xref: /openbmc/linux/block/blk-merge.c (revision 637b60ad)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 
15 /*
16  * Check if the two bvecs from two bios can be merged to one segment.  If yes,
17  * no need to check gap between the two bios since the 1st bio and the 1st bvec
18  * in the 2nd bio can be handled in one segment.
19  */
20 static inline bool bios_segs_mergeable(struct request_queue *q,
21 		struct bio *prev, struct bio_vec *prev_last_bv,
22 		struct bio_vec *next_first_bv)
23 {
24 	if (!biovec_phys_mergeable(q, prev_last_bv, next_first_bv))
25 		return false;
26 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
27 			queue_max_segment_size(q))
28 		return false;
29 	return true;
30 }
31 
32 static inline bool bio_will_gap(struct request_queue *q,
33 		struct request *prev_rq, struct bio *prev, struct bio *next)
34 {
35 	struct bio_vec pb, nb;
36 
37 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
38 		return false;
39 
40 	/*
41 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
42 	 * is quite difficult to respect the sg gap limit.  We work hard to
43 	 * merge a huge number of small single bios in case of mkfs.
44 	 */
45 	if (prev_rq)
46 		bio_get_first_bvec(prev_rq->bio, &pb);
47 	else
48 		bio_get_first_bvec(prev, &pb);
49 	if (pb.bv_offset & queue_virt_boundary(q))
50 		return true;
51 
52 	/*
53 	 * We don't need to worry about the situation that the merged segment
54 	 * ends in unaligned virt boundary:
55 	 *
56 	 * - if 'pb' ends aligned, the merged segment ends aligned
57 	 * - if 'pb' ends unaligned, the next bio must include
58 	 *   one single bvec of 'nb', otherwise the 'nb' can't
59 	 *   merge with 'pb'
60 	 */
61 	bio_get_last_bvec(prev, &pb);
62 	bio_get_first_bvec(next, &nb);
63 	if (bios_segs_mergeable(q, prev, &pb, &nb))
64 		return false;
65 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
66 }
67 
68 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
69 {
70 	return bio_will_gap(req->q, req, req->biotail, bio);
71 }
72 
73 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
74 {
75 	return bio_will_gap(req->q, NULL, bio, req->bio);
76 }
77 
78 static struct bio *blk_bio_discard_split(struct request_queue *q,
79 					 struct bio *bio,
80 					 struct bio_set *bs,
81 					 unsigned *nsegs)
82 {
83 	unsigned int max_discard_sectors, granularity;
84 	int alignment;
85 	sector_t tmp;
86 	unsigned split_sectors;
87 
88 	*nsegs = 1;
89 
90 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
91 	granularity = max(q->limits.discard_granularity >> 9, 1U);
92 
93 	max_discard_sectors = min(q->limits.max_discard_sectors,
94 			bio_allowed_max_sectors(q));
95 	max_discard_sectors -= max_discard_sectors % granularity;
96 
97 	if (unlikely(!max_discard_sectors)) {
98 		/* XXX: warn */
99 		return NULL;
100 	}
101 
102 	if (bio_sectors(bio) <= max_discard_sectors)
103 		return NULL;
104 
105 	split_sectors = max_discard_sectors;
106 
107 	/*
108 	 * If the next starting sector would be misaligned, stop the discard at
109 	 * the previous aligned sector.
110 	 */
111 	alignment = (q->limits.discard_alignment >> 9) % granularity;
112 
113 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
114 	tmp = sector_div(tmp, granularity);
115 
116 	if (split_sectors > tmp)
117 		split_sectors -= tmp;
118 
119 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
120 }
121 
122 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
123 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
124 {
125 	*nsegs = 1;
126 
127 	if (!q->limits.max_write_zeroes_sectors)
128 		return NULL;
129 
130 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
131 		return NULL;
132 
133 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
134 }
135 
136 static struct bio *blk_bio_write_same_split(struct request_queue *q,
137 					    struct bio *bio,
138 					    struct bio_set *bs,
139 					    unsigned *nsegs)
140 {
141 	*nsegs = 1;
142 
143 	if (!q->limits.max_write_same_sectors)
144 		return NULL;
145 
146 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
147 		return NULL;
148 
149 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
150 }
151 
152 static inline unsigned get_max_io_size(struct request_queue *q,
153 				       struct bio *bio)
154 {
155 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
156 	unsigned mask = queue_logical_block_size(q) - 1;
157 
158 	/* aligned to logical block size */
159 	sectors &= ~(mask >> 9);
160 
161 	return sectors;
162 }
163 
164 static struct bio *blk_bio_segment_split(struct request_queue *q,
165 					 struct bio *bio,
166 					 struct bio_set *bs,
167 					 unsigned *segs)
168 {
169 	struct bio_vec bv, bvprv, *bvprvp = NULL;
170 	struct bvec_iter iter;
171 	unsigned seg_size = 0, nsegs = 0, sectors = 0;
172 	unsigned front_seg_size = bio->bi_seg_front_size;
173 	bool do_split = true;
174 	struct bio *new = NULL;
175 	const unsigned max_sectors = get_max_io_size(q, bio);
176 
177 	bio_for_each_segment(bv, bio, iter) {
178 		/*
179 		 * If the queue doesn't support SG gaps and adding this
180 		 * offset would create a gap, disallow it.
181 		 */
182 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
183 			goto split;
184 
185 		if (sectors + (bv.bv_len >> 9) > max_sectors) {
186 			/*
187 			 * Consider this a new segment if we're splitting in
188 			 * the middle of this vector.
189 			 */
190 			if (nsegs < queue_max_segments(q) &&
191 			    sectors < max_sectors) {
192 				nsegs++;
193 				sectors = max_sectors;
194 			}
195 			goto split;
196 		}
197 
198 		if (bvprvp && blk_queue_cluster(q)) {
199 			if (seg_size + bv.bv_len > queue_max_segment_size(q))
200 				goto new_segment;
201 			if (!biovec_phys_mergeable(q, bvprvp, &bv))
202 				goto new_segment;
203 
204 			seg_size += bv.bv_len;
205 			bvprv = bv;
206 			bvprvp = &bvprv;
207 			sectors += bv.bv_len >> 9;
208 
209 			continue;
210 		}
211 new_segment:
212 		if (nsegs == queue_max_segments(q))
213 			goto split;
214 
215 		if (nsegs == 1 && seg_size > front_seg_size)
216 			front_seg_size = seg_size;
217 
218 		nsegs++;
219 		bvprv = bv;
220 		bvprvp = &bvprv;
221 		seg_size = bv.bv_len;
222 		sectors += bv.bv_len >> 9;
223 
224 	}
225 
226 	do_split = false;
227 split:
228 	*segs = nsegs;
229 
230 	if (do_split) {
231 		new = bio_split(bio, sectors, GFP_NOIO, bs);
232 		if (new)
233 			bio = new;
234 	}
235 
236 	if (nsegs == 1 && seg_size > front_seg_size)
237 		front_seg_size = seg_size;
238 	bio->bi_seg_front_size = front_seg_size;
239 	if (seg_size > bio->bi_seg_back_size)
240 		bio->bi_seg_back_size = seg_size;
241 
242 	return do_split ? new : NULL;
243 }
244 
245 void blk_queue_split(struct request_queue *q, struct bio **bio)
246 {
247 	struct bio *split, *res;
248 	unsigned nsegs;
249 
250 	switch (bio_op(*bio)) {
251 	case REQ_OP_DISCARD:
252 	case REQ_OP_SECURE_ERASE:
253 		split = blk_bio_discard_split(q, *bio, &q->bio_split, &nsegs);
254 		break;
255 	case REQ_OP_WRITE_ZEROES:
256 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, &nsegs);
257 		break;
258 	case REQ_OP_WRITE_SAME:
259 		split = blk_bio_write_same_split(q, *bio, &q->bio_split, &nsegs);
260 		break;
261 	default:
262 		split = blk_bio_segment_split(q, *bio, &q->bio_split, &nsegs);
263 		break;
264 	}
265 
266 	/* physical segments can be figured out during splitting */
267 	res = split ? split : *bio;
268 	res->bi_phys_segments = nsegs;
269 	bio_set_flag(res, BIO_SEG_VALID);
270 
271 	if (split) {
272 		/* there isn't chance to merge the splitted bio */
273 		split->bi_opf |= REQ_NOMERGE;
274 
275 		/*
276 		 * Since we're recursing into make_request here, ensure
277 		 * that we mark this bio as already having entered the queue.
278 		 * If not, and the queue is going away, we can get stuck
279 		 * forever on waiting for the queue reference to drop. But
280 		 * that will never happen, as we're already holding a
281 		 * reference to it.
282 		 */
283 		bio_set_flag(*bio, BIO_QUEUE_ENTERED);
284 
285 		bio_chain(split, *bio);
286 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
287 		generic_make_request(*bio);
288 		*bio = split;
289 	}
290 }
291 EXPORT_SYMBOL(blk_queue_split);
292 
293 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
294 					     struct bio *bio,
295 					     bool no_sg_merge)
296 {
297 	struct bio_vec bv, bvprv = { NULL };
298 	int cluster, prev = 0;
299 	unsigned int seg_size, nr_phys_segs;
300 	struct bio *fbio, *bbio;
301 	struct bvec_iter iter;
302 
303 	if (!bio)
304 		return 0;
305 
306 	switch (bio_op(bio)) {
307 	case REQ_OP_DISCARD:
308 	case REQ_OP_SECURE_ERASE:
309 	case REQ_OP_WRITE_ZEROES:
310 		return 0;
311 	case REQ_OP_WRITE_SAME:
312 		return 1;
313 	}
314 
315 	fbio = bio;
316 	cluster = blk_queue_cluster(q);
317 	seg_size = 0;
318 	nr_phys_segs = 0;
319 	for_each_bio(bio) {
320 		bio_for_each_segment(bv, bio, iter) {
321 			/*
322 			 * If SG merging is disabled, each bio vector is
323 			 * a segment
324 			 */
325 			if (no_sg_merge)
326 				goto new_segment;
327 
328 			if (prev && cluster) {
329 				if (seg_size + bv.bv_len
330 				    > queue_max_segment_size(q))
331 					goto new_segment;
332 				if (!biovec_phys_mergeable(q, &bvprv, &bv))
333 					goto new_segment;
334 
335 				seg_size += bv.bv_len;
336 				bvprv = bv;
337 				continue;
338 			}
339 new_segment:
340 			if (nr_phys_segs == 1 && seg_size >
341 			    fbio->bi_seg_front_size)
342 				fbio->bi_seg_front_size = seg_size;
343 
344 			nr_phys_segs++;
345 			bvprv = bv;
346 			prev = 1;
347 			seg_size = bv.bv_len;
348 		}
349 		bbio = bio;
350 	}
351 
352 	if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
353 		fbio->bi_seg_front_size = seg_size;
354 	if (seg_size > bbio->bi_seg_back_size)
355 		bbio->bi_seg_back_size = seg_size;
356 
357 	return nr_phys_segs;
358 }
359 
360 void blk_recalc_rq_segments(struct request *rq)
361 {
362 	bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
363 			&rq->q->queue_flags);
364 
365 	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
366 			no_sg_merge);
367 }
368 
369 void blk_recount_segments(struct request_queue *q, struct bio *bio)
370 {
371 	unsigned short seg_cnt;
372 
373 	/* estimate segment number by bi_vcnt for non-cloned bio */
374 	if (bio_flagged(bio, BIO_CLONED))
375 		seg_cnt = bio_segments(bio);
376 	else
377 		seg_cnt = bio->bi_vcnt;
378 
379 	if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
380 			(seg_cnt < queue_max_segments(q)))
381 		bio->bi_phys_segments = seg_cnt;
382 	else {
383 		struct bio *nxt = bio->bi_next;
384 
385 		bio->bi_next = NULL;
386 		bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
387 		bio->bi_next = nxt;
388 	}
389 
390 	bio_set_flag(bio, BIO_SEG_VALID);
391 }
392 
393 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
394 				   struct bio *nxt)
395 {
396 	struct bio_vec end_bv = { NULL }, nxt_bv;
397 
398 	if (!blk_queue_cluster(q))
399 		return 0;
400 
401 	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
402 	    queue_max_segment_size(q))
403 		return 0;
404 
405 	if (!bio_has_data(bio))
406 		return 1;
407 
408 	bio_get_last_bvec(bio, &end_bv);
409 	bio_get_first_bvec(nxt, &nxt_bv);
410 
411 	return biovec_phys_mergeable(q, &end_bv, &nxt_bv);
412 }
413 
414 static inline void
415 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
416 		     struct scatterlist *sglist, struct bio_vec *bvprv,
417 		     struct scatterlist **sg, int *nsegs, int *cluster)
418 {
419 
420 	int nbytes = bvec->bv_len;
421 
422 	if (*sg && *cluster) {
423 		if ((*sg)->length + nbytes > queue_max_segment_size(q))
424 			goto new_segment;
425 		if (!biovec_phys_mergeable(q, bvprv, bvec))
426 			goto new_segment;
427 
428 		(*sg)->length += nbytes;
429 	} else {
430 new_segment:
431 		if (!*sg)
432 			*sg = sglist;
433 		else {
434 			/*
435 			 * If the driver previously mapped a shorter
436 			 * list, we could see a termination bit
437 			 * prematurely unless it fully inits the sg
438 			 * table on each mapping. We KNOW that there
439 			 * must be more entries here or the driver
440 			 * would be buggy, so force clear the
441 			 * termination bit to avoid doing a full
442 			 * sg_init_table() in drivers for each command.
443 			 */
444 			sg_unmark_end(*sg);
445 			*sg = sg_next(*sg);
446 		}
447 
448 		sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
449 		(*nsegs)++;
450 	}
451 	*bvprv = *bvec;
452 }
453 
454 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
455 		struct scatterlist *sglist, struct scatterlist **sg)
456 {
457 	*sg = sglist;
458 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
459 	return 1;
460 }
461 
462 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
463 			     struct scatterlist *sglist,
464 			     struct scatterlist **sg)
465 {
466 	struct bio_vec bvec, bvprv = { NULL };
467 	struct bvec_iter iter;
468 	int cluster = blk_queue_cluster(q), nsegs = 0;
469 
470 	for_each_bio(bio)
471 		bio_for_each_segment(bvec, bio, iter)
472 			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
473 					     &nsegs, &cluster);
474 
475 	return nsegs;
476 }
477 
478 /*
479  * map a request to scatterlist, return number of sg entries setup. Caller
480  * must make sure sg can hold rq->nr_phys_segments entries
481  */
482 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
483 		  struct scatterlist *sglist)
484 {
485 	struct scatterlist *sg = NULL;
486 	int nsegs = 0;
487 
488 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
489 		nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
490 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
491 		nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
492 	else if (rq->bio)
493 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
494 
495 	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
496 	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
497 		unsigned int pad_len =
498 			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
499 
500 		sg->length += pad_len;
501 		rq->extra_len += pad_len;
502 	}
503 
504 	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
505 		if (op_is_write(req_op(rq)))
506 			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
507 
508 		sg_unmark_end(sg);
509 		sg = sg_next(sg);
510 		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
511 			    q->dma_drain_size,
512 			    ((unsigned long)q->dma_drain_buffer) &
513 			    (PAGE_SIZE - 1));
514 		nsegs++;
515 		rq->extra_len += q->dma_drain_size;
516 	}
517 
518 	if (sg)
519 		sg_mark_end(sg);
520 
521 	/*
522 	 * Something must have been wrong if the figured number of
523 	 * segment is bigger than number of req's physical segments
524 	 */
525 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
526 
527 	return nsegs;
528 }
529 EXPORT_SYMBOL(blk_rq_map_sg);
530 
531 static inline int ll_new_hw_segment(struct request_queue *q,
532 				    struct request *req,
533 				    struct bio *bio)
534 {
535 	int nr_phys_segs = bio_phys_segments(q, bio);
536 
537 	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
538 		goto no_merge;
539 
540 	if (blk_integrity_merge_bio(q, req, bio) == false)
541 		goto no_merge;
542 
543 	/*
544 	 * This will form the start of a new hw segment.  Bump both
545 	 * counters.
546 	 */
547 	req->nr_phys_segments += nr_phys_segs;
548 	return 1;
549 
550 no_merge:
551 	req_set_nomerge(q, req);
552 	return 0;
553 }
554 
555 int ll_back_merge_fn(struct request_queue *q, struct request *req,
556 		     struct bio *bio)
557 {
558 	if (req_gap_back_merge(req, bio))
559 		return 0;
560 	if (blk_integrity_rq(req) &&
561 	    integrity_req_gap_back_merge(req, bio))
562 		return 0;
563 	if (blk_rq_sectors(req) + bio_sectors(bio) >
564 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
565 		req_set_nomerge(q, req);
566 		return 0;
567 	}
568 	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
569 		blk_recount_segments(q, req->biotail);
570 	if (!bio_flagged(bio, BIO_SEG_VALID))
571 		blk_recount_segments(q, bio);
572 
573 	return ll_new_hw_segment(q, req, bio);
574 }
575 
576 int ll_front_merge_fn(struct request_queue *q, struct request *req,
577 		      struct bio *bio)
578 {
579 
580 	if (req_gap_front_merge(req, bio))
581 		return 0;
582 	if (blk_integrity_rq(req) &&
583 	    integrity_req_gap_front_merge(req, bio))
584 		return 0;
585 	if (blk_rq_sectors(req) + bio_sectors(bio) >
586 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
587 		req_set_nomerge(q, req);
588 		return 0;
589 	}
590 	if (!bio_flagged(bio, BIO_SEG_VALID))
591 		blk_recount_segments(q, bio);
592 	if (!bio_flagged(req->bio, BIO_SEG_VALID))
593 		blk_recount_segments(q, req->bio);
594 
595 	return ll_new_hw_segment(q, req, bio);
596 }
597 
598 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
599 		struct request *next)
600 {
601 	unsigned short segments = blk_rq_nr_discard_segments(req);
602 
603 	if (segments >= queue_max_discard_segments(q))
604 		goto no_merge;
605 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
606 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
607 		goto no_merge;
608 
609 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
610 	return true;
611 no_merge:
612 	req_set_nomerge(q, req);
613 	return false;
614 }
615 
616 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
617 				struct request *next)
618 {
619 	int total_phys_segments;
620 	unsigned int seg_size =
621 		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
622 
623 	if (req_gap_back_merge(req, next->bio))
624 		return 0;
625 
626 	/*
627 	 * Will it become too large?
628 	 */
629 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
630 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
631 		return 0;
632 
633 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
634 	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
635 		if (req->nr_phys_segments == 1)
636 			req->bio->bi_seg_front_size = seg_size;
637 		if (next->nr_phys_segments == 1)
638 			next->biotail->bi_seg_back_size = seg_size;
639 		total_phys_segments--;
640 	}
641 
642 	if (total_phys_segments > queue_max_segments(q))
643 		return 0;
644 
645 	if (blk_integrity_merge_rq(q, req, next) == false)
646 		return 0;
647 
648 	/* Merge is OK... */
649 	req->nr_phys_segments = total_phys_segments;
650 	return 1;
651 }
652 
653 /**
654  * blk_rq_set_mixed_merge - mark a request as mixed merge
655  * @rq: request to mark as mixed merge
656  *
657  * Description:
658  *     @rq is about to be mixed merged.  Make sure the attributes
659  *     which can be mixed are set in each bio and mark @rq as mixed
660  *     merged.
661  */
662 void blk_rq_set_mixed_merge(struct request *rq)
663 {
664 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
665 	struct bio *bio;
666 
667 	if (rq->rq_flags & RQF_MIXED_MERGE)
668 		return;
669 
670 	/*
671 	 * @rq will no longer represent mixable attributes for all the
672 	 * contained bios.  It will just track those of the first one.
673 	 * Distributes the attributs to each bio.
674 	 */
675 	for (bio = rq->bio; bio; bio = bio->bi_next) {
676 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
677 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
678 		bio->bi_opf |= ff;
679 	}
680 	rq->rq_flags |= RQF_MIXED_MERGE;
681 }
682 
683 static void blk_account_io_merge(struct request *req)
684 {
685 	if (blk_do_io_stat(req)) {
686 		struct hd_struct *part;
687 
688 		part_stat_lock();
689 		part = req->part;
690 
691 		part_dec_in_flight(req->q, part, rq_data_dir(req));
692 
693 		hd_struct_put(part);
694 		part_stat_unlock();
695 	}
696 }
697 /*
698  * Two cases of handling DISCARD merge:
699  * If max_discard_segments > 1, the driver takes every bio
700  * as a range and send them to controller together. The ranges
701  * needn't to be contiguous.
702  * Otherwise, the bios/requests will be handled as same as
703  * others which should be contiguous.
704  */
705 static inline bool blk_discard_mergable(struct request *req)
706 {
707 	if (req_op(req) == REQ_OP_DISCARD &&
708 	    queue_max_discard_segments(req->q) > 1)
709 		return true;
710 	return false;
711 }
712 
713 static enum elv_merge blk_try_req_merge(struct request *req,
714 					struct request *next)
715 {
716 	if (blk_discard_mergable(req))
717 		return ELEVATOR_DISCARD_MERGE;
718 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
719 		return ELEVATOR_BACK_MERGE;
720 
721 	return ELEVATOR_NO_MERGE;
722 }
723 
724 /*
725  * For non-mq, this has to be called with the request spinlock acquired.
726  * For mq with scheduling, the appropriate queue wide lock should be held.
727  */
728 static struct request *attempt_merge(struct request_queue *q,
729 				     struct request *req, struct request *next)
730 {
731 	if (!rq_mergeable(req) || !rq_mergeable(next))
732 		return NULL;
733 
734 	if (req_op(req) != req_op(next))
735 		return NULL;
736 
737 	if (rq_data_dir(req) != rq_data_dir(next)
738 	    || req->rq_disk != next->rq_disk)
739 		return NULL;
740 
741 	if (req_op(req) == REQ_OP_WRITE_SAME &&
742 	    !blk_write_same_mergeable(req->bio, next->bio))
743 		return NULL;
744 
745 	/*
746 	 * Don't allow merge of different write hints, or for a hint with
747 	 * non-hint IO.
748 	 */
749 	if (req->write_hint != next->write_hint)
750 		return NULL;
751 
752 	if (req->ioprio != next->ioprio)
753 		return NULL;
754 
755 	/*
756 	 * If we are allowed to merge, then append bio list
757 	 * from next to rq and release next. merge_requests_fn
758 	 * will have updated segment counts, update sector
759 	 * counts here. Handle DISCARDs separately, as they
760 	 * have separate settings.
761 	 */
762 
763 	switch (blk_try_req_merge(req, next)) {
764 	case ELEVATOR_DISCARD_MERGE:
765 		if (!req_attempt_discard_merge(q, req, next))
766 			return NULL;
767 		break;
768 	case ELEVATOR_BACK_MERGE:
769 		if (!ll_merge_requests_fn(q, req, next))
770 			return NULL;
771 		break;
772 	default:
773 		return NULL;
774 	}
775 
776 	/*
777 	 * If failfast settings disagree or any of the two is already
778 	 * a mixed merge, mark both as mixed before proceeding.  This
779 	 * makes sure that all involved bios have mixable attributes
780 	 * set properly.
781 	 */
782 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
783 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
784 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
785 		blk_rq_set_mixed_merge(req);
786 		blk_rq_set_mixed_merge(next);
787 	}
788 
789 	/*
790 	 * At this point we have either done a back merge or front merge. We
791 	 * need the smaller start_time_ns of the merged requests to be the
792 	 * current request for accounting purposes.
793 	 */
794 	if (next->start_time_ns < req->start_time_ns)
795 		req->start_time_ns = next->start_time_ns;
796 
797 	req->biotail->bi_next = next->bio;
798 	req->biotail = next->biotail;
799 
800 	req->__data_len += blk_rq_bytes(next);
801 
802 	if (!blk_discard_mergable(req))
803 		elv_merge_requests(q, req, next);
804 
805 	/*
806 	 * 'next' is going away, so update stats accordingly
807 	 */
808 	blk_account_io_merge(next);
809 
810 	/*
811 	 * ownership of bio passed from next to req, return 'next' for
812 	 * the caller to free
813 	 */
814 	next->bio = NULL;
815 	return next;
816 }
817 
818 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
819 {
820 	struct request *next = elv_latter_request(q, rq);
821 
822 	if (next)
823 		return attempt_merge(q, rq, next);
824 
825 	return NULL;
826 }
827 
828 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
829 {
830 	struct request *prev = elv_former_request(q, rq);
831 
832 	if (prev)
833 		return attempt_merge(q, prev, rq);
834 
835 	return NULL;
836 }
837 
838 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
839 			  struct request *next)
840 {
841 	struct request *free;
842 
843 	free = attempt_merge(q, rq, next);
844 	if (free) {
845 		blk_put_request(free);
846 		return 1;
847 	}
848 
849 	return 0;
850 }
851 
852 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
853 {
854 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
855 		return false;
856 
857 	if (req_op(rq) != bio_op(bio))
858 		return false;
859 
860 	/* different data direction or already started, don't merge */
861 	if (bio_data_dir(bio) != rq_data_dir(rq))
862 		return false;
863 
864 	/* must be same device */
865 	if (rq->rq_disk != bio->bi_disk)
866 		return false;
867 
868 	/* only merge integrity protected bio into ditto rq */
869 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
870 		return false;
871 
872 	/* must be using the same buffer */
873 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
874 	    !blk_write_same_mergeable(rq->bio, bio))
875 		return false;
876 
877 	/*
878 	 * Don't allow merge of different write hints, or for a hint with
879 	 * non-hint IO.
880 	 */
881 	if (rq->write_hint != bio->bi_write_hint)
882 		return false;
883 
884 	if (rq->ioprio != bio_prio(bio))
885 		return false;
886 
887 	return true;
888 }
889 
890 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
891 {
892 	if (blk_discard_mergable(rq))
893 		return ELEVATOR_DISCARD_MERGE;
894 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
895 		return ELEVATOR_BACK_MERGE;
896 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
897 		return ELEVATOR_FRONT_MERGE;
898 	return ELEVATOR_NO_MERGE;
899 }
900