xref: /openbmc/linux/block/blk-merge.c (revision 6deacb3b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
86 }
87 
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 static struct bio *blk_bio_discard_split(struct request_queue *q,
99 					 struct bio *bio,
100 					 struct bio_set *bs,
101 					 unsigned *nsegs)
102 {
103 	unsigned int max_discard_sectors, granularity;
104 	int alignment;
105 	sector_t tmp;
106 	unsigned split_sectors;
107 
108 	*nsegs = 1;
109 
110 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
111 	granularity = max(q->limits.discard_granularity >> 9, 1U);
112 
113 	max_discard_sectors = min(q->limits.max_discard_sectors,
114 			bio_allowed_max_sectors(q));
115 	max_discard_sectors -= max_discard_sectors % granularity;
116 
117 	if (unlikely(!max_discard_sectors)) {
118 		/* XXX: warn */
119 		return NULL;
120 	}
121 
122 	if (bio_sectors(bio) <= max_discard_sectors)
123 		return NULL;
124 
125 	split_sectors = max_discard_sectors;
126 
127 	/*
128 	 * If the next starting sector would be misaligned, stop the discard at
129 	 * the previous aligned sector.
130 	 */
131 	alignment = (q->limits.discard_alignment >> 9) % granularity;
132 
133 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
134 	tmp = sector_div(tmp, granularity);
135 
136 	if (split_sectors > tmp)
137 		split_sectors -= tmp;
138 
139 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
140 }
141 
142 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
143 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
144 {
145 	*nsegs = 0;
146 
147 	if (!q->limits.max_write_zeroes_sectors)
148 		return NULL;
149 
150 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
151 		return NULL;
152 
153 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
154 }
155 
156 /*
157  * Return the maximum number of sectors from the start of a bio that may be
158  * submitted as a single request to a block device. If enough sectors remain,
159  * align the end to the physical block size. Otherwise align the end to the
160  * logical block size. This approach minimizes the number of non-aligned
161  * requests that are submitted to a block device if the start of a bio is not
162  * aligned to a physical block boundary.
163  */
164 static inline unsigned get_max_io_size(struct request_queue *q,
165 				       struct bio *bio)
166 {
167 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
168 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
169 	unsigned max_sectors = queue_max_sectors(q), start, end;
170 
171 	if (q->limits.chunk_sectors) {
172 		max_sectors = min(max_sectors,
173 			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
174 					       q->limits.chunk_sectors));
175 	}
176 
177 	start = bio->bi_iter.bi_sector & (pbs - 1);
178 	end = (start + max_sectors) & ~(pbs - 1);
179 	if (end > start)
180 		return end - start;
181 	return max_sectors & ~(lbs - 1);
182 }
183 
184 static inline unsigned get_max_segment_size(const struct request_queue *q,
185 					    struct page *start_page,
186 					    unsigned long offset)
187 {
188 	unsigned long mask = queue_segment_boundary(q);
189 
190 	offset = mask & (page_to_phys(start_page) + offset);
191 
192 	/*
193 	 * overflow may be triggered in case of zero page physical address
194 	 * on 32bit arch, use queue's max segment size when that happens.
195 	 */
196 	return min_not_zero(mask - offset + 1,
197 			(unsigned long)queue_max_segment_size(q));
198 }
199 
200 /**
201  * bvec_split_segs - verify whether or not a bvec should be split in the middle
202  * @q:        [in] request queue associated with the bio associated with @bv
203  * @bv:       [in] bvec to examine
204  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
205  *            by the number of segments from @bv that may be appended to that
206  *            bio without exceeding @max_segs
207  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
208  *            by the number of bytes from @bv that may be appended to that
209  *            bio without exceeding @max_bytes
210  * @max_segs: [in] upper bound for *@nsegs
211  * @max_bytes: [in] upper bound for *@bytes
212  *
213  * When splitting a bio, it can happen that a bvec is encountered that is too
214  * big to fit in a single segment and hence that it has to be split in the
215  * middle. This function verifies whether or not that should happen. The value
216  * %true is returned if and only if appending the entire @bv to a bio with
217  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
218  * the block driver.
219  */
220 static bool bvec_split_segs(const struct request_queue *q,
221 			    const struct bio_vec *bv, unsigned *nsegs,
222 			    unsigned *bytes, unsigned max_segs,
223 			    unsigned max_bytes)
224 {
225 	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
226 	unsigned len = min(bv->bv_len, max_len);
227 	unsigned total_len = 0;
228 	unsigned seg_size = 0;
229 
230 	while (len && *nsegs < max_segs) {
231 		seg_size = get_max_segment_size(q, bv->bv_page,
232 						bv->bv_offset + total_len);
233 		seg_size = min(seg_size, len);
234 
235 		(*nsegs)++;
236 		total_len += seg_size;
237 		len -= seg_size;
238 
239 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
240 			break;
241 	}
242 
243 	*bytes += total_len;
244 
245 	/* tell the caller to split the bvec if it is too big to fit */
246 	return len > 0 || bv->bv_len > max_len;
247 }
248 
249 /**
250  * blk_bio_segment_split - split a bio in two bios
251  * @q:    [in] request queue pointer
252  * @bio:  [in] bio to be split
253  * @bs:	  [in] bio set to allocate the clone from
254  * @segs: [out] number of segments in the bio with the first half of the sectors
255  *
256  * Clone @bio, update the bi_iter of the clone to represent the first sectors
257  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
258  * following is guaranteed for the cloned bio:
259  * - That it has at most get_max_io_size(@q, @bio) sectors.
260  * - That it has at most queue_max_segments(@q) segments.
261  *
262  * Except for discard requests the cloned bio will point at the bi_io_vec of
263  * the original bio. It is the responsibility of the caller to ensure that the
264  * original bio is not freed before the cloned bio. The caller is also
265  * responsible for ensuring that @bs is only destroyed after processing of the
266  * split bio has finished.
267  */
268 static struct bio *blk_bio_segment_split(struct request_queue *q,
269 					 struct bio *bio,
270 					 struct bio_set *bs,
271 					 unsigned *segs)
272 {
273 	struct bio_vec bv, bvprv, *bvprvp = NULL;
274 	struct bvec_iter iter;
275 	unsigned nsegs = 0, bytes = 0;
276 	const unsigned max_bytes = get_max_io_size(q, bio) << 9;
277 	const unsigned max_segs = queue_max_segments(q);
278 
279 	bio_for_each_bvec(bv, bio, iter) {
280 		/*
281 		 * If the queue doesn't support SG gaps and adding this
282 		 * offset would create a gap, disallow it.
283 		 */
284 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
285 			goto split;
286 
287 		if (nsegs < max_segs &&
288 		    bytes + bv.bv_len <= max_bytes &&
289 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
290 			nsegs++;
291 			bytes += bv.bv_len;
292 		} else if (bvec_split_segs(q, &bv, &nsegs, &bytes, max_segs,
293 					   max_bytes)) {
294 			goto split;
295 		}
296 
297 		bvprv = bv;
298 		bvprvp = &bvprv;
299 	}
300 
301 	*segs = nsegs;
302 	return NULL;
303 split:
304 	*segs = nsegs;
305 
306 	/*
307 	 * Individual bvecs might not be logical block aligned. Round down the
308 	 * split size so that each bio is properly block size aligned, even if
309 	 * we do not use the full hardware limits.
310 	 */
311 	bytes = ALIGN_DOWN(bytes, queue_logical_block_size(q));
312 
313 	/*
314 	 * Bio splitting may cause subtle trouble such as hang when doing sync
315 	 * iopoll in direct IO routine. Given performance gain of iopoll for
316 	 * big IO can be trival, disable iopoll when split needed.
317 	 */
318 	bio_clear_polled(bio);
319 	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
320 }
321 
322 /**
323  * __blk_queue_split - split a bio and submit the second half
324  * @q:       [in] request_queue new bio is being queued at
325  * @bio:     [in, out] bio to be split
326  * @nr_segs: [out] number of segments in the first bio
327  *
328  * Split a bio into two bios, chain the two bios, submit the second half and
329  * store a pointer to the first half in *@bio. If the second bio is still too
330  * big it will be split by a recursive call to this function. Since this
331  * function may allocate a new bio from q->bio_split, it is the responsibility
332  * of the caller to ensure that q->bio_split is only released after processing
333  * of the split bio has finished.
334  */
335 void __blk_queue_split(struct request_queue *q, struct bio **bio,
336 		       unsigned int *nr_segs)
337 {
338 	struct bio *split = NULL;
339 
340 	switch (bio_op(*bio)) {
341 	case REQ_OP_DISCARD:
342 	case REQ_OP_SECURE_ERASE:
343 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
344 		break;
345 	case REQ_OP_WRITE_ZEROES:
346 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
347 				nr_segs);
348 		break;
349 	default:
350 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
351 		break;
352 	}
353 
354 	if (split) {
355 		/* there isn't chance to merge the splitted bio */
356 		split->bi_opf |= REQ_NOMERGE;
357 
358 		bio_chain(split, *bio);
359 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
360 		submit_bio_noacct(*bio);
361 		*bio = split;
362 	}
363 }
364 
365 /**
366  * blk_queue_split - split a bio and submit the second half
367  * @bio: [in, out] bio to be split
368  *
369  * Split a bio into two bios, chains the two bios, submit the second half and
370  * store a pointer to the first half in *@bio. Since this function may allocate
371  * a new bio from q->bio_split, it is the responsibility of the caller to ensure
372  * that q->bio_split is only released after processing of the split bio has
373  * finished.
374  */
375 void blk_queue_split(struct bio **bio)
376 {
377 	struct request_queue *q = bdev_get_queue((*bio)->bi_bdev);
378 	unsigned int nr_segs;
379 
380 	if (blk_may_split(q, *bio))
381 		__blk_queue_split(q, bio, &nr_segs);
382 }
383 EXPORT_SYMBOL(blk_queue_split);
384 
385 unsigned int blk_recalc_rq_segments(struct request *rq)
386 {
387 	unsigned int nr_phys_segs = 0;
388 	unsigned int bytes = 0;
389 	struct req_iterator iter;
390 	struct bio_vec bv;
391 
392 	if (!rq->bio)
393 		return 0;
394 
395 	switch (bio_op(rq->bio)) {
396 	case REQ_OP_DISCARD:
397 	case REQ_OP_SECURE_ERASE:
398 		if (queue_max_discard_segments(rq->q) > 1) {
399 			struct bio *bio = rq->bio;
400 
401 			for_each_bio(bio)
402 				nr_phys_segs++;
403 			return nr_phys_segs;
404 		}
405 		return 1;
406 	case REQ_OP_WRITE_ZEROES:
407 		return 0;
408 	}
409 
410 	rq_for_each_bvec(bv, rq, iter)
411 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &bytes,
412 				UINT_MAX, UINT_MAX);
413 	return nr_phys_segs;
414 }
415 
416 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
417 		struct scatterlist *sglist)
418 {
419 	if (!*sg)
420 		return sglist;
421 
422 	/*
423 	 * If the driver previously mapped a shorter list, we could see a
424 	 * termination bit prematurely unless it fully inits the sg table
425 	 * on each mapping. We KNOW that there must be more entries here
426 	 * or the driver would be buggy, so force clear the termination bit
427 	 * to avoid doing a full sg_init_table() in drivers for each command.
428 	 */
429 	sg_unmark_end(*sg);
430 	return sg_next(*sg);
431 }
432 
433 static unsigned blk_bvec_map_sg(struct request_queue *q,
434 		struct bio_vec *bvec, struct scatterlist *sglist,
435 		struct scatterlist **sg)
436 {
437 	unsigned nbytes = bvec->bv_len;
438 	unsigned nsegs = 0, total = 0;
439 
440 	while (nbytes > 0) {
441 		unsigned offset = bvec->bv_offset + total;
442 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
443 					offset), nbytes);
444 		struct page *page = bvec->bv_page;
445 
446 		/*
447 		 * Unfortunately a fair number of drivers barf on scatterlists
448 		 * that have an offset larger than PAGE_SIZE, despite other
449 		 * subsystems dealing with that invariant just fine.  For now
450 		 * stick to the legacy format where we never present those from
451 		 * the block layer, but the code below should be removed once
452 		 * these offenders (mostly MMC/SD drivers) are fixed.
453 		 */
454 		page += (offset >> PAGE_SHIFT);
455 		offset &= ~PAGE_MASK;
456 
457 		*sg = blk_next_sg(sg, sglist);
458 		sg_set_page(*sg, page, len, offset);
459 
460 		total += len;
461 		nbytes -= len;
462 		nsegs++;
463 	}
464 
465 	return nsegs;
466 }
467 
468 static inline int __blk_bvec_map_sg(struct bio_vec bv,
469 		struct scatterlist *sglist, struct scatterlist **sg)
470 {
471 	*sg = blk_next_sg(sg, sglist);
472 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
473 	return 1;
474 }
475 
476 /* only try to merge bvecs into one sg if they are from two bios */
477 static inline bool
478 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
479 			   struct bio_vec *bvprv, struct scatterlist **sg)
480 {
481 
482 	int nbytes = bvec->bv_len;
483 
484 	if (!*sg)
485 		return false;
486 
487 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
488 		return false;
489 
490 	if (!biovec_phys_mergeable(q, bvprv, bvec))
491 		return false;
492 
493 	(*sg)->length += nbytes;
494 
495 	return true;
496 }
497 
498 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
499 			     struct scatterlist *sglist,
500 			     struct scatterlist **sg)
501 {
502 	struct bio_vec bvec, bvprv = { NULL };
503 	struct bvec_iter iter;
504 	int nsegs = 0;
505 	bool new_bio = false;
506 
507 	for_each_bio(bio) {
508 		bio_for_each_bvec(bvec, bio, iter) {
509 			/*
510 			 * Only try to merge bvecs from two bios given we
511 			 * have done bio internal merge when adding pages
512 			 * to bio
513 			 */
514 			if (new_bio &&
515 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
516 				goto next_bvec;
517 
518 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
519 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
520 			else
521 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
522  next_bvec:
523 			new_bio = false;
524 		}
525 		if (likely(bio->bi_iter.bi_size)) {
526 			bvprv = bvec;
527 			new_bio = true;
528 		}
529 	}
530 
531 	return nsegs;
532 }
533 
534 /*
535  * map a request to scatterlist, return number of sg entries setup. Caller
536  * must make sure sg can hold rq->nr_phys_segments entries
537  */
538 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
539 		struct scatterlist *sglist, struct scatterlist **last_sg)
540 {
541 	int nsegs = 0;
542 
543 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
544 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
545 	else if (rq->bio)
546 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
547 
548 	if (*last_sg)
549 		sg_mark_end(*last_sg);
550 
551 	/*
552 	 * Something must have been wrong if the figured number of
553 	 * segment is bigger than number of req's physical segments
554 	 */
555 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
556 
557 	return nsegs;
558 }
559 EXPORT_SYMBOL(__blk_rq_map_sg);
560 
561 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
562 {
563 	if (req_op(rq) == REQ_OP_DISCARD)
564 		return queue_max_discard_segments(rq->q);
565 	return queue_max_segments(rq->q);
566 }
567 
568 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
569 						  sector_t offset)
570 {
571 	struct request_queue *q = rq->q;
572 	unsigned int max_sectors;
573 
574 	if (blk_rq_is_passthrough(rq))
575 		return q->limits.max_hw_sectors;
576 
577 	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
578 	if (!q->limits.chunk_sectors ||
579 	    req_op(rq) == REQ_OP_DISCARD ||
580 	    req_op(rq) == REQ_OP_SECURE_ERASE)
581 		return max_sectors;
582 	return min(max_sectors,
583 		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
584 }
585 
586 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
587 		unsigned int nr_phys_segs)
588 {
589 	if (!blk_cgroup_mergeable(req, bio))
590 		goto no_merge;
591 
592 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
593 		goto no_merge;
594 
595 	/* discard request merge won't add new segment */
596 	if (req_op(req) == REQ_OP_DISCARD)
597 		return 1;
598 
599 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
600 		goto no_merge;
601 
602 	/*
603 	 * This will form the start of a new hw segment.  Bump both
604 	 * counters.
605 	 */
606 	req->nr_phys_segments += nr_phys_segs;
607 	return 1;
608 
609 no_merge:
610 	req_set_nomerge(req->q, req);
611 	return 0;
612 }
613 
614 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
615 {
616 	if (req_gap_back_merge(req, bio))
617 		return 0;
618 	if (blk_integrity_rq(req) &&
619 	    integrity_req_gap_back_merge(req, bio))
620 		return 0;
621 	if (!bio_crypt_ctx_back_mergeable(req, bio))
622 		return 0;
623 	if (blk_rq_sectors(req) + bio_sectors(bio) >
624 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
625 		req_set_nomerge(req->q, req);
626 		return 0;
627 	}
628 
629 	return ll_new_hw_segment(req, bio, nr_segs);
630 }
631 
632 static int ll_front_merge_fn(struct request *req, struct bio *bio,
633 		unsigned int nr_segs)
634 {
635 	if (req_gap_front_merge(req, bio))
636 		return 0;
637 	if (blk_integrity_rq(req) &&
638 	    integrity_req_gap_front_merge(req, bio))
639 		return 0;
640 	if (!bio_crypt_ctx_front_mergeable(req, bio))
641 		return 0;
642 	if (blk_rq_sectors(req) + bio_sectors(bio) >
643 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
644 		req_set_nomerge(req->q, req);
645 		return 0;
646 	}
647 
648 	return ll_new_hw_segment(req, bio, nr_segs);
649 }
650 
651 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
652 		struct request *next)
653 {
654 	unsigned short segments = blk_rq_nr_discard_segments(req);
655 
656 	if (segments >= queue_max_discard_segments(q))
657 		goto no_merge;
658 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
659 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
660 		goto no_merge;
661 
662 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
663 	return true;
664 no_merge:
665 	req_set_nomerge(q, req);
666 	return false;
667 }
668 
669 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
670 				struct request *next)
671 {
672 	int total_phys_segments;
673 
674 	if (req_gap_back_merge(req, next->bio))
675 		return 0;
676 
677 	/*
678 	 * Will it become too large?
679 	 */
680 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
681 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
682 		return 0;
683 
684 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
685 	if (total_phys_segments > blk_rq_get_max_segments(req))
686 		return 0;
687 
688 	if (!blk_cgroup_mergeable(req, next->bio))
689 		return 0;
690 
691 	if (blk_integrity_merge_rq(q, req, next) == false)
692 		return 0;
693 
694 	if (!bio_crypt_ctx_merge_rq(req, next))
695 		return 0;
696 
697 	/* Merge is OK... */
698 	req->nr_phys_segments = total_phys_segments;
699 	return 1;
700 }
701 
702 /**
703  * blk_rq_set_mixed_merge - mark a request as mixed merge
704  * @rq: request to mark as mixed merge
705  *
706  * Description:
707  *     @rq is about to be mixed merged.  Make sure the attributes
708  *     which can be mixed are set in each bio and mark @rq as mixed
709  *     merged.
710  */
711 void blk_rq_set_mixed_merge(struct request *rq)
712 {
713 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
714 	struct bio *bio;
715 
716 	if (rq->rq_flags & RQF_MIXED_MERGE)
717 		return;
718 
719 	/*
720 	 * @rq will no longer represent mixable attributes for all the
721 	 * contained bios.  It will just track those of the first one.
722 	 * Distributes the attributs to each bio.
723 	 */
724 	for (bio = rq->bio; bio; bio = bio->bi_next) {
725 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
726 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
727 		bio->bi_opf |= ff;
728 	}
729 	rq->rq_flags |= RQF_MIXED_MERGE;
730 }
731 
732 static void blk_account_io_merge_request(struct request *req)
733 {
734 	if (blk_do_io_stat(req)) {
735 		part_stat_lock();
736 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
737 		part_stat_unlock();
738 	}
739 }
740 
741 static enum elv_merge blk_try_req_merge(struct request *req,
742 					struct request *next)
743 {
744 	if (blk_discard_mergable(req))
745 		return ELEVATOR_DISCARD_MERGE;
746 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
747 		return ELEVATOR_BACK_MERGE;
748 
749 	return ELEVATOR_NO_MERGE;
750 }
751 
752 /*
753  * For non-mq, this has to be called with the request spinlock acquired.
754  * For mq with scheduling, the appropriate queue wide lock should be held.
755  */
756 static struct request *attempt_merge(struct request_queue *q,
757 				     struct request *req, struct request *next)
758 {
759 	if (!rq_mergeable(req) || !rq_mergeable(next))
760 		return NULL;
761 
762 	if (req_op(req) != req_op(next))
763 		return NULL;
764 
765 	if (rq_data_dir(req) != rq_data_dir(next))
766 		return NULL;
767 
768 	if (req->ioprio != next->ioprio)
769 		return NULL;
770 
771 	/*
772 	 * If we are allowed to merge, then append bio list
773 	 * from next to rq and release next. merge_requests_fn
774 	 * will have updated segment counts, update sector
775 	 * counts here. Handle DISCARDs separately, as they
776 	 * have separate settings.
777 	 */
778 
779 	switch (blk_try_req_merge(req, next)) {
780 	case ELEVATOR_DISCARD_MERGE:
781 		if (!req_attempt_discard_merge(q, req, next))
782 			return NULL;
783 		break;
784 	case ELEVATOR_BACK_MERGE:
785 		if (!ll_merge_requests_fn(q, req, next))
786 			return NULL;
787 		break;
788 	default:
789 		return NULL;
790 	}
791 
792 	/*
793 	 * If failfast settings disagree or any of the two is already
794 	 * a mixed merge, mark both as mixed before proceeding.  This
795 	 * makes sure that all involved bios have mixable attributes
796 	 * set properly.
797 	 */
798 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
799 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
800 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
801 		blk_rq_set_mixed_merge(req);
802 		blk_rq_set_mixed_merge(next);
803 	}
804 
805 	/*
806 	 * At this point we have either done a back merge or front merge. We
807 	 * need the smaller start_time_ns of the merged requests to be the
808 	 * current request for accounting purposes.
809 	 */
810 	if (next->start_time_ns < req->start_time_ns)
811 		req->start_time_ns = next->start_time_ns;
812 
813 	req->biotail->bi_next = next->bio;
814 	req->biotail = next->biotail;
815 
816 	req->__data_len += blk_rq_bytes(next);
817 
818 	if (!blk_discard_mergable(req))
819 		elv_merge_requests(q, req, next);
820 
821 	/*
822 	 * 'next' is going away, so update stats accordingly
823 	 */
824 	blk_account_io_merge_request(next);
825 
826 	trace_block_rq_merge(next);
827 
828 	/*
829 	 * ownership of bio passed from next to req, return 'next' for
830 	 * the caller to free
831 	 */
832 	next->bio = NULL;
833 	return next;
834 }
835 
836 static struct request *attempt_back_merge(struct request_queue *q,
837 		struct request *rq)
838 {
839 	struct request *next = elv_latter_request(q, rq);
840 
841 	if (next)
842 		return attempt_merge(q, rq, next);
843 
844 	return NULL;
845 }
846 
847 static struct request *attempt_front_merge(struct request_queue *q,
848 		struct request *rq)
849 {
850 	struct request *prev = elv_former_request(q, rq);
851 
852 	if (prev)
853 		return attempt_merge(q, prev, rq);
854 
855 	return NULL;
856 }
857 
858 /*
859  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
860  * otherwise. The caller is responsible for freeing 'next' if the merge
861  * happened.
862  */
863 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
864 			   struct request *next)
865 {
866 	return attempt_merge(q, rq, next);
867 }
868 
869 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
870 {
871 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
872 		return false;
873 
874 	if (req_op(rq) != bio_op(bio))
875 		return false;
876 
877 	/* different data direction or already started, don't merge */
878 	if (bio_data_dir(bio) != rq_data_dir(rq))
879 		return false;
880 
881 	/* don't merge across cgroup boundaries */
882 	if (!blk_cgroup_mergeable(rq, bio))
883 		return false;
884 
885 	/* only merge integrity protected bio into ditto rq */
886 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
887 		return false;
888 
889 	/* Only merge if the crypt contexts are compatible */
890 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
891 		return false;
892 
893 	if (rq->ioprio != bio_prio(bio))
894 		return false;
895 
896 	return true;
897 }
898 
899 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
900 {
901 	if (blk_discard_mergable(rq))
902 		return ELEVATOR_DISCARD_MERGE;
903 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
904 		return ELEVATOR_BACK_MERGE;
905 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
906 		return ELEVATOR_FRONT_MERGE;
907 	return ELEVATOR_NO_MERGE;
908 }
909 
910 static void blk_account_io_merge_bio(struct request *req)
911 {
912 	if (!blk_do_io_stat(req))
913 		return;
914 
915 	part_stat_lock();
916 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
917 	part_stat_unlock();
918 }
919 
920 enum bio_merge_status {
921 	BIO_MERGE_OK,
922 	BIO_MERGE_NONE,
923 	BIO_MERGE_FAILED,
924 };
925 
926 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
927 		struct bio *bio, unsigned int nr_segs)
928 {
929 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
930 
931 	if (!ll_back_merge_fn(req, bio, nr_segs))
932 		return BIO_MERGE_FAILED;
933 
934 	trace_block_bio_backmerge(bio);
935 	rq_qos_merge(req->q, req, bio);
936 
937 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
938 		blk_rq_set_mixed_merge(req);
939 
940 	req->biotail->bi_next = bio;
941 	req->biotail = bio;
942 	req->__data_len += bio->bi_iter.bi_size;
943 
944 	bio_crypt_free_ctx(bio);
945 
946 	blk_account_io_merge_bio(req);
947 	return BIO_MERGE_OK;
948 }
949 
950 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
951 		struct bio *bio, unsigned int nr_segs)
952 {
953 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
954 
955 	if (!ll_front_merge_fn(req, bio, nr_segs))
956 		return BIO_MERGE_FAILED;
957 
958 	trace_block_bio_frontmerge(bio);
959 	rq_qos_merge(req->q, req, bio);
960 
961 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
962 		blk_rq_set_mixed_merge(req);
963 
964 	bio->bi_next = req->bio;
965 	req->bio = bio;
966 
967 	req->__sector = bio->bi_iter.bi_sector;
968 	req->__data_len += bio->bi_iter.bi_size;
969 
970 	bio_crypt_do_front_merge(req, bio);
971 
972 	blk_account_io_merge_bio(req);
973 	return BIO_MERGE_OK;
974 }
975 
976 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
977 		struct request *req, struct bio *bio)
978 {
979 	unsigned short segments = blk_rq_nr_discard_segments(req);
980 
981 	if (segments >= queue_max_discard_segments(q))
982 		goto no_merge;
983 	if (blk_rq_sectors(req) + bio_sectors(bio) >
984 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
985 		goto no_merge;
986 
987 	rq_qos_merge(q, req, bio);
988 
989 	req->biotail->bi_next = bio;
990 	req->biotail = bio;
991 	req->__data_len += bio->bi_iter.bi_size;
992 	req->nr_phys_segments = segments + 1;
993 
994 	blk_account_io_merge_bio(req);
995 	return BIO_MERGE_OK;
996 no_merge:
997 	req_set_nomerge(q, req);
998 	return BIO_MERGE_FAILED;
999 }
1000 
1001 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1002 						   struct request *rq,
1003 						   struct bio *bio,
1004 						   unsigned int nr_segs,
1005 						   bool sched_allow_merge)
1006 {
1007 	if (!blk_rq_merge_ok(rq, bio))
1008 		return BIO_MERGE_NONE;
1009 
1010 	switch (blk_try_merge(rq, bio)) {
1011 	case ELEVATOR_BACK_MERGE:
1012 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1013 			return bio_attempt_back_merge(rq, bio, nr_segs);
1014 		break;
1015 	case ELEVATOR_FRONT_MERGE:
1016 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1017 			return bio_attempt_front_merge(rq, bio, nr_segs);
1018 		break;
1019 	case ELEVATOR_DISCARD_MERGE:
1020 		return bio_attempt_discard_merge(q, rq, bio);
1021 	default:
1022 		return BIO_MERGE_NONE;
1023 	}
1024 
1025 	return BIO_MERGE_FAILED;
1026 }
1027 
1028 /**
1029  * blk_attempt_plug_merge - try to merge with %current's plugged list
1030  * @q: request_queue new bio is being queued at
1031  * @bio: new bio being queued
1032  * @nr_segs: number of segments in @bio
1033  * from the passed in @q already in the plug list
1034  *
1035  * Determine whether @bio being queued on @q can be merged with the previous
1036  * request on %current's plugged list.  Returns %true if merge was successful,
1037  * otherwise %false.
1038  *
1039  * Plugging coalesces IOs from the same issuer for the same purpose without
1040  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1041  * than scheduling, and the request, while may have elvpriv data, is not
1042  * added on the elevator at this point.  In addition, we don't have
1043  * reliable access to the elevator outside queue lock.  Only check basic
1044  * merging parameters without querying the elevator.
1045  *
1046  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1047  */
1048 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1049 		unsigned int nr_segs)
1050 {
1051 	struct blk_plug *plug;
1052 	struct request *rq;
1053 
1054 	plug = blk_mq_plug(bio);
1055 	if (!plug || rq_list_empty(plug->mq_list))
1056 		return false;
1057 
1058 	rq_list_for_each(&plug->mq_list, rq) {
1059 		if (rq->q == q) {
1060 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1061 			    BIO_MERGE_OK)
1062 				return true;
1063 			break;
1064 		}
1065 
1066 		/*
1067 		 * Only keep iterating plug list for merges if we have multiple
1068 		 * queues
1069 		 */
1070 		if (!plug->multiple_queues)
1071 			break;
1072 	}
1073 	return false;
1074 }
1075 
1076 /*
1077  * Iterate list of requests and see if we can merge this bio with any
1078  * of them.
1079  */
1080 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1081 			struct bio *bio, unsigned int nr_segs)
1082 {
1083 	struct request *rq;
1084 	int checked = 8;
1085 
1086 	list_for_each_entry_reverse(rq, list, queuelist) {
1087 		if (!checked--)
1088 			break;
1089 
1090 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1091 		case BIO_MERGE_NONE:
1092 			continue;
1093 		case BIO_MERGE_OK:
1094 			return true;
1095 		case BIO_MERGE_FAILED:
1096 			return false;
1097 		}
1098 
1099 	}
1100 
1101 	return false;
1102 }
1103 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1104 
1105 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1106 		unsigned int nr_segs, struct request **merged_request)
1107 {
1108 	struct request *rq;
1109 
1110 	switch (elv_merge(q, &rq, bio)) {
1111 	case ELEVATOR_BACK_MERGE:
1112 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1113 			return false;
1114 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1115 			return false;
1116 		*merged_request = attempt_back_merge(q, rq);
1117 		if (!*merged_request)
1118 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1119 		return true;
1120 	case ELEVATOR_FRONT_MERGE:
1121 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1122 			return false;
1123 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1124 			return false;
1125 		*merged_request = attempt_front_merge(q, rq);
1126 		if (!*merged_request)
1127 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1128 		return true;
1129 	case ELEVATOR_DISCARD_MERGE:
1130 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1131 	default:
1132 		return false;
1133 	}
1134 }
1135 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1136