1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 15 static inline bool bio_will_gap(struct request_queue *q, 16 struct request *prev_rq, struct bio *prev, struct bio *next) 17 { 18 struct bio_vec pb, nb; 19 20 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 21 return false; 22 23 /* 24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 25 * is quite difficult to respect the sg gap limit. We work hard to 26 * merge a huge number of small single bios in case of mkfs. 27 */ 28 if (prev_rq) 29 bio_get_first_bvec(prev_rq->bio, &pb); 30 else 31 bio_get_first_bvec(prev, &pb); 32 if (pb.bv_offset & queue_virt_boundary(q)) 33 return true; 34 35 /* 36 * We don't need to worry about the situation that the merged segment 37 * ends in unaligned virt boundary: 38 * 39 * - if 'pb' ends aligned, the merged segment ends aligned 40 * - if 'pb' ends unaligned, the next bio must include 41 * one single bvec of 'nb', otherwise the 'nb' can't 42 * merge with 'pb' 43 */ 44 bio_get_last_bvec(prev, &pb); 45 bio_get_first_bvec(next, &nb); 46 if (biovec_phys_mergeable(q, &pb, &nb)) 47 return false; 48 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 49 } 50 51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 52 { 53 return bio_will_gap(req->q, req, req->biotail, bio); 54 } 55 56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 57 { 58 return bio_will_gap(req->q, NULL, bio, req->bio); 59 } 60 61 static struct bio *blk_bio_discard_split(struct request_queue *q, 62 struct bio *bio, 63 struct bio_set *bs, 64 unsigned *nsegs) 65 { 66 unsigned int max_discard_sectors, granularity; 67 int alignment; 68 sector_t tmp; 69 unsigned split_sectors; 70 71 *nsegs = 1; 72 73 /* Zero-sector (unknown) and one-sector granularities are the same. */ 74 granularity = max(q->limits.discard_granularity >> 9, 1U); 75 76 max_discard_sectors = min(q->limits.max_discard_sectors, 77 bio_allowed_max_sectors(q)); 78 max_discard_sectors -= max_discard_sectors % granularity; 79 80 if (unlikely(!max_discard_sectors)) { 81 /* XXX: warn */ 82 return NULL; 83 } 84 85 if (bio_sectors(bio) <= max_discard_sectors) 86 return NULL; 87 88 split_sectors = max_discard_sectors; 89 90 /* 91 * If the next starting sector would be misaligned, stop the discard at 92 * the previous aligned sector. 93 */ 94 alignment = (q->limits.discard_alignment >> 9) % granularity; 95 96 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 97 tmp = sector_div(tmp, granularity); 98 99 if (split_sectors > tmp) 100 split_sectors -= tmp; 101 102 return bio_split(bio, split_sectors, GFP_NOIO, bs); 103 } 104 105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 106 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 107 { 108 *nsegs = 0; 109 110 if (!q->limits.max_write_zeroes_sectors) 111 return NULL; 112 113 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 114 return NULL; 115 116 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 117 } 118 119 static struct bio *blk_bio_write_same_split(struct request_queue *q, 120 struct bio *bio, 121 struct bio_set *bs, 122 unsigned *nsegs) 123 { 124 *nsegs = 1; 125 126 if (!q->limits.max_write_same_sectors) 127 return NULL; 128 129 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 130 return NULL; 131 132 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 133 } 134 135 static inline unsigned get_max_io_size(struct request_queue *q, 136 struct bio *bio) 137 { 138 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 139 unsigned mask = queue_logical_block_size(q) - 1; 140 141 /* aligned to logical block size */ 142 sectors &= ~(mask >> 9); 143 144 return sectors; 145 } 146 147 static unsigned get_max_segment_size(struct request_queue *q, 148 unsigned offset) 149 { 150 unsigned long mask = queue_segment_boundary(q); 151 152 /* default segment boundary mask means no boundary limit */ 153 if (mask == BLK_SEG_BOUNDARY_MASK) 154 return queue_max_segment_size(q); 155 156 return min_t(unsigned long, mask - (mask & offset) + 1, 157 queue_max_segment_size(q)); 158 } 159 160 /* 161 * Split the bvec @bv into segments, and update all kinds of 162 * variables. 163 */ 164 static bool bvec_split_segs(struct request_queue *q, struct bio_vec *bv, 165 unsigned *nsegs, unsigned *sectors, unsigned max_segs) 166 { 167 unsigned len = bv->bv_len; 168 unsigned total_len = 0; 169 unsigned new_nsegs = 0, seg_size = 0; 170 171 /* 172 * Multi-page bvec may be too big to hold in one segment, so the 173 * current bvec has to be splitted as multiple segments. 174 */ 175 while (len && new_nsegs + *nsegs < max_segs) { 176 seg_size = get_max_segment_size(q, bv->bv_offset + total_len); 177 seg_size = min(seg_size, len); 178 179 new_nsegs++; 180 total_len += seg_size; 181 len -= seg_size; 182 183 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 184 break; 185 } 186 187 if (new_nsegs) { 188 *nsegs += new_nsegs; 189 if (sectors) 190 *sectors += total_len >> 9; 191 } 192 193 /* split in the middle of the bvec if len != 0 */ 194 return !!len; 195 } 196 197 static struct bio *blk_bio_segment_split(struct request_queue *q, 198 struct bio *bio, 199 struct bio_set *bs, 200 unsigned *segs) 201 { 202 struct bio_vec bv, bvprv, *bvprvp = NULL; 203 struct bvec_iter iter; 204 unsigned nsegs = 0, sectors = 0; 205 const unsigned max_sectors = get_max_io_size(q, bio); 206 const unsigned max_segs = queue_max_segments(q); 207 208 bio_for_each_bvec(bv, bio, iter) { 209 /* 210 * If the queue doesn't support SG gaps and adding this 211 * offset would create a gap, disallow it. 212 */ 213 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 214 goto split; 215 216 if (sectors + (bv.bv_len >> 9) > max_sectors) { 217 /* 218 * Consider this a new segment if we're splitting in 219 * the middle of this vector. 220 */ 221 if (nsegs < max_segs && 222 sectors < max_sectors) { 223 /* split in the middle of bvec */ 224 bv.bv_len = (max_sectors - sectors) << 9; 225 bvec_split_segs(q, &bv, &nsegs, 226 §ors, max_segs); 227 } 228 goto split; 229 } 230 231 if (nsegs == max_segs) 232 goto split; 233 234 bvprv = bv; 235 bvprvp = &bvprv; 236 237 if (bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 238 nsegs++; 239 sectors += bv.bv_len >> 9; 240 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, 241 max_segs)) { 242 goto split; 243 } 244 } 245 246 *segs = nsegs; 247 return NULL; 248 split: 249 *segs = nsegs; 250 return bio_split(bio, sectors, GFP_NOIO, bs); 251 } 252 253 void __blk_queue_split(struct request_queue *q, struct bio **bio, 254 unsigned int *nr_segs) 255 { 256 struct bio *split; 257 258 switch (bio_op(*bio)) { 259 case REQ_OP_DISCARD: 260 case REQ_OP_SECURE_ERASE: 261 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 262 break; 263 case REQ_OP_WRITE_ZEROES: 264 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 265 nr_segs); 266 break; 267 case REQ_OP_WRITE_SAME: 268 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 269 nr_segs); 270 break; 271 default: 272 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 273 break; 274 } 275 276 if (split) { 277 /* there isn't chance to merge the splitted bio */ 278 split->bi_opf |= REQ_NOMERGE; 279 280 /* 281 * Since we're recursing into make_request here, ensure 282 * that we mark this bio as already having entered the queue. 283 * If not, and the queue is going away, we can get stuck 284 * forever on waiting for the queue reference to drop. But 285 * that will never happen, as we're already holding a 286 * reference to it. 287 */ 288 bio_set_flag(*bio, BIO_QUEUE_ENTERED); 289 290 bio_chain(split, *bio); 291 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 292 generic_make_request(*bio); 293 *bio = split; 294 } 295 } 296 297 void blk_queue_split(struct request_queue *q, struct bio **bio) 298 { 299 unsigned int nr_segs; 300 301 __blk_queue_split(q, bio, &nr_segs); 302 } 303 EXPORT_SYMBOL(blk_queue_split); 304 305 unsigned int blk_recalc_rq_segments(struct request *rq) 306 { 307 unsigned int nr_phys_segs = 0; 308 struct req_iterator iter; 309 struct bio_vec bv; 310 311 if (!rq->bio) 312 return 0; 313 314 switch (bio_op(rq->bio)) { 315 case REQ_OP_DISCARD: 316 case REQ_OP_SECURE_ERASE: 317 case REQ_OP_WRITE_ZEROES: 318 return 0; 319 case REQ_OP_WRITE_SAME: 320 return 1; 321 } 322 323 rq_for_each_bvec(bv, rq, iter) 324 bvec_split_segs(rq->q, &bv, &nr_phys_segs, NULL, UINT_MAX); 325 return nr_phys_segs; 326 } 327 328 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 329 struct scatterlist *sglist) 330 { 331 if (!*sg) 332 return sglist; 333 334 /* 335 * If the driver previously mapped a shorter list, we could see a 336 * termination bit prematurely unless it fully inits the sg table 337 * on each mapping. We KNOW that there must be more entries here 338 * or the driver would be buggy, so force clear the termination bit 339 * to avoid doing a full sg_init_table() in drivers for each command. 340 */ 341 sg_unmark_end(*sg); 342 return sg_next(*sg); 343 } 344 345 static unsigned blk_bvec_map_sg(struct request_queue *q, 346 struct bio_vec *bvec, struct scatterlist *sglist, 347 struct scatterlist **sg) 348 { 349 unsigned nbytes = bvec->bv_len; 350 unsigned nsegs = 0, total = 0; 351 352 while (nbytes > 0) { 353 unsigned offset = bvec->bv_offset + total; 354 unsigned len = min(get_max_segment_size(q, offset), nbytes); 355 struct page *page = bvec->bv_page; 356 357 /* 358 * Unfortunately a fair number of drivers barf on scatterlists 359 * that have an offset larger than PAGE_SIZE, despite other 360 * subsystems dealing with that invariant just fine. For now 361 * stick to the legacy format where we never present those from 362 * the block layer, but the code below should be removed once 363 * these offenders (mostly MMC/SD drivers) are fixed. 364 */ 365 page += (offset >> PAGE_SHIFT); 366 offset &= ~PAGE_MASK; 367 368 *sg = blk_next_sg(sg, sglist); 369 sg_set_page(*sg, page, len, offset); 370 371 total += len; 372 nbytes -= len; 373 nsegs++; 374 } 375 376 return nsegs; 377 } 378 379 static inline int __blk_bvec_map_sg(struct bio_vec bv, 380 struct scatterlist *sglist, struct scatterlist **sg) 381 { 382 *sg = blk_next_sg(sg, sglist); 383 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 384 return 1; 385 } 386 387 /* only try to merge bvecs into one sg if they are from two bios */ 388 static inline bool 389 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 390 struct bio_vec *bvprv, struct scatterlist **sg) 391 { 392 393 int nbytes = bvec->bv_len; 394 395 if (!*sg) 396 return false; 397 398 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 399 return false; 400 401 if (!biovec_phys_mergeable(q, bvprv, bvec)) 402 return false; 403 404 (*sg)->length += nbytes; 405 406 return true; 407 } 408 409 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 410 struct scatterlist *sglist, 411 struct scatterlist **sg) 412 { 413 struct bio_vec uninitialized_var(bvec), bvprv = { NULL }; 414 struct bvec_iter iter; 415 int nsegs = 0; 416 bool new_bio = false; 417 418 for_each_bio(bio) { 419 bio_for_each_bvec(bvec, bio, iter) { 420 /* 421 * Only try to merge bvecs from two bios given we 422 * have done bio internal merge when adding pages 423 * to bio 424 */ 425 if (new_bio && 426 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 427 goto next_bvec; 428 429 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 430 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 431 else 432 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 433 next_bvec: 434 new_bio = false; 435 } 436 if (likely(bio->bi_iter.bi_size)) { 437 bvprv = bvec; 438 new_bio = true; 439 } 440 } 441 442 return nsegs; 443 } 444 445 /* 446 * map a request to scatterlist, return number of sg entries setup. Caller 447 * must make sure sg can hold rq->nr_phys_segments entries 448 */ 449 int blk_rq_map_sg(struct request_queue *q, struct request *rq, 450 struct scatterlist *sglist) 451 { 452 struct scatterlist *sg = NULL; 453 int nsegs = 0; 454 455 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 456 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg); 457 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 458 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg); 459 else if (rq->bio) 460 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg); 461 462 if (unlikely(rq->rq_flags & RQF_COPY_USER) && 463 (blk_rq_bytes(rq) & q->dma_pad_mask)) { 464 unsigned int pad_len = 465 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 466 467 sg->length += pad_len; 468 rq->extra_len += pad_len; 469 } 470 471 if (q->dma_drain_size && q->dma_drain_needed(rq)) { 472 if (op_is_write(req_op(rq))) 473 memset(q->dma_drain_buffer, 0, q->dma_drain_size); 474 475 sg_unmark_end(sg); 476 sg = sg_next(sg); 477 sg_set_page(sg, virt_to_page(q->dma_drain_buffer), 478 q->dma_drain_size, 479 ((unsigned long)q->dma_drain_buffer) & 480 (PAGE_SIZE - 1)); 481 nsegs++; 482 rq->extra_len += q->dma_drain_size; 483 } 484 485 if (sg) 486 sg_mark_end(sg); 487 488 /* 489 * Something must have been wrong if the figured number of 490 * segment is bigger than number of req's physical segments 491 */ 492 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 493 494 return nsegs; 495 } 496 EXPORT_SYMBOL(blk_rq_map_sg); 497 498 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 499 unsigned int nr_phys_segs) 500 { 501 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q)) 502 goto no_merge; 503 504 if (blk_integrity_merge_bio(req->q, req, bio) == false) 505 goto no_merge; 506 507 /* 508 * This will form the start of a new hw segment. Bump both 509 * counters. 510 */ 511 req->nr_phys_segments += nr_phys_segs; 512 return 1; 513 514 no_merge: 515 req_set_nomerge(req->q, req); 516 return 0; 517 } 518 519 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 520 { 521 if (req_gap_back_merge(req, bio)) 522 return 0; 523 if (blk_integrity_rq(req) && 524 integrity_req_gap_back_merge(req, bio)) 525 return 0; 526 if (blk_rq_sectors(req) + bio_sectors(bio) > 527 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 528 req_set_nomerge(req->q, req); 529 return 0; 530 } 531 532 return ll_new_hw_segment(req, bio, nr_segs); 533 } 534 535 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 536 { 537 if (req_gap_front_merge(req, bio)) 538 return 0; 539 if (blk_integrity_rq(req) && 540 integrity_req_gap_front_merge(req, bio)) 541 return 0; 542 if (blk_rq_sectors(req) + bio_sectors(bio) > 543 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 544 req_set_nomerge(req->q, req); 545 return 0; 546 } 547 548 return ll_new_hw_segment(req, bio, nr_segs); 549 } 550 551 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 552 struct request *next) 553 { 554 unsigned short segments = blk_rq_nr_discard_segments(req); 555 556 if (segments >= queue_max_discard_segments(q)) 557 goto no_merge; 558 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 559 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 560 goto no_merge; 561 562 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 563 return true; 564 no_merge: 565 req_set_nomerge(q, req); 566 return false; 567 } 568 569 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 570 struct request *next) 571 { 572 int total_phys_segments; 573 574 if (req_gap_back_merge(req, next->bio)) 575 return 0; 576 577 /* 578 * Will it become too large? 579 */ 580 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 581 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 582 return 0; 583 584 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 585 if (total_phys_segments > queue_max_segments(q)) 586 return 0; 587 588 if (blk_integrity_merge_rq(q, req, next) == false) 589 return 0; 590 591 /* Merge is OK... */ 592 req->nr_phys_segments = total_phys_segments; 593 return 1; 594 } 595 596 /** 597 * blk_rq_set_mixed_merge - mark a request as mixed merge 598 * @rq: request to mark as mixed merge 599 * 600 * Description: 601 * @rq is about to be mixed merged. Make sure the attributes 602 * which can be mixed are set in each bio and mark @rq as mixed 603 * merged. 604 */ 605 void blk_rq_set_mixed_merge(struct request *rq) 606 { 607 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 608 struct bio *bio; 609 610 if (rq->rq_flags & RQF_MIXED_MERGE) 611 return; 612 613 /* 614 * @rq will no longer represent mixable attributes for all the 615 * contained bios. It will just track those of the first one. 616 * Distributes the attributs to each bio. 617 */ 618 for (bio = rq->bio; bio; bio = bio->bi_next) { 619 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 620 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 621 bio->bi_opf |= ff; 622 } 623 rq->rq_flags |= RQF_MIXED_MERGE; 624 } 625 626 static void blk_account_io_merge(struct request *req) 627 { 628 if (blk_do_io_stat(req)) { 629 struct hd_struct *part; 630 631 part_stat_lock(); 632 part = req->part; 633 634 part_dec_in_flight(req->q, part, rq_data_dir(req)); 635 636 hd_struct_put(part); 637 part_stat_unlock(); 638 } 639 } 640 /* 641 * Two cases of handling DISCARD merge: 642 * If max_discard_segments > 1, the driver takes every bio 643 * as a range and send them to controller together. The ranges 644 * needn't to be contiguous. 645 * Otherwise, the bios/requests will be handled as same as 646 * others which should be contiguous. 647 */ 648 static inline bool blk_discard_mergable(struct request *req) 649 { 650 if (req_op(req) == REQ_OP_DISCARD && 651 queue_max_discard_segments(req->q) > 1) 652 return true; 653 return false; 654 } 655 656 static enum elv_merge blk_try_req_merge(struct request *req, 657 struct request *next) 658 { 659 if (blk_discard_mergable(req)) 660 return ELEVATOR_DISCARD_MERGE; 661 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 662 return ELEVATOR_BACK_MERGE; 663 664 return ELEVATOR_NO_MERGE; 665 } 666 667 /* 668 * For non-mq, this has to be called with the request spinlock acquired. 669 * For mq with scheduling, the appropriate queue wide lock should be held. 670 */ 671 static struct request *attempt_merge(struct request_queue *q, 672 struct request *req, struct request *next) 673 { 674 if (!rq_mergeable(req) || !rq_mergeable(next)) 675 return NULL; 676 677 if (req_op(req) != req_op(next)) 678 return NULL; 679 680 if (rq_data_dir(req) != rq_data_dir(next) 681 || req->rq_disk != next->rq_disk) 682 return NULL; 683 684 if (req_op(req) == REQ_OP_WRITE_SAME && 685 !blk_write_same_mergeable(req->bio, next->bio)) 686 return NULL; 687 688 /* 689 * Don't allow merge of different write hints, or for a hint with 690 * non-hint IO. 691 */ 692 if (req->write_hint != next->write_hint) 693 return NULL; 694 695 if (req->ioprio != next->ioprio) 696 return NULL; 697 698 /* 699 * If we are allowed to merge, then append bio list 700 * from next to rq and release next. merge_requests_fn 701 * will have updated segment counts, update sector 702 * counts here. Handle DISCARDs separately, as they 703 * have separate settings. 704 */ 705 706 switch (blk_try_req_merge(req, next)) { 707 case ELEVATOR_DISCARD_MERGE: 708 if (!req_attempt_discard_merge(q, req, next)) 709 return NULL; 710 break; 711 case ELEVATOR_BACK_MERGE: 712 if (!ll_merge_requests_fn(q, req, next)) 713 return NULL; 714 break; 715 default: 716 return NULL; 717 } 718 719 /* 720 * If failfast settings disagree or any of the two is already 721 * a mixed merge, mark both as mixed before proceeding. This 722 * makes sure that all involved bios have mixable attributes 723 * set properly. 724 */ 725 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 726 (req->cmd_flags & REQ_FAILFAST_MASK) != 727 (next->cmd_flags & REQ_FAILFAST_MASK)) { 728 blk_rq_set_mixed_merge(req); 729 blk_rq_set_mixed_merge(next); 730 } 731 732 /* 733 * At this point we have either done a back merge or front merge. We 734 * need the smaller start_time_ns of the merged requests to be the 735 * current request for accounting purposes. 736 */ 737 if (next->start_time_ns < req->start_time_ns) 738 req->start_time_ns = next->start_time_ns; 739 740 req->biotail->bi_next = next->bio; 741 req->biotail = next->biotail; 742 743 req->__data_len += blk_rq_bytes(next); 744 745 if (!blk_discard_mergable(req)) 746 elv_merge_requests(q, req, next); 747 748 /* 749 * 'next' is going away, so update stats accordingly 750 */ 751 blk_account_io_merge(next); 752 753 /* 754 * ownership of bio passed from next to req, return 'next' for 755 * the caller to free 756 */ 757 next->bio = NULL; 758 return next; 759 } 760 761 struct request *attempt_back_merge(struct request_queue *q, struct request *rq) 762 { 763 struct request *next = elv_latter_request(q, rq); 764 765 if (next) 766 return attempt_merge(q, rq, next); 767 768 return NULL; 769 } 770 771 struct request *attempt_front_merge(struct request_queue *q, struct request *rq) 772 { 773 struct request *prev = elv_former_request(q, rq); 774 775 if (prev) 776 return attempt_merge(q, prev, rq); 777 778 return NULL; 779 } 780 781 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 782 struct request *next) 783 { 784 struct request *free; 785 786 free = attempt_merge(q, rq, next); 787 if (free) { 788 blk_put_request(free); 789 return 1; 790 } 791 792 return 0; 793 } 794 795 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 796 { 797 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 798 return false; 799 800 if (req_op(rq) != bio_op(bio)) 801 return false; 802 803 /* different data direction or already started, don't merge */ 804 if (bio_data_dir(bio) != rq_data_dir(rq)) 805 return false; 806 807 /* must be same device */ 808 if (rq->rq_disk != bio->bi_disk) 809 return false; 810 811 /* only merge integrity protected bio into ditto rq */ 812 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 813 return false; 814 815 /* must be using the same buffer */ 816 if (req_op(rq) == REQ_OP_WRITE_SAME && 817 !blk_write_same_mergeable(rq->bio, bio)) 818 return false; 819 820 /* 821 * Don't allow merge of different write hints, or for a hint with 822 * non-hint IO. 823 */ 824 if (rq->write_hint != bio->bi_write_hint) 825 return false; 826 827 if (rq->ioprio != bio_prio(bio)) 828 return false; 829 830 return true; 831 } 832 833 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 834 { 835 if (blk_discard_mergable(rq)) 836 return ELEVATOR_DISCARD_MERGE; 837 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 838 return ELEVATOR_BACK_MERGE; 839 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 840 return ELEVATOR_FRONT_MERGE; 841 return ELEVATOR_NO_MERGE; 842 } 843