio(q, req, bio) == false)
627 		goto no_merge;
628 
629 	/*
630 	 * This will form the start of a new hw segment.  Bump both
631 	 * counters.
632 	 */
633 	req->nr_phys_segments += nr_phys_segs;
634 	return 1;
635 
636 no_merge:
637 	req_set_nomerge(q, req);
638 	return 0;
639 }
640 
641 int ll_back_merge_fn(struct request_queue *q, struct request *req,
642 		     struct bio *bio)
643 {
644 	if (req_gap_back_merge(req, bio))
645 		return 0;
646 	if (blk_integrity_rq(req) &&
647 	    integrity_req_gap_back_merge(req, bio))
648 		return 0;
649 	if (blk_rq_sectors(req) + bio_sectors(bio) >
650 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
651 		req_set_nomerge(q, req);
652 		return 0;
653 	}
654 	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
655 		blk_recount_segments(q, req->biotail);
656 	if (!bio_flagged(bio, BIO_SEG_VALID))
657 		blk_recount_segments(q, bio);
658 
659 	return ll_new_hw_segment(q, req, bio);
660 }
661 
662 int ll_front_merge_fn(struct request_queue *q, struct request *req,
663 		      struct bio *bio)
664 {
665 
666 	if (req_gap_front_merge(req, bio))
667 		return 0;
668 	if (blk_integrity_rq(req) &&
669 	    integrity_req_gap_front_merge(req, bio))
670 		return 0;
671 	if (blk_rq_sectors(req) + bio_sectors(bio) >
672 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
673 		req_set_nomerge(q, req);
674 		return 0;
675 	}
676 	if (!bio_flagged(bio, BIO_SEG_VALID))
677 		blk_recount_segments(q, bio);
678 	if (!bio_flagged(req->bio, BIO_SEG_VALID))
679 		blk_recount_segments(q, req->bio);
680 
681 	return ll_new_hw_segment(q, req, bio);
682 }
683 
684 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
685 		struct request *next)
686 {
687 	unsigned short segments = blk_rq_nr_discard_segments(req);
688 
689 	if (segments >= queue_max_discard_segments(q))
690 		goto no_merge;
691 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
692 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
693 		goto no_merge;
694 
695 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
696 	return true;
697 no_merge:
698 	req_set_nomerge(q, req);
699 	return false;
700 }
701 
702 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
703 				struct request *next)
704 {
705 	int total_phys_segments;
706 	unsigned int seg_size =
707 		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
708 
709 	if (req_gap_back_merge(req, next->bio))
710 		return 0;
711 
712 	/*
713 	 * Will it become too large?
714 	 */
715 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
716 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
717 		return 0;
718 
719 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
720 	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
721 		if (req->nr_phys_segments == 1)
722 			req->bio->bi_seg_front_size = seg_size;
723 		if (next->nr_phys_segments == 1)
724 			next->biotail->bi_seg_back_size = seg_size;
725 		total_phys_segments--;
726 	}
727 
728 	if (total_phys_segments > queue_max_segments(q))
729 		return 0;
730 
731 	if (blk_integrity_merge_rq(q, req, next) == false)
732 		return 0;
733 
734 	/* Merge is OK... */
735 	req->nr_phys_segments = total_phys_segments;
736 	return 1;
737 }
738 
739 /**
740  * blk_rq_set_mixed_merge - mark a request as mixed merge
741  * @rq: request to mark as mixed merge
742  *
743  * Description:
744  *     @rq is about to be mixed merged.  Make sure the attributes
745  *     which can be mixed are set in each bio and mark @rq as mixed
746  *     merged.
747  */
748 void blk_rq_set_mixed_merge(struct request *rq)
749 {
750 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
751 	struct bio *bio;
752 
753 	if (rq->rq_flags & RQF_MIXED_MERGE)
754 		return;
755 
756 	/*
757 	 * @rq will no longer represent mixable attributes for all the
758 	 * contained bios.  It will just track those of the first one.
759 	 * Distributes the attributs to each bio.
760 	 */
761 	for (bio = rq->bio; bio; bio = bio->bi_next) {
762 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
763 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
764 		bio->bi_opf |= ff;
765 	}
766 	rq->rq_flags |= RQF_MIXED_MERGE;
767 }
768 
769 static void blk_account_io_merge(struct request *req)
770 {
771 	if (blk_do_io_stat(req)) {
772 		struct hd_struct *part;
773 
774 		part_stat_lock();
775 		part = req->part;
776 
777 		part_dec_in_flight(req->q, part, rq_data_dir(req));
778 
779 		hd_struct_put(part);
780 		part_stat_unlock();
781 	}
782 }
783 /*
784  * Two cases of handling DISCARD merge:
785  * If max_discard_segments > 1, the driver takes every bio
786  * as a range and send them to controller together. The ranges
787  * needn't to be contiguous.
788  * Otherwise, the bios/requests will be handled as same as
789  * others which should be contiguous.
790  */
791 static inline bool blk_discard_mergable(struct request *req)
792 {
793 	if (req_op(req) == REQ_OP_DISCARD &&
794 	    queue_max_discard_segments(req->q) > 1)
795 		return true;
796 	return false;
797 }
798 
799 static enum elv_merge blk_try_req_merge(struct request *req,
800 					struct request *next)
801 {
802 	if (blk_discard_mergable(req))
803 		return ELEVATOR_DISCARD_MERGE;
804 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
805 		return ELEVATOR_BACK_MERGE;
806 
807 	return ELEVATOR_NO_MERGE;
808 }
809 
810 /*
811  * For non-mq, this has to be called with the request spinlock acquired.
812  * For mq with scheduling, the appropriate queue wide lock should be held.
813  */
814 static struct request *attempt_merge(struct request_queue *q,
815 				     struct request *req, struct request *next)
816 {
817 	if (!rq_mergeable(req) || !rq_mergeable(next))
818 		return NULL;
819 
820 	if (req_op(req) != req_op(next))
821 		return NULL;
822 
823 	if (rq_data_dir(req) != rq_data_dir(next)
824 	    || req->rq_disk != next->rq_disk)
825 		return NULL;
826 
827 	if (req_op(req) == REQ_OP_WRITE_SAME &&
828 	    !blk_write_same_mergeable(req->bio, next->bio))
829 		return NULL;
830 
831 	/*
832 	 * Don't allow merge of different write hints, or for a hint with
833 	 * non-hint IO.
834 	 */
835 	if (req->write_hint != next->write_hint)
836 		return NULL;
837 
838 	if (req->ioprio != next->ioprio)
839 		return NULL;
840 
841 	/*
842 	 * If we are allowed to merge, then append bio list
843 	 * from next to rq and release next. merge_requests_fn
844 	 * will have updated segment counts, update sector
845 	 * counts here. Handle DISCARDs separately, as they
846 	 * have separate settings.
847 	 */
848 
849 	switch (blk_try_req_merge(req, next)) {
850 	case ELEVATOR_DISCARD_MERGE:
851 		if (!req_attempt_discard_merge(q, req, next))
852 			return NULL;
853 		break;
854 	case ELEVATOR_BACK_MERGE:
855 		if (!ll_merge_requests_fn(q, req, next))
856 			return NULL;
857 		break;
858 	default:
859 		return NULL;
860 	}
861 
862 	/*
863 	 * If failfast settings disagree or any of the two is already
864 	 * a mixed merge, mark both as mixed before proceeding.  This
865 	 * makes sure that all involved bios have mixable attributes
866 	 * set properly.
867 	 */
868 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
869 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
870 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
871 		blk_rq_set_mixed_merge(req);
872 		blk_rq_set_mixed_merge(next);
873 	}
874 
875 	/*
876 	 * At this point we have either done a back merge or front merge. We
877 	 * need the smaller start_time_ns of the merged requests to be the
878 	 * current request for accounting purposes.
879 	 */
880 	if (next->start_time_ns < req->start_time_ns)
881 		req->start_time_ns = next->start_time_ns;
882 
883 	req->biotail->bi_next = next->bio;
884 	req->biotail = next->biotail;
885 
886 	req->__data_len += blk_rq_bytes(next);
887 
888 	if (!blk_discard_mergable(req))
889 		elv_merge_requests(q, req, next);
890 
891 	/*
892 	 * 'next' is going away, so update stats accordingly
893 	 */
894 	blk_account_io_merge(next);
895 
896 	/*
897 	 * ownership of bio passed from next to req, return 'next' for
898 	 * the caller to free
899 	 */
900 	next->bio = NULL;
901 	return next;
902 }
903 
904 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
905 {
906 	struct request *next = elv_latter_request(q, rq);
907 
908 	if (next)
909 		return attempt_merge(q, rq, next);
910 
911 	return NULL;
912 }
913 
914 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
915 {
916 	struct request *prev = elv_former_request(q, rq);
917 
918 	if (prev)
919 		return attempt_merge(q, prev, rq);
920 
921 	return NULL;
922 }
923 
924 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
925 			  struct request *next)
926 {
927 	struct request *free;
928 
929 	free = attempt_merge(q, rq, next);
930 	if (free) {
931 		blk_put_request(free);
932 		return 1;
933 	}
934 
935 	return 0;
936 }
937 
938 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
939 {
940 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
941 		return false;
942 
943 	if (req_op(rq) != bio_op(bio))
944 		return false;
945 
946 	/* different data direction or already started, don't merge */
947 	if (bio_data_dir(bio) != rq_data_dir(rq))
948 		return false;
949 
950 	/* must be same device */
951 	if (rq->rq_disk != bio->bi_disk)
952 		return false;
953 
954 	/* only merge integrity protected bio into ditto rq */
955 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
956 		return false;
957 
958 	/* must be using the same buffer */
959 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
960 	    !blk_write_same_mergeable(rq->bio, bio))
961 		return false;
962 
963 	/*
964 	 * Don't allow merge of different write hints, or for a hint with
965 	 * non-hint IO.
966 	 */
967 	if (rq->write_hint != bio->bi_write_hint)
968 		return false;
969 
970 	if (rq->ioprio != bio_prio(bio))
971 		return false;
972 
973 	return true;
974 }
975 
976 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
977 {
978 	if (blk_discard_mergable(rq))
979 		return ELEVATOR_DISCARD_MERGE;
980 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
981 		return ELEVATOR_BACK_MERGE;
982 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
983 		return ELEVATOR_FRONT_MERGE;
984 	return ELEVATOR_NO_MERGE;
985 }
986