1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_split_discard(struct bio *bio, 109 const struct queue_limits *lim, 110 unsigned *nsegs, struct bio_set *bs) 111 { 112 unsigned int max_discard_sectors, granularity; 113 sector_t tmp; 114 unsigned split_sectors; 115 116 *nsegs = 1; 117 118 /* Zero-sector (unknown) and one-sector granularities are the same. */ 119 granularity = max(lim->discard_granularity >> 9, 1U); 120 121 max_discard_sectors = 122 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 123 max_discard_sectors -= max_discard_sectors % granularity; 124 125 if (unlikely(!max_discard_sectors)) { 126 /* XXX: warn */ 127 return NULL; 128 } 129 130 if (bio_sectors(bio) <= max_discard_sectors) 131 return NULL; 132 133 split_sectors = max_discard_sectors; 134 135 /* 136 * If the next starting sector would be misaligned, stop the discard at 137 * the previous aligned sector. 138 */ 139 tmp = bio->bi_iter.bi_sector + split_sectors - 140 ((lim->discard_alignment >> 9) % granularity); 141 tmp = sector_div(tmp, granularity); 142 143 if (split_sectors > tmp) 144 split_sectors -= tmp; 145 146 return bio_split(bio, split_sectors, GFP_NOIO, bs); 147 } 148 149 static struct bio *bio_split_write_zeroes(struct bio *bio, 150 const struct queue_limits *lim, 151 unsigned *nsegs, struct bio_set *bs) 152 { 153 *nsegs = 0; 154 if (!lim->max_write_zeroes_sectors) 155 return NULL; 156 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors) 157 return NULL; 158 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs); 159 } 160 161 /* 162 * Return the maximum number of sectors from the start of a bio that may be 163 * submitted as a single request to a block device. If enough sectors remain, 164 * align the end to the physical block size. Otherwise align the end to the 165 * logical block size. This approach minimizes the number of non-aligned 166 * requests that are submitted to a block device if the start of a bio is not 167 * aligned to a physical block boundary. 168 */ 169 static inline unsigned get_max_io_size(struct bio *bio, 170 const struct queue_limits *lim) 171 { 172 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 173 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 174 unsigned max_sectors = lim->max_sectors, start, end; 175 176 if (lim->chunk_sectors) { 177 max_sectors = min(max_sectors, 178 blk_chunk_sectors_left(bio->bi_iter.bi_sector, 179 lim->chunk_sectors)); 180 } 181 182 start = bio->bi_iter.bi_sector & (pbs - 1); 183 end = (start + max_sectors) & ~(pbs - 1); 184 if (end > start) 185 return end - start; 186 return max_sectors & ~(lbs - 1); 187 } 188 189 /** 190 * get_max_segment_size() - maximum number of bytes to add as a single segment 191 * @lim: Request queue limits. 192 * @start_page: See below. 193 * @offset: Offset from @start_page where to add a segment. 194 * 195 * Returns the maximum number of bytes that can be added as a single segment. 196 */ 197 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 198 struct page *start_page, unsigned long offset) 199 { 200 unsigned long mask = lim->seg_boundary_mask; 201 202 offset = mask & (page_to_phys(start_page) + offset); 203 204 /* 205 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 206 * after having calculated the minimum. 207 */ 208 return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1; 209 } 210 211 /** 212 * bvec_split_segs - verify whether or not a bvec should be split in the middle 213 * @lim: [in] queue limits to split based on 214 * @bv: [in] bvec to examine 215 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 216 * by the number of segments from @bv that may be appended to that 217 * bio without exceeding @max_segs 218 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 219 * by the number of bytes from @bv that may be appended to that 220 * bio without exceeding @max_bytes 221 * @max_segs: [in] upper bound for *@nsegs 222 * @max_bytes: [in] upper bound for *@bytes 223 * 224 * When splitting a bio, it can happen that a bvec is encountered that is too 225 * big to fit in a single segment and hence that it has to be split in the 226 * middle. This function verifies whether or not that should happen. The value 227 * %true is returned if and only if appending the entire @bv to a bio with 228 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 229 * the block driver. 230 */ 231 static bool bvec_split_segs(const struct queue_limits *lim, 232 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, 233 unsigned max_segs, unsigned max_bytes) 234 { 235 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 236 unsigned len = min(bv->bv_len, max_len); 237 unsigned total_len = 0; 238 unsigned seg_size = 0; 239 240 while (len && *nsegs < max_segs) { 241 seg_size = get_max_segment_size(lim, bv->bv_page, 242 bv->bv_offset + total_len); 243 seg_size = min(seg_size, len); 244 245 (*nsegs)++; 246 total_len += seg_size; 247 len -= seg_size; 248 249 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 250 break; 251 } 252 253 *bytes += total_len; 254 255 /* tell the caller to split the bvec if it is too big to fit */ 256 return len > 0 || bv->bv_len > max_len; 257 } 258 259 /** 260 * bio_split_rw - split a bio in two bios 261 * @bio: [in] bio to be split 262 * @lim: [in] queue limits to split based on 263 * @segs: [out] number of segments in the bio with the first half of the sectors 264 * @bs: [in] bio set to allocate the clone from 265 * @max_bytes: [in] maximum number of bytes per bio 266 * 267 * Clone @bio, update the bi_iter of the clone to represent the first sectors 268 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 269 * following is guaranteed for the cloned bio: 270 * - That it has at most @max_bytes worth of data 271 * - That it has at most queue_max_segments(@q) segments. 272 * 273 * Except for discard requests the cloned bio will point at the bi_io_vec of 274 * the original bio. It is the responsibility of the caller to ensure that the 275 * original bio is not freed before the cloned bio. The caller is also 276 * responsible for ensuring that @bs is only destroyed after processing of the 277 * split bio has finished. 278 */ 279 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 280 unsigned *segs, struct bio_set *bs, unsigned max_bytes) 281 { 282 struct bio_vec bv, bvprv, *bvprvp = NULL; 283 struct bvec_iter iter; 284 unsigned nsegs = 0, bytes = 0; 285 286 bio_for_each_bvec(bv, bio, iter) { 287 /* 288 * If the queue doesn't support SG gaps and adding this 289 * offset would create a gap, disallow it. 290 */ 291 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 292 goto split; 293 294 if (nsegs < lim->max_segments && 295 bytes + bv.bv_len <= max_bytes && 296 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 297 nsegs++; 298 bytes += bv.bv_len; 299 } else { 300 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 301 lim->max_segments, max_bytes)) 302 goto split; 303 } 304 305 bvprv = bv; 306 bvprvp = &bvprv; 307 } 308 309 *segs = nsegs; 310 return NULL; 311 split: 312 /* 313 * We can't sanely support splitting for a REQ_NOWAIT bio. End it 314 * with EAGAIN if splitting is required and return an error pointer. 315 */ 316 if (bio->bi_opf & REQ_NOWAIT) { 317 bio->bi_status = BLK_STS_AGAIN; 318 bio_endio(bio); 319 return ERR_PTR(-EAGAIN); 320 } 321 322 *segs = nsegs; 323 324 /* 325 * Individual bvecs might not be logical block aligned. Round down the 326 * split size so that each bio is properly block size aligned, even if 327 * we do not use the full hardware limits. 328 */ 329 bytes = ALIGN_DOWN(bytes, lim->logical_block_size); 330 331 /* 332 * Bio splitting may cause subtle trouble such as hang when doing sync 333 * iopoll in direct IO routine. Given performance gain of iopoll for 334 * big IO can be trival, disable iopoll when split needed. 335 */ 336 bio_clear_polled(bio); 337 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs); 338 } 339 EXPORT_SYMBOL_GPL(bio_split_rw); 340 341 /** 342 * __bio_split_to_limits - split a bio to fit the queue limits 343 * @bio: bio to be split 344 * @lim: queue limits to split based on 345 * @nr_segs: returns the number of segments in the returned bio 346 * 347 * Check if @bio needs splitting based on the queue limits, and if so split off 348 * a bio fitting the limits from the beginning of @bio and return it. @bio is 349 * shortened to the remainder and re-submitted. 350 * 351 * The split bio is allocated from @q->bio_split, which is provided by the 352 * block layer. 353 */ 354 struct bio *__bio_split_to_limits(struct bio *bio, 355 const struct queue_limits *lim, 356 unsigned int *nr_segs) 357 { 358 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split; 359 struct bio *split; 360 361 switch (bio_op(bio)) { 362 case REQ_OP_DISCARD: 363 case REQ_OP_SECURE_ERASE: 364 split = bio_split_discard(bio, lim, nr_segs, bs); 365 break; 366 case REQ_OP_WRITE_ZEROES: 367 split = bio_split_write_zeroes(bio, lim, nr_segs, bs); 368 break; 369 default: 370 split = bio_split_rw(bio, lim, nr_segs, bs, 371 get_max_io_size(bio, lim) << SECTOR_SHIFT); 372 if (IS_ERR(split)) 373 return NULL; 374 break; 375 } 376 377 if (split) { 378 /* there isn't chance to merge the split bio */ 379 split->bi_opf |= REQ_NOMERGE; 380 381 blkcg_bio_issue_init(split); 382 bio_chain(split, bio); 383 trace_block_split(split, bio->bi_iter.bi_sector); 384 submit_bio_noacct(bio); 385 return split; 386 } 387 return bio; 388 } 389 390 /** 391 * bio_split_to_limits - split a bio to fit the queue limits 392 * @bio: bio to be split 393 * 394 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 395 * if so split off a bio fitting the limits from the beginning of @bio and 396 * return it. @bio is shortened to the remainder and re-submitted. 397 * 398 * The split bio is allocated from @q->bio_split, which is provided by the 399 * block layer. 400 */ 401 struct bio *bio_split_to_limits(struct bio *bio) 402 { 403 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits; 404 unsigned int nr_segs; 405 406 if (bio_may_exceed_limits(bio, lim)) 407 return __bio_split_to_limits(bio, lim, &nr_segs); 408 return bio; 409 } 410 EXPORT_SYMBOL(bio_split_to_limits); 411 412 unsigned int blk_recalc_rq_segments(struct request *rq) 413 { 414 unsigned int nr_phys_segs = 0; 415 unsigned int bytes = 0; 416 struct req_iterator iter; 417 struct bio_vec bv; 418 419 if (!rq->bio) 420 return 0; 421 422 switch (bio_op(rq->bio)) { 423 case REQ_OP_DISCARD: 424 case REQ_OP_SECURE_ERASE: 425 if (queue_max_discard_segments(rq->q) > 1) { 426 struct bio *bio = rq->bio; 427 428 for_each_bio(bio) 429 nr_phys_segs++; 430 return nr_phys_segs; 431 } 432 return 1; 433 case REQ_OP_WRITE_ZEROES: 434 return 0; 435 default: 436 break; 437 } 438 439 rq_for_each_bvec(bv, rq, iter) 440 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 441 UINT_MAX, UINT_MAX); 442 return nr_phys_segs; 443 } 444 445 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 446 struct scatterlist *sglist) 447 { 448 if (!*sg) 449 return sglist; 450 451 /* 452 * If the driver previously mapped a shorter list, we could see a 453 * termination bit prematurely unless it fully inits the sg table 454 * on each mapping. We KNOW that there must be more entries here 455 * or the driver would be buggy, so force clear the termination bit 456 * to avoid doing a full sg_init_table() in drivers for each command. 457 */ 458 sg_unmark_end(*sg); 459 return sg_next(*sg); 460 } 461 462 static unsigned blk_bvec_map_sg(struct request_queue *q, 463 struct bio_vec *bvec, struct scatterlist *sglist, 464 struct scatterlist **sg) 465 { 466 unsigned nbytes = bvec->bv_len; 467 unsigned nsegs = 0, total = 0; 468 469 while (nbytes > 0) { 470 unsigned offset = bvec->bv_offset + total; 471 unsigned len = min(get_max_segment_size(&q->limits, 472 bvec->bv_page, offset), nbytes); 473 struct page *page = bvec->bv_page; 474 475 /* 476 * Unfortunately a fair number of drivers barf on scatterlists 477 * that have an offset larger than PAGE_SIZE, despite other 478 * subsystems dealing with that invariant just fine. For now 479 * stick to the legacy format where we never present those from 480 * the block layer, but the code below should be removed once 481 * these offenders (mostly MMC/SD drivers) are fixed. 482 */ 483 page += (offset >> PAGE_SHIFT); 484 offset &= ~PAGE_MASK; 485 486 *sg = blk_next_sg(sg, sglist); 487 sg_set_page(*sg, page, len, offset); 488 489 total += len; 490 nbytes -= len; 491 nsegs++; 492 } 493 494 return nsegs; 495 } 496 497 static inline int __blk_bvec_map_sg(struct bio_vec bv, 498 struct scatterlist *sglist, struct scatterlist **sg) 499 { 500 *sg = blk_next_sg(sg, sglist); 501 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 502 return 1; 503 } 504 505 /* only try to merge bvecs into one sg if they are from two bios */ 506 static inline bool 507 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 508 struct bio_vec *bvprv, struct scatterlist **sg) 509 { 510 511 int nbytes = bvec->bv_len; 512 513 if (!*sg) 514 return false; 515 516 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 517 return false; 518 519 if (!biovec_phys_mergeable(q, bvprv, bvec)) 520 return false; 521 522 (*sg)->length += nbytes; 523 524 return true; 525 } 526 527 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 528 struct scatterlist *sglist, 529 struct scatterlist **sg) 530 { 531 struct bio_vec bvec, bvprv = { NULL }; 532 struct bvec_iter iter; 533 int nsegs = 0; 534 bool new_bio = false; 535 536 for_each_bio(bio) { 537 bio_for_each_bvec(bvec, bio, iter) { 538 /* 539 * Only try to merge bvecs from two bios given we 540 * have done bio internal merge when adding pages 541 * to bio 542 */ 543 if (new_bio && 544 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 545 goto next_bvec; 546 547 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 548 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 549 else 550 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 551 next_bvec: 552 new_bio = false; 553 } 554 if (likely(bio->bi_iter.bi_size)) { 555 bvprv = bvec; 556 new_bio = true; 557 } 558 } 559 560 return nsegs; 561 } 562 563 /* 564 * map a request to scatterlist, return number of sg entries setup. Caller 565 * must make sure sg can hold rq->nr_phys_segments entries 566 */ 567 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 568 struct scatterlist *sglist, struct scatterlist **last_sg) 569 { 570 int nsegs = 0; 571 572 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 573 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 574 else if (rq->bio) 575 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 576 577 if (*last_sg) 578 sg_mark_end(*last_sg); 579 580 /* 581 * Something must have been wrong if the figured number of 582 * segment is bigger than number of req's physical segments 583 */ 584 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 585 586 return nsegs; 587 } 588 EXPORT_SYMBOL(__blk_rq_map_sg); 589 590 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 591 { 592 if (req_op(rq) == REQ_OP_DISCARD) 593 return queue_max_discard_segments(rq->q); 594 return queue_max_segments(rq->q); 595 } 596 597 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 598 sector_t offset) 599 { 600 struct request_queue *q = rq->q; 601 unsigned int max_sectors; 602 603 if (blk_rq_is_passthrough(rq)) 604 return q->limits.max_hw_sectors; 605 606 max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 607 if (!q->limits.chunk_sectors || 608 req_op(rq) == REQ_OP_DISCARD || 609 req_op(rq) == REQ_OP_SECURE_ERASE) 610 return max_sectors; 611 return min(max_sectors, 612 blk_chunk_sectors_left(offset, q->limits.chunk_sectors)); 613 } 614 615 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 616 unsigned int nr_phys_segs) 617 { 618 if (!blk_cgroup_mergeable(req, bio)) 619 goto no_merge; 620 621 if (blk_integrity_merge_bio(req->q, req, bio) == false) 622 goto no_merge; 623 624 /* discard request merge won't add new segment */ 625 if (req_op(req) == REQ_OP_DISCARD) 626 return 1; 627 628 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 629 goto no_merge; 630 631 /* 632 * This will form the start of a new hw segment. Bump both 633 * counters. 634 */ 635 req->nr_phys_segments += nr_phys_segs; 636 return 1; 637 638 no_merge: 639 req_set_nomerge(req->q, req); 640 return 0; 641 } 642 643 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 644 { 645 if (req_gap_back_merge(req, bio)) 646 return 0; 647 if (blk_integrity_rq(req) && 648 integrity_req_gap_back_merge(req, bio)) 649 return 0; 650 if (!bio_crypt_ctx_back_mergeable(req, bio)) 651 return 0; 652 if (blk_rq_sectors(req) + bio_sectors(bio) > 653 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 654 req_set_nomerge(req->q, req); 655 return 0; 656 } 657 658 return ll_new_hw_segment(req, bio, nr_segs); 659 } 660 661 static int ll_front_merge_fn(struct request *req, struct bio *bio, 662 unsigned int nr_segs) 663 { 664 if (req_gap_front_merge(req, bio)) 665 return 0; 666 if (blk_integrity_rq(req) && 667 integrity_req_gap_front_merge(req, bio)) 668 return 0; 669 if (!bio_crypt_ctx_front_mergeable(req, bio)) 670 return 0; 671 if (blk_rq_sectors(req) + bio_sectors(bio) > 672 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 673 req_set_nomerge(req->q, req); 674 return 0; 675 } 676 677 return ll_new_hw_segment(req, bio, nr_segs); 678 } 679 680 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 681 struct request *next) 682 { 683 unsigned short segments = blk_rq_nr_discard_segments(req); 684 685 if (segments >= queue_max_discard_segments(q)) 686 goto no_merge; 687 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 688 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 689 goto no_merge; 690 691 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 692 return true; 693 no_merge: 694 req_set_nomerge(q, req); 695 return false; 696 } 697 698 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 699 struct request *next) 700 { 701 int total_phys_segments; 702 703 if (req_gap_back_merge(req, next->bio)) 704 return 0; 705 706 /* 707 * Will it become too large? 708 */ 709 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 710 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 711 return 0; 712 713 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 714 if (total_phys_segments > blk_rq_get_max_segments(req)) 715 return 0; 716 717 if (!blk_cgroup_mergeable(req, next->bio)) 718 return 0; 719 720 if (blk_integrity_merge_rq(q, req, next) == false) 721 return 0; 722 723 if (!bio_crypt_ctx_merge_rq(req, next)) 724 return 0; 725 726 /* Merge is OK... */ 727 req->nr_phys_segments = total_phys_segments; 728 return 1; 729 } 730 731 /** 732 * blk_rq_set_mixed_merge - mark a request as mixed merge 733 * @rq: request to mark as mixed merge 734 * 735 * Description: 736 * @rq is about to be mixed merged. Make sure the attributes 737 * which can be mixed are set in each bio and mark @rq as mixed 738 * merged. 739 */ 740 void blk_rq_set_mixed_merge(struct request *rq) 741 { 742 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 743 struct bio *bio; 744 745 if (rq->rq_flags & RQF_MIXED_MERGE) 746 return; 747 748 /* 749 * @rq will no longer represent mixable attributes for all the 750 * contained bios. It will just track those of the first one. 751 * Distributes the attributs to each bio. 752 */ 753 for (bio = rq->bio; bio; bio = bio->bi_next) { 754 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 755 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 756 bio->bi_opf |= ff; 757 } 758 rq->rq_flags |= RQF_MIXED_MERGE; 759 } 760 761 static inline blk_opf_t bio_failfast(const struct bio *bio) 762 { 763 if (bio->bi_opf & REQ_RAHEAD) 764 return REQ_FAILFAST_MASK; 765 766 return bio->bi_opf & REQ_FAILFAST_MASK; 767 } 768 769 /* 770 * After we are marked as MIXED_MERGE, any new RA bio has to be updated 771 * as failfast, and request's failfast has to be updated in case of 772 * front merge. 773 */ 774 static inline void blk_update_mixed_merge(struct request *req, 775 struct bio *bio, bool front_merge) 776 { 777 if (req->rq_flags & RQF_MIXED_MERGE) { 778 if (bio->bi_opf & REQ_RAHEAD) 779 bio->bi_opf |= REQ_FAILFAST_MASK; 780 781 if (front_merge) { 782 req->cmd_flags &= ~REQ_FAILFAST_MASK; 783 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK; 784 } 785 } 786 } 787 788 static void blk_account_io_merge_request(struct request *req) 789 { 790 if (blk_do_io_stat(req)) { 791 part_stat_lock(); 792 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 793 part_stat_unlock(); 794 } 795 } 796 797 static enum elv_merge blk_try_req_merge(struct request *req, 798 struct request *next) 799 { 800 if (blk_discard_mergable(req)) 801 return ELEVATOR_DISCARD_MERGE; 802 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 803 return ELEVATOR_BACK_MERGE; 804 805 return ELEVATOR_NO_MERGE; 806 } 807 808 /* 809 * For non-mq, this has to be called with the request spinlock acquired. 810 * For mq with scheduling, the appropriate queue wide lock should be held. 811 */ 812 static struct request *attempt_merge(struct request_queue *q, 813 struct request *req, struct request *next) 814 { 815 if (!rq_mergeable(req) || !rq_mergeable(next)) 816 return NULL; 817 818 if (req_op(req) != req_op(next)) 819 return NULL; 820 821 if (rq_data_dir(req) != rq_data_dir(next)) 822 return NULL; 823 824 if (req->ioprio != next->ioprio) 825 return NULL; 826 827 /* 828 * If we are allowed to merge, then append bio list 829 * from next to rq and release next. merge_requests_fn 830 * will have updated segment counts, update sector 831 * counts here. Handle DISCARDs separately, as they 832 * have separate settings. 833 */ 834 835 switch (blk_try_req_merge(req, next)) { 836 case ELEVATOR_DISCARD_MERGE: 837 if (!req_attempt_discard_merge(q, req, next)) 838 return NULL; 839 break; 840 case ELEVATOR_BACK_MERGE: 841 if (!ll_merge_requests_fn(q, req, next)) 842 return NULL; 843 break; 844 default: 845 return NULL; 846 } 847 848 /* 849 * If failfast settings disagree or any of the two is already 850 * a mixed merge, mark both as mixed before proceeding. This 851 * makes sure that all involved bios have mixable attributes 852 * set properly. 853 */ 854 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 855 (req->cmd_flags & REQ_FAILFAST_MASK) != 856 (next->cmd_flags & REQ_FAILFAST_MASK)) { 857 blk_rq_set_mixed_merge(req); 858 blk_rq_set_mixed_merge(next); 859 } 860 861 /* 862 * At this point we have either done a back merge or front merge. We 863 * need the smaller start_time_ns of the merged requests to be the 864 * current request for accounting purposes. 865 */ 866 if (next->start_time_ns < req->start_time_ns) 867 req->start_time_ns = next->start_time_ns; 868 869 req->biotail->bi_next = next->bio; 870 req->biotail = next->biotail; 871 872 req->__data_len += blk_rq_bytes(next); 873 874 if (!blk_discard_mergable(req)) 875 elv_merge_requests(q, req, next); 876 877 /* 878 * 'next' is going away, so update stats accordingly 879 */ 880 blk_account_io_merge_request(next); 881 882 trace_block_rq_merge(next); 883 884 /* 885 * ownership of bio passed from next to req, return 'next' for 886 * the caller to free 887 */ 888 next->bio = NULL; 889 return next; 890 } 891 892 static struct request *attempt_back_merge(struct request_queue *q, 893 struct request *rq) 894 { 895 struct request *next = elv_latter_request(q, rq); 896 897 if (next) 898 return attempt_merge(q, rq, next); 899 900 return NULL; 901 } 902 903 static struct request *attempt_front_merge(struct request_queue *q, 904 struct request *rq) 905 { 906 struct request *prev = elv_former_request(q, rq); 907 908 if (prev) 909 return attempt_merge(q, prev, rq); 910 911 return NULL; 912 } 913 914 /* 915 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 916 * otherwise. The caller is responsible for freeing 'next' if the merge 917 * happened. 918 */ 919 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 920 struct request *next) 921 { 922 return attempt_merge(q, rq, next); 923 } 924 925 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 926 { 927 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 928 return false; 929 930 if (req_op(rq) != bio_op(bio)) 931 return false; 932 933 /* different data direction or already started, don't merge */ 934 if (bio_data_dir(bio) != rq_data_dir(rq)) 935 return false; 936 937 /* don't merge across cgroup boundaries */ 938 if (!blk_cgroup_mergeable(rq, bio)) 939 return false; 940 941 /* only merge integrity protected bio into ditto rq */ 942 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 943 return false; 944 945 /* Only merge if the crypt contexts are compatible */ 946 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 947 return false; 948 949 if (rq->ioprio != bio_prio(bio)) 950 return false; 951 952 return true; 953 } 954 955 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 956 { 957 if (blk_discard_mergable(rq)) 958 return ELEVATOR_DISCARD_MERGE; 959 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 960 return ELEVATOR_BACK_MERGE; 961 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 962 return ELEVATOR_FRONT_MERGE; 963 return ELEVATOR_NO_MERGE; 964 } 965 966 static void blk_account_io_merge_bio(struct request *req) 967 { 968 if (!blk_do_io_stat(req)) 969 return; 970 971 part_stat_lock(); 972 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 973 part_stat_unlock(); 974 } 975 976 enum bio_merge_status { 977 BIO_MERGE_OK, 978 BIO_MERGE_NONE, 979 BIO_MERGE_FAILED, 980 }; 981 982 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 983 struct bio *bio, unsigned int nr_segs) 984 { 985 const blk_opf_t ff = bio_failfast(bio); 986 987 if (!ll_back_merge_fn(req, bio, nr_segs)) 988 return BIO_MERGE_FAILED; 989 990 trace_block_bio_backmerge(bio); 991 rq_qos_merge(req->q, req, bio); 992 993 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 994 blk_rq_set_mixed_merge(req); 995 996 blk_update_mixed_merge(req, bio, false); 997 998 req->biotail->bi_next = bio; 999 req->biotail = bio; 1000 req->__data_len += bio->bi_iter.bi_size; 1001 1002 bio_crypt_free_ctx(bio); 1003 1004 blk_account_io_merge_bio(req); 1005 return BIO_MERGE_OK; 1006 } 1007 1008 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 1009 struct bio *bio, unsigned int nr_segs) 1010 { 1011 const blk_opf_t ff = bio_failfast(bio); 1012 1013 if (!ll_front_merge_fn(req, bio, nr_segs)) 1014 return BIO_MERGE_FAILED; 1015 1016 trace_block_bio_frontmerge(bio); 1017 rq_qos_merge(req->q, req, bio); 1018 1019 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1020 blk_rq_set_mixed_merge(req); 1021 1022 blk_update_mixed_merge(req, bio, true); 1023 1024 bio->bi_next = req->bio; 1025 req->bio = bio; 1026 1027 req->__sector = bio->bi_iter.bi_sector; 1028 req->__data_len += bio->bi_iter.bi_size; 1029 1030 bio_crypt_do_front_merge(req, bio); 1031 1032 blk_account_io_merge_bio(req); 1033 return BIO_MERGE_OK; 1034 } 1035 1036 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1037 struct request *req, struct bio *bio) 1038 { 1039 unsigned short segments = blk_rq_nr_discard_segments(req); 1040 1041 if (segments >= queue_max_discard_segments(q)) 1042 goto no_merge; 1043 if (blk_rq_sectors(req) + bio_sectors(bio) > 1044 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1045 goto no_merge; 1046 1047 rq_qos_merge(q, req, bio); 1048 1049 req->biotail->bi_next = bio; 1050 req->biotail = bio; 1051 req->__data_len += bio->bi_iter.bi_size; 1052 req->nr_phys_segments = segments + 1; 1053 1054 blk_account_io_merge_bio(req); 1055 return BIO_MERGE_OK; 1056 no_merge: 1057 req_set_nomerge(q, req); 1058 return BIO_MERGE_FAILED; 1059 } 1060 1061 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1062 struct request *rq, 1063 struct bio *bio, 1064 unsigned int nr_segs, 1065 bool sched_allow_merge) 1066 { 1067 if (!blk_rq_merge_ok(rq, bio)) 1068 return BIO_MERGE_NONE; 1069 1070 switch (blk_try_merge(rq, bio)) { 1071 case ELEVATOR_BACK_MERGE: 1072 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1073 return bio_attempt_back_merge(rq, bio, nr_segs); 1074 break; 1075 case ELEVATOR_FRONT_MERGE: 1076 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1077 return bio_attempt_front_merge(rq, bio, nr_segs); 1078 break; 1079 case ELEVATOR_DISCARD_MERGE: 1080 return bio_attempt_discard_merge(q, rq, bio); 1081 default: 1082 return BIO_MERGE_NONE; 1083 } 1084 1085 return BIO_MERGE_FAILED; 1086 } 1087 1088 /** 1089 * blk_attempt_plug_merge - try to merge with %current's plugged list 1090 * @q: request_queue new bio is being queued at 1091 * @bio: new bio being queued 1092 * @nr_segs: number of segments in @bio 1093 * from the passed in @q already in the plug list 1094 * 1095 * Determine whether @bio being queued on @q can be merged with the previous 1096 * request on %current's plugged list. Returns %true if merge was successful, 1097 * otherwise %false. 1098 * 1099 * Plugging coalesces IOs from the same issuer for the same purpose without 1100 * going through @q->queue_lock. As such it's more of an issuing mechanism 1101 * than scheduling, and the request, while may have elvpriv data, is not 1102 * added on the elevator at this point. In addition, we don't have 1103 * reliable access to the elevator outside queue lock. Only check basic 1104 * merging parameters without querying the elevator. 1105 * 1106 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1107 */ 1108 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1109 unsigned int nr_segs) 1110 { 1111 struct blk_plug *plug; 1112 struct request *rq; 1113 1114 plug = blk_mq_plug(bio); 1115 if (!plug || rq_list_empty(plug->mq_list)) 1116 return false; 1117 1118 rq_list_for_each(&plug->mq_list, rq) { 1119 if (rq->q == q) { 1120 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1121 BIO_MERGE_OK) 1122 return true; 1123 break; 1124 } 1125 1126 /* 1127 * Only keep iterating plug list for merges if we have multiple 1128 * queues 1129 */ 1130 if (!plug->multiple_queues) 1131 break; 1132 } 1133 return false; 1134 } 1135 1136 /* 1137 * Iterate list of requests and see if we can merge this bio with any 1138 * of them. 1139 */ 1140 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1141 struct bio *bio, unsigned int nr_segs) 1142 { 1143 struct request *rq; 1144 int checked = 8; 1145 1146 list_for_each_entry_reverse(rq, list, queuelist) { 1147 if (!checked--) 1148 break; 1149 1150 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1151 case BIO_MERGE_NONE: 1152 continue; 1153 case BIO_MERGE_OK: 1154 return true; 1155 case BIO_MERGE_FAILED: 1156 return false; 1157 } 1158 1159 } 1160 1161 return false; 1162 } 1163 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1164 1165 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1166 unsigned int nr_segs, struct request **merged_request) 1167 { 1168 struct request *rq; 1169 1170 switch (elv_merge(q, &rq, bio)) { 1171 case ELEVATOR_BACK_MERGE: 1172 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1173 return false; 1174 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1175 return false; 1176 *merged_request = attempt_back_merge(q, rq); 1177 if (!*merged_request) 1178 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1179 return true; 1180 case ELEVATOR_FRONT_MERGE: 1181 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1182 return false; 1183 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1184 return false; 1185 *merged_request = attempt_front_merge(q, rq); 1186 if (!*merged_request) 1187 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1188 return true; 1189 case ELEVATOR_DISCARD_MERGE: 1190 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1191 default: 1192 return false; 1193 } 1194 } 1195 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1196