xref: /openbmc/linux/block/blk-merge.c (revision 5ebfa90bdd3d78f4967dc0095daf755989a999e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87 
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 /*
99  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100  * is defined as 'unsigned int', meantime it has to be aligned to with the
101  * logical block size, which is the minimum accepted unit by hardware.
102  */
103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105 	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107 
108 static struct bio *bio_split_discard(struct bio *bio,
109 				     const struct queue_limits *lim,
110 				     unsigned *nsegs, struct bio_set *bs)
111 {
112 	unsigned int max_discard_sectors, granularity;
113 	sector_t tmp;
114 	unsigned split_sectors;
115 
116 	*nsegs = 1;
117 
118 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
119 	granularity = max(lim->discard_granularity >> 9, 1U);
120 
121 	max_discard_sectors =
122 		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
123 	max_discard_sectors -= max_discard_sectors % granularity;
124 
125 	if (unlikely(!max_discard_sectors)) {
126 		/* XXX: warn */
127 		return NULL;
128 	}
129 
130 	if (bio_sectors(bio) <= max_discard_sectors)
131 		return NULL;
132 
133 	split_sectors = max_discard_sectors;
134 
135 	/*
136 	 * If the next starting sector would be misaligned, stop the discard at
137 	 * the previous aligned sector.
138 	 */
139 	tmp = bio->bi_iter.bi_sector + split_sectors -
140 		((lim->discard_alignment >> 9) % granularity);
141 	tmp = sector_div(tmp, granularity);
142 
143 	if (split_sectors > tmp)
144 		split_sectors -= tmp;
145 
146 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
147 }
148 
149 static struct bio *bio_split_write_zeroes(struct bio *bio,
150 					  const struct queue_limits *lim,
151 					  unsigned *nsegs, struct bio_set *bs)
152 {
153 	*nsegs = 0;
154 	if (!lim->max_write_zeroes_sectors)
155 		return NULL;
156 	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
157 		return NULL;
158 	return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
159 }
160 
161 /*
162  * Return the maximum number of sectors from the start of a bio that may be
163  * submitted as a single request to a block device. If enough sectors remain,
164  * align the end to the physical block size. Otherwise align the end to the
165  * logical block size. This approach minimizes the number of non-aligned
166  * requests that are submitted to a block device if the start of a bio is not
167  * aligned to a physical block boundary.
168  */
169 static inline unsigned get_max_io_size(struct bio *bio,
170 				       const struct queue_limits *lim)
171 {
172 	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
173 	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
174 	unsigned max_sectors = lim->max_sectors, start, end;
175 
176 	if (lim->chunk_sectors) {
177 		max_sectors = min(max_sectors,
178 			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
179 					       lim->chunk_sectors));
180 	}
181 
182 	start = bio->bi_iter.bi_sector & (pbs - 1);
183 	end = (start + max_sectors) & ~(pbs - 1);
184 	if (end > start)
185 		return end - start;
186 	return max_sectors & ~(lbs - 1);
187 }
188 
189 /**
190  * get_max_segment_size() - maximum number of bytes to add as a single segment
191  * @lim: Request queue limits.
192  * @start_page: See below.
193  * @offset: Offset from @start_page where to add a segment.
194  *
195  * Returns the maximum number of bytes that can be added as a single segment.
196  */
197 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
198 		struct page *start_page, unsigned long offset)
199 {
200 	unsigned long mask = lim->seg_boundary_mask;
201 
202 	offset = mask & (page_to_phys(start_page) + offset);
203 
204 	/*
205 	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
206 	 * after having calculated the minimum.
207 	 */
208 	return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1;
209 }
210 
211 /**
212  * bvec_split_segs - verify whether or not a bvec should be split in the middle
213  * @lim:      [in] queue limits to split based on
214  * @bv:       [in] bvec to examine
215  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
216  *            by the number of segments from @bv that may be appended to that
217  *            bio without exceeding @max_segs
218  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
219  *            by the number of bytes from @bv that may be appended to that
220  *            bio without exceeding @max_bytes
221  * @max_segs: [in] upper bound for *@nsegs
222  * @max_bytes: [in] upper bound for *@bytes
223  *
224  * When splitting a bio, it can happen that a bvec is encountered that is too
225  * big to fit in a single segment and hence that it has to be split in the
226  * middle. This function verifies whether or not that should happen. The value
227  * %true is returned if and only if appending the entire @bv to a bio with
228  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
229  * the block driver.
230  */
231 static bool bvec_split_segs(const struct queue_limits *lim,
232 		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
233 		unsigned max_segs, unsigned max_bytes)
234 {
235 	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
236 	unsigned len = min(bv->bv_len, max_len);
237 	unsigned total_len = 0;
238 	unsigned seg_size = 0;
239 
240 	while (len && *nsegs < max_segs) {
241 		seg_size = get_max_segment_size(lim, bv->bv_page,
242 						bv->bv_offset + total_len);
243 		seg_size = min(seg_size, len);
244 
245 		(*nsegs)++;
246 		total_len += seg_size;
247 		len -= seg_size;
248 
249 		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
250 			break;
251 	}
252 
253 	*bytes += total_len;
254 
255 	/* tell the caller to split the bvec if it is too big to fit */
256 	return len > 0 || bv->bv_len > max_len;
257 }
258 
259 /**
260  * bio_split_rw - split a bio in two bios
261  * @bio:  [in] bio to be split
262  * @lim:  [in] queue limits to split based on
263  * @segs: [out] number of segments in the bio with the first half of the sectors
264  * @bs:	  [in] bio set to allocate the clone from
265  * @max_bytes: [in] maximum number of bytes per bio
266  *
267  * Clone @bio, update the bi_iter of the clone to represent the first sectors
268  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
269  * following is guaranteed for the cloned bio:
270  * - That it has at most @max_bytes worth of data
271  * - That it has at most queue_max_segments(@q) segments.
272  *
273  * Except for discard requests the cloned bio will point at the bi_io_vec of
274  * the original bio. It is the responsibility of the caller to ensure that the
275  * original bio is not freed before the cloned bio. The caller is also
276  * responsible for ensuring that @bs is only destroyed after processing of the
277  * split bio has finished.
278  */
279 static struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
280 		unsigned *segs, struct bio_set *bs, unsigned max_bytes)
281 {
282 	struct bio_vec bv, bvprv, *bvprvp = NULL;
283 	struct bvec_iter iter;
284 	unsigned nsegs = 0, bytes = 0;
285 
286 	bio_for_each_bvec(bv, bio, iter) {
287 		/*
288 		 * If the queue doesn't support SG gaps and adding this
289 		 * offset would create a gap, disallow it.
290 		 */
291 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
292 			goto split;
293 
294 		if (nsegs < lim->max_segments &&
295 		    bytes + bv.bv_len <= max_bytes &&
296 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
297 			nsegs++;
298 			bytes += bv.bv_len;
299 		} else {
300 			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
301 					lim->max_segments, max_bytes))
302 				goto split;
303 		}
304 
305 		bvprv = bv;
306 		bvprvp = &bvprv;
307 	}
308 
309 	*segs = nsegs;
310 	return NULL;
311 split:
312 	/*
313 	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
314 	 * with EAGAIN if splitting is required and return an error pointer.
315 	 */
316 	if (bio->bi_opf & REQ_NOWAIT) {
317 		bio->bi_status = BLK_STS_AGAIN;
318 		bio_endio(bio);
319 		return ERR_PTR(-EAGAIN);
320 	}
321 
322 	*segs = nsegs;
323 
324 	/*
325 	 * Individual bvecs might not be logical block aligned. Round down the
326 	 * split size so that each bio is properly block size aligned, even if
327 	 * we do not use the full hardware limits.
328 	 */
329 	bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
330 
331 	/*
332 	 * Bio splitting may cause subtle trouble such as hang when doing sync
333 	 * iopoll in direct IO routine. Given performance gain of iopoll for
334 	 * big IO can be trival, disable iopoll when split needed.
335 	 */
336 	bio_clear_polled(bio);
337 	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
338 }
339 
340 /**
341  * __bio_split_to_limits - split a bio to fit the queue limits
342  * @bio:     bio to be split
343  * @lim:     queue limits to split based on
344  * @nr_segs: returns the number of segments in the returned bio
345  *
346  * Check if @bio needs splitting based on the queue limits, and if so split off
347  * a bio fitting the limits from the beginning of @bio and return it.  @bio is
348  * shortened to the remainder and re-submitted.
349  *
350  * The split bio is allocated from @q->bio_split, which is provided by the
351  * block layer.
352  */
353 struct bio *__bio_split_to_limits(struct bio *bio,
354 				  const struct queue_limits *lim,
355 				  unsigned int *nr_segs)
356 {
357 	struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
358 	struct bio *split;
359 
360 	switch (bio_op(bio)) {
361 	case REQ_OP_DISCARD:
362 	case REQ_OP_SECURE_ERASE:
363 		split = bio_split_discard(bio, lim, nr_segs, bs);
364 		break;
365 	case REQ_OP_WRITE_ZEROES:
366 		split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
367 		break;
368 	default:
369 		split = bio_split_rw(bio, lim, nr_segs, bs,
370 				get_max_io_size(bio, lim) << SECTOR_SHIFT);
371 		if (IS_ERR(split))
372 			return NULL;
373 		break;
374 	}
375 
376 	if (split) {
377 		/* there isn't chance to merge the split bio */
378 		split->bi_opf |= REQ_NOMERGE;
379 
380 		blkcg_bio_issue_init(split);
381 		bio_chain(split, bio);
382 		trace_block_split(split, bio->bi_iter.bi_sector);
383 		submit_bio_noacct(bio);
384 		return split;
385 	}
386 	return bio;
387 }
388 
389 /**
390  * bio_split_to_limits - split a bio to fit the queue limits
391  * @bio:     bio to be split
392  *
393  * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
394  * if so split off a bio fitting the limits from the beginning of @bio and
395  * return it.  @bio is shortened to the remainder and re-submitted.
396  *
397  * The split bio is allocated from @q->bio_split, which is provided by the
398  * block layer.
399  */
400 struct bio *bio_split_to_limits(struct bio *bio)
401 {
402 	const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
403 	unsigned int nr_segs;
404 
405 	if (bio_may_exceed_limits(bio, lim))
406 		return __bio_split_to_limits(bio, lim, &nr_segs);
407 	return bio;
408 }
409 EXPORT_SYMBOL(bio_split_to_limits);
410 
411 unsigned int blk_recalc_rq_segments(struct request *rq)
412 {
413 	unsigned int nr_phys_segs = 0;
414 	unsigned int bytes = 0;
415 	struct req_iterator iter;
416 	struct bio_vec bv;
417 
418 	if (!rq->bio)
419 		return 0;
420 
421 	switch (bio_op(rq->bio)) {
422 	case REQ_OP_DISCARD:
423 	case REQ_OP_SECURE_ERASE:
424 		if (queue_max_discard_segments(rq->q) > 1) {
425 			struct bio *bio = rq->bio;
426 
427 			for_each_bio(bio)
428 				nr_phys_segs++;
429 			return nr_phys_segs;
430 		}
431 		return 1;
432 	case REQ_OP_WRITE_ZEROES:
433 		return 0;
434 	default:
435 		break;
436 	}
437 
438 	rq_for_each_bvec(bv, rq, iter)
439 		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
440 				UINT_MAX, UINT_MAX);
441 	return nr_phys_segs;
442 }
443 
444 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
445 		struct scatterlist *sglist)
446 {
447 	if (!*sg)
448 		return sglist;
449 
450 	/*
451 	 * If the driver previously mapped a shorter list, we could see a
452 	 * termination bit prematurely unless it fully inits the sg table
453 	 * on each mapping. We KNOW that there must be more entries here
454 	 * or the driver would be buggy, so force clear the termination bit
455 	 * to avoid doing a full sg_init_table() in drivers for each command.
456 	 */
457 	sg_unmark_end(*sg);
458 	return sg_next(*sg);
459 }
460 
461 static unsigned blk_bvec_map_sg(struct request_queue *q,
462 		struct bio_vec *bvec, struct scatterlist *sglist,
463 		struct scatterlist **sg)
464 {
465 	unsigned nbytes = bvec->bv_len;
466 	unsigned nsegs = 0, total = 0;
467 
468 	while (nbytes > 0) {
469 		unsigned offset = bvec->bv_offset + total;
470 		unsigned len = min(get_max_segment_size(&q->limits,
471 				   bvec->bv_page, offset), nbytes);
472 		struct page *page = bvec->bv_page;
473 
474 		/*
475 		 * Unfortunately a fair number of drivers barf on scatterlists
476 		 * that have an offset larger than PAGE_SIZE, despite other
477 		 * subsystems dealing with that invariant just fine.  For now
478 		 * stick to the legacy format where we never present those from
479 		 * the block layer, but the code below should be removed once
480 		 * these offenders (mostly MMC/SD drivers) are fixed.
481 		 */
482 		page += (offset >> PAGE_SHIFT);
483 		offset &= ~PAGE_MASK;
484 
485 		*sg = blk_next_sg(sg, sglist);
486 		sg_set_page(*sg, page, len, offset);
487 
488 		total += len;
489 		nbytes -= len;
490 		nsegs++;
491 	}
492 
493 	return nsegs;
494 }
495 
496 static inline int __blk_bvec_map_sg(struct bio_vec bv,
497 		struct scatterlist *sglist, struct scatterlist **sg)
498 {
499 	*sg = blk_next_sg(sg, sglist);
500 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
501 	return 1;
502 }
503 
504 /* only try to merge bvecs into one sg if they are from two bios */
505 static inline bool
506 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
507 			   struct bio_vec *bvprv, struct scatterlist **sg)
508 {
509 
510 	int nbytes = bvec->bv_len;
511 
512 	if (!*sg)
513 		return false;
514 
515 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
516 		return false;
517 
518 	if (!biovec_phys_mergeable(q, bvprv, bvec))
519 		return false;
520 
521 	(*sg)->length += nbytes;
522 
523 	return true;
524 }
525 
526 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
527 			     struct scatterlist *sglist,
528 			     struct scatterlist **sg)
529 {
530 	struct bio_vec bvec, bvprv = { NULL };
531 	struct bvec_iter iter;
532 	int nsegs = 0;
533 	bool new_bio = false;
534 
535 	for_each_bio(bio) {
536 		bio_for_each_bvec(bvec, bio, iter) {
537 			/*
538 			 * Only try to merge bvecs from two bios given we
539 			 * have done bio internal merge when adding pages
540 			 * to bio
541 			 */
542 			if (new_bio &&
543 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
544 				goto next_bvec;
545 
546 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
547 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
548 			else
549 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
550  next_bvec:
551 			new_bio = false;
552 		}
553 		if (likely(bio->bi_iter.bi_size)) {
554 			bvprv = bvec;
555 			new_bio = true;
556 		}
557 	}
558 
559 	return nsegs;
560 }
561 
562 /*
563  * map a request to scatterlist, return number of sg entries setup. Caller
564  * must make sure sg can hold rq->nr_phys_segments entries
565  */
566 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
567 		struct scatterlist *sglist, struct scatterlist **last_sg)
568 {
569 	int nsegs = 0;
570 
571 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
572 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
573 	else if (rq->bio)
574 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
575 
576 	if (*last_sg)
577 		sg_mark_end(*last_sg);
578 
579 	/*
580 	 * Something must have been wrong if the figured number of
581 	 * segment is bigger than number of req's physical segments
582 	 */
583 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
584 
585 	return nsegs;
586 }
587 EXPORT_SYMBOL(__blk_rq_map_sg);
588 
589 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
590 {
591 	if (req_op(rq) == REQ_OP_DISCARD)
592 		return queue_max_discard_segments(rq->q);
593 	return queue_max_segments(rq->q);
594 }
595 
596 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
597 						  sector_t offset)
598 {
599 	struct request_queue *q = rq->q;
600 	unsigned int max_sectors;
601 
602 	if (blk_rq_is_passthrough(rq))
603 		return q->limits.max_hw_sectors;
604 
605 	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
606 	if (!q->limits.chunk_sectors ||
607 	    req_op(rq) == REQ_OP_DISCARD ||
608 	    req_op(rq) == REQ_OP_SECURE_ERASE)
609 		return max_sectors;
610 	return min(max_sectors,
611 		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
612 }
613 
614 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
615 		unsigned int nr_phys_segs)
616 {
617 	if (!blk_cgroup_mergeable(req, bio))
618 		goto no_merge;
619 
620 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
621 		goto no_merge;
622 
623 	/* discard request merge won't add new segment */
624 	if (req_op(req) == REQ_OP_DISCARD)
625 		return 1;
626 
627 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
628 		goto no_merge;
629 
630 	/*
631 	 * This will form the start of a new hw segment.  Bump both
632 	 * counters.
633 	 */
634 	req->nr_phys_segments += nr_phys_segs;
635 	return 1;
636 
637 no_merge:
638 	req_set_nomerge(req->q, req);
639 	return 0;
640 }
641 
642 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
643 {
644 	if (req_gap_back_merge(req, bio))
645 		return 0;
646 	if (blk_integrity_rq(req) &&
647 	    integrity_req_gap_back_merge(req, bio))
648 		return 0;
649 	if (!bio_crypt_ctx_back_mergeable(req, bio))
650 		return 0;
651 	if (blk_rq_sectors(req) + bio_sectors(bio) >
652 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
653 		req_set_nomerge(req->q, req);
654 		return 0;
655 	}
656 
657 	return ll_new_hw_segment(req, bio, nr_segs);
658 }
659 
660 static int ll_front_merge_fn(struct request *req, struct bio *bio,
661 		unsigned int nr_segs)
662 {
663 	if (req_gap_front_merge(req, bio))
664 		return 0;
665 	if (blk_integrity_rq(req) &&
666 	    integrity_req_gap_front_merge(req, bio))
667 		return 0;
668 	if (!bio_crypt_ctx_front_mergeable(req, bio))
669 		return 0;
670 	if (blk_rq_sectors(req) + bio_sectors(bio) >
671 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
672 		req_set_nomerge(req->q, req);
673 		return 0;
674 	}
675 
676 	return ll_new_hw_segment(req, bio, nr_segs);
677 }
678 
679 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
680 		struct request *next)
681 {
682 	unsigned short segments = blk_rq_nr_discard_segments(req);
683 
684 	if (segments >= queue_max_discard_segments(q))
685 		goto no_merge;
686 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
687 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
688 		goto no_merge;
689 
690 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
691 	return true;
692 no_merge:
693 	req_set_nomerge(q, req);
694 	return false;
695 }
696 
697 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
698 				struct request *next)
699 {
700 	int total_phys_segments;
701 
702 	if (req_gap_back_merge(req, next->bio))
703 		return 0;
704 
705 	/*
706 	 * Will it become too large?
707 	 */
708 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
709 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
710 		return 0;
711 
712 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
713 	if (total_phys_segments > blk_rq_get_max_segments(req))
714 		return 0;
715 
716 	if (!blk_cgroup_mergeable(req, next->bio))
717 		return 0;
718 
719 	if (blk_integrity_merge_rq(q, req, next) == false)
720 		return 0;
721 
722 	if (!bio_crypt_ctx_merge_rq(req, next))
723 		return 0;
724 
725 	/* Merge is OK... */
726 	req->nr_phys_segments = total_phys_segments;
727 	return 1;
728 }
729 
730 /**
731  * blk_rq_set_mixed_merge - mark a request as mixed merge
732  * @rq: request to mark as mixed merge
733  *
734  * Description:
735  *     @rq is about to be mixed merged.  Make sure the attributes
736  *     which can be mixed are set in each bio and mark @rq as mixed
737  *     merged.
738  */
739 void blk_rq_set_mixed_merge(struct request *rq)
740 {
741 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
742 	struct bio *bio;
743 
744 	if (rq->rq_flags & RQF_MIXED_MERGE)
745 		return;
746 
747 	/*
748 	 * @rq will no longer represent mixable attributes for all the
749 	 * contained bios.  It will just track those of the first one.
750 	 * Distributes the attributs to each bio.
751 	 */
752 	for (bio = rq->bio; bio; bio = bio->bi_next) {
753 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
754 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
755 		bio->bi_opf |= ff;
756 	}
757 	rq->rq_flags |= RQF_MIXED_MERGE;
758 }
759 
760 static void blk_account_io_merge_request(struct request *req)
761 {
762 	if (blk_do_io_stat(req)) {
763 		part_stat_lock();
764 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
765 		part_stat_unlock();
766 	}
767 }
768 
769 static enum elv_merge blk_try_req_merge(struct request *req,
770 					struct request *next)
771 {
772 	if (blk_discard_mergable(req))
773 		return ELEVATOR_DISCARD_MERGE;
774 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
775 		return ELEVATOR_BACK_MERGE;
776 
777 	return ELEVATOR_NO_MERGE;
778 }
779 
780 /*
781  * For non-mq, this has to be called with the request spinlock acquired.
782  * For mq with scheduling, the appropriate queue wide lock should be held.
783  */
784 static struct request *attempt_merge(struct request_queue *q,
785 				     struct request *req, struct request *next)
786 {
787 	if (!rq_mergeable(req) || !rq_mergeable(next))
788 		return NULL;
789 
790 	if (req_op(req) != req_op(next))
791 		return NULL;
792 
793 	if (rq_data_dir(req) != rq_data_dir(next))
794 		return NULL;
795 
796 	if (req->ioprio != next->ioprio)
797 		return NULL;
798 
799 	/*
800 	 * If we are allowed to merge, then append bio list
801 	 * from next to rq and release next. merge_requests_fn
802 	 * will have updated segment counts, update sector
803 	 * counts here. Handle DISCARDs separately, as they
804 	 * have separate settings.
805 	 */
806 
807 	switch (blk_try_req_merge(req, next)) {
808 	case ELEVATOR_DISCARD_MERGE:
809 		if (!req_attempt_discard_merge(q, req, next))
810 			return NULL;
811 		break;
812 	case ELEVATOR_BACK_MERGE:
813 		if (!ll_merge_requests_fn(q, req, next))
814 			return NULL;
815 		break;
816 	default:
817 		return NULL;
818 	}
819 
820 	/*
821 	 * If failfast settings disagree or any of the two is already
822 	 * a mixed merge, mark both as mixed before proceeding.  This
823 	 * makes sure that all involved bios have mixable attributes
824 	 * set properly.
825 	 */
826 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
827 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
828 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
829 		blk_rq_set_mixed_merge(req);
830 		blk_rq_set_mixed_merge(next);
831 	}
832 
833 	/*
834 	 * At this point we have either done a back merge or front merge. We
835 	 * need the smaller start_time_ns of the merged requests to be the
836 	 * current request for accounting purposes.
837 	 */
838 	if (next->start_time_ns < req->start_time_ns)
839 		req->start_time_ns = next->start_time_ns;
840 
841 	req->biotail->bi_next = next->bio;
842 	req->biotail = next->biotail;
843 
844 	req->__data_len += blk_rq_bytes(next);
845 
846 	if (!blk_discard_mergable(req))
847 		elv_merge_requests(q, req, next);
848 
849 	/*
850 	 * 'next' is going away, so update stats accordingly
851 	 */
852 	blk_account_io_merge_request(next);
853 
854 	trace_block_rq_merge(next);
855 
856 	/*
857 	 * ownership of bio passed from next to req, return 'next' for
858 	 * the caller to free
859 	 */
860 	next->bio = NULL;
861 	return next;
862 }
863 
864 static struct request *attempt_back_merge(struct request_queue *q,
865 		struct request *rq)
866 {
867 	struct request *next = elv_latter_request(q, rq);
868 
869 	if (next)
870 		return attempt_merge(q, rq, next);
871 
872 	return NULL;
873 }
874 
875 static struct request *attempt_front_merge(struct request_queue *q,
876 		struct request *rq)
877 {
878 	struct request *prev = elv_former_request(q, rq);
879 
880 	if (prev)
881 		return attempt_merge(q, prev, rq);
882 
883 	return NULL;
884 }
885 
886 /*
887  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
888  * otherwise. The caller is responsible for freeing 'next' if the merge
889  * happened.
890  */
891 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
892 			   struct request *next)
893 {
894 	return attempt_merge(q, rq, next);
895 }
896 
897 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
898 {
899 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
900 		return false;
901 
902 	if (req_op(rq) != bio_op(bio))
903 		return false;
904 
905 	/* different data direction or already started, don't merge */
906 	if (bio_data_dir(bio) != rq_data_dir(rq))
907 		return false;
908 
909 	/* don't merge across cgroup boundaries */
910 	if (!blk_cgroup_mergeable(rq, bio))
911 		return false;
912 
913 	/* only merge integrity protected bio into ditto rq */
914 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
915 		return false;
916 
917 	/* Only merge if the crypt contexts are compatible */
918 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
919 		return false;
920 
921 	if (rq->ioprio != bio_prio(bio))
922 		return false;
923 
924 	return true;
925 }
926 
927 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
928 {
929 	if (blk_discard_mergable(rq))
930 		return ELEVATOR_DISCARD_MERGE;
931 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
932 		return ELEVATOR_BACK_MERGE;
933 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
934 		return ELEVATOR_FRONT_MERGE;
935 	return ELEVATOR_NO_MERGE;
936 }
937 
938 static void blk_account_io_merge_bio(struct request *req)
939 {
940 	if (!blk_do_io_stat(req))
941 		return;
942 
943 	part_stat_lock();
944 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
945 	part_stat_unlock();
946 }
947 
948 enum bio_merge_status {
949 	BIO_MERGE_OK,
950 	BIO_MERGE_NONE,
951 	BIO_MERGE_FAILED,
952 };
953 
954 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
955 		struct bio *bio, unsigned int nr_segs)
956 {
957 	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
958 
959 	if (!ll_back_merge_fn(req, bio, nr_segs))
960 		return BIO_MERGE_FAILED;
961 
962 	trace_block_bio_backmerge(bio);
963 	rq_qos_merge(req->q, req, bio);
964 
965 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
966 		blk_rq_set_mixed_merge(req);
967 
968 	req->biotail->bi_next = bio;
969 	req->biotail = bio;
970 	req->__data_len += bio->bi_iter.bi_size;
971 
972 	bio_crypt_free_ctx(bio);
973 
974 	blk_account_io_merge_bio(req);
975 	return BIO_MERGE_OK;
976 }
977 
978 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
979 		struct bio *bio, unsigned int nr_segs)
980 {
981 	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
982 
983 	if (!ll_front_merge_fn(req, bio, nr_segs))
984 		return BIO_MERGE_FAILED;
985 
986 	trace_block_bio_frontmerge(bio);
987 	rq_qos_merge(req->q, req, bio);
988 
989 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
990 		blk_rq_set_mixed_merge(req);
991 
992 	bio->bi_next = req->bio;
993 	req->bio = bio;
994 
995 	req->__sector = bio->bi_iter.bi_sector;
996 	req->__data_len += bio->bi_iter.bi_size;
997 
998 	bio_crypt_do_front_merge(req, bio);
999 
1000 	blk_account_io_merge_bio(req);
1001 	return BIO_MERGE_OK;
1002 }
1003 
1004 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1005 		struct request *req, struct bio *bio)
1006 {
1007 	unsigned short segments = blk_rq_nr_discard_segments(req);
1008 
1009 	if (segments >= queue_max_discard_segments(q))
1010 		goto no_merge;
1011 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1012 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1013 		goto no_merge;
1014 
1015 	rq_qos_merge(q, req, bio);
1016 
1017 	req->biotail->bi_next = bio;
1018 	req->biotail = bio;
1019 	req->__data_len += bio->bi_iter.bi_size;
1020 	req->nr_phys_segments = segments + 1;
1021 
1022 	blk_account_io_merge_bio(req);
1023 	return BIO_MERGE_OK;
1024 no_merge:
1025 	req_set_nomerge(q, req);
1026 	return BIO_MERGE_FAILED;
1027 }
1028 
1029 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1030 						   struct request *rq,
1031 						   struct bio *bio,
1032 						   unsigned int nr_segs,
1033 						   bool sched_allow_merge)
1034 {
1035 	if (!blk_rq_merge_ok(rq, bio))
1036 		return BIO_MERGE_NONE;
1037 
1038 	switch (blk_try_merge(rq, bio)) {
1039 	case ELEVATOR_BACK_MERGE:
1040 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1041 			return bio_attempt_back_merge(rq, bio, nr_segs);
1042 		break;
1043 	case ELEVATOR_FRONT_MERGE:
1044 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1045 			return bio_attempt_front_merge(rq, bio, nr_segs);
1046 		break;
1047 	case ELEVATOR_DISCARD_MERGE:
1048 		return bio_attempt_discard_merge(q, rq, bio);
1049 	default:
1050 		return BIO_MERGE_NONE;
1051 	}
1052 
1053 	return BIO_MERGE_FAILED;
1054 }
1055 
1056 /**
1057  * blk_attempt_plug_merge - try to merge with %current's plugged list
1058  * @q: request_queue new bio is being queued at
1059  * @bio: new bio being queued
1060  * @nr_segs: number of segments in @bio
1061  * from the passed in @q already in the plug list
1062  *
1063  * Determine whether @bio being queued on @q can be merged with the previous
1064  * request on %current's plugged list.  Returns %true if merge was successful,
1065  * otherwise %false.
1066  *
1067  * Plugging coalesces IOs from the same issuer for the same purpose without
1068  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1069  * than scheduling, and the request, while may have elvpriv data, is not
1070  * added on the elevator at this point.  In addition, we don't have
1071  * reliable access to the elevator outside queue lock.  Only check basic
1072  * merging parameters without querying the elevator.
1073  *
1074  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1075  */
1076 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1077 		unsigned int nr_segs)
1078 {
1079 	struct blk_plug *plug;
1080 	struct request *rq;
1081 
1082 	plug = blk_mq_plug(bio);
1083 	if (!plug || rq_list_empty(plug->mq_list))
1084 		return false;
1085 
1086 	rq_list_for_each(&plug->mq_list, rq) {
1087 		if (rq->q == q) {
1088 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1089 			    BIO_MERGE_OK)
1090 				return true;
1091 			break;
1092 		}
1093 
1094 		/*
1095 		 * Only keep iterating plug list for merges if we have multiple
1096 		 * queues
1097 		 */
1098 		if (!plug->multiple_queues)
1099 			break;
1100 	}
1101 	return false;
1102 }
1103 
1104 /*
1105  * Iterate list of requests and see if we can merge this bio with any
1106  * of them.
1107  */
1108 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1109 			struct bio *bio, unsigned int nr_segs)
1110 {
1111 	struct request *rq;
1112 	int checked = 8;
1113 
1114 	list_for_each_entry_reverse(rq, list, queuelist) {
1115 		if (!checked--)
1116 			break;
1117 
1118 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1119 		case BIO_MERGE_NONE:
1120 			continue;
1121 		case BIO_MERGE_OK:
1122 			return true;
1123 		case BIO_MERGE_FAILED:
1124 			return false;
1125 		}
1126 
1127 	}
1128 
1129 	return false;
1130 }
1131 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1132 
1133 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1134 		unsigned int nr_segs, struct request **merged_request)
1135 {
1136 	struct request *rq;
1137 
1138 	switch (elv_merge(q, &rq, bio)) {
1139 	case ELEVATOR_BACK_MERGE:
1140 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1141 			return false;
1142 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1143 			return false;
1144 		*merged_request = attempt_back_merge(q, rq);
1145 		if (!*merged_request)
1146 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1147 		return true;
1148 	case ELEVATOR_FRONT_MERGE:
1149 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1150 			return false;
1151 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1152 			return false;
1153 		*merged_request = attempt_front_merge(q, rq);
1154 		if (!*merged_request)
1155 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1156 		return true;
1157 	case ELEVATOR_DISCARD_MERGE:
1158 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1159 	default:
1160 		return false;
1161 	}
1162 }
1163 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1164