1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 15 static inline bool bio_will_gap(struct request_queue *q, 16 struct request *prev_rq, struct bio *prev, struct bio *next) 17 { 18 struct bio_vec pb, nb; 19 20 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 21 return false; 22 23 /* 24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 25 * is quite difficult to respect the sg gap limit. We work hard to 26 * merge a huge number of small single bios in case of mkfs. 27 */ 28 if (prev_rq) 29 bio_get_first_bvec(prev_rq->bio, &pb); 30 else 31 bio_get_first_bvec(prev, &pb); 32 if (pb.bv_offset & queue_virt_boundary(q)) 33 return true; 34 35 /* 36 * We don't need to worry about the situation that the merged segment 37 * ends in unaligned virt boundary: 38 * 39 * - if 'pb' ends aligned, the merged segment ends aligned 40 * - if 'pb' ends unaligned, the next bio must include 41 * one single bvec of 'nb', otherwise the 'nb' can't 42 * merge with 'pb' 43 */ 44 bio_get_last_bvec(prev, &pb); 45 bio_get_first_bvec(next, &nb); 46 if (biovec_phys_mergeable(q, &pb, &nb)) 47 return false; 48 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 49 } 50 51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 52 { 53 return bio_will_gap(req->q, req, req->biotail, bio); 54 } 55 56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 57 { 58 return bio_will_gap(req->q, NULL, bio, req->bio); 59 } 60 61 static struct bio *blk_bio_discard_split(struct request_queue *q, 62 struct bio *bio, 63 struct bio_set *bs, 64 unsigned *nsegs) 65 { 66 unsigned int max_discard_sectors, granularity; 67 int alignment; 68 sector_t tmp; 69 unsigned split_sectors; 70 71 *nsegs = 1; 72 73 /* Zero-sector (unknown) and one-sector granularities are the same. */ 74 granularity = max(q->limits.discard_granularity >> 9, 1U); 75 76 max_discard_sectors = min(q->limits.max_discard_sectors, 77 bio_allowed_max_sectors(q)); 78 max_discard_sectors -= max_discard_sectors % granularity; 79 80 if (unlikely(!max_discard_sectors)) { 81 /* XXX: warn */ 82 return NULL; 83 } 84 85 if (bio_sectors(bio) <= max_discard_sectors) 86 return NULL; 87 88 split_sectors = max_discard_sectors; 89 90 /* 91 * If the next starting sector would be misaligned, stop the discard at 92 * the previous aligned sector. 93 */ 94 alignment = (q->limits.discard_alignment >> 9) % granularity; 95 96 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 97 tmp = sector_div(tmp, granularity); 98 99 if (split_sectors > tmp) 100 split_sectors -= tmp; 101 102 return bio_split(bio, split_sectors, GFP_NOIO, bs); 103 } 104 105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 106 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 107 { 108 *nsegs = 0; 109 110 if (!q->limits.max_write_zeroes_sectors) 111 return NULL; 112 113 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 114 return NULL; 115 116 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 117 } 118 119 static struct bio *blk_bio_write_same_split(struct request_queue *q, 120 struct bio *bio, 121 struct bio_set *bs, 122 unsigned *nsegs) 123 { 124 *nsegs = 1; 125 126 if (!q->limits.max_write_same_sectors) 127 return NULL; 128 129 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 130 return NULL; 131 132 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 133 } 134 135 /* 136 * Return the maximum number of sectors from the start of a bio that may be 137 * submitted as a single request to a block device. If enough sectors remain, 138 * align the end to the physical block size. Otherwise align the end to the 139 * logical block size. This approach minimizes the number of non-aligned 140 * requests that are submitted to a block device if the start of a bio is not 141 * aligned to a physical block boundary. 142 */ 143 static inline unsigned get_max_io_size(struct request_queue *q, 144 struct bio *bio) 145 { 146 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 147 unsigned max_sectors = sectors; 148 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 149 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 150 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 151 152 max_sectors += start_offset; 153 max_sectors &= ~(pbs - 1); 154 if (max_sectors > start_offset) 155 return max_sectors - start_offset; 156 157 return sectors & (lbs - 1); 158 } 159 160 static inline unsigned get_max_segment_size(const struct request_queue *q, 161 struct page *start_page, 162 unsigned long offset) 163 { 164 unsigned long mask = queue_segment_boundary(q); 165 166 offset = mask & (page_to_phys(start_page) + offset); 167 return min_t(unsigned long, mask - offset + 1, 168 queue_max_segment_size(q)); 169 } 170 171 /** 172 * bvec_split_segs - verify whether or not a bvec should be split in the middle 173 * @q: [in] request queue associated with the bio associated with @bv 174 * @bv: [in] bvec to examine 175 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 176 * by the number of segments from @bv that may be appended to that 177 * bio without exceeding @max_segs 178 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 179 * by the number of sectors from @bv that may be appended to that 180 * bio without exceeding @max_sectors 181 * @max_segs: [in] upper bound for *@nsegs 182 * @max_sectors: [in] upper bound for *@sectors 183 * 184 * When splitting a bio, it can happen that a bvec is encountered that is too 185 * big to fit in a single segment and hence that it has to be split in the 186 * middle. This function verifies whether or not that should happen. The value 187 * %true is returned if and only if appending the entire @bv to a bio with 188 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 189 * the block driver. 190 */ 191 static bool bvec_split_segs(const struct request_queue *q, 192 const struct bio_vec *bv, unsigned *nsegs, 193 unsigned *sectors, unsigned max_segs, 194 unsigned max_sectors) 195 { 196 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 197 unsigned len = min(bv->bv_len, max_len); 198 unsigned total_len = 0; 199 unsigned seg_size = 0; 200 201 while (len && *nsegs < max_segs) { 202 seg_size = get_max_segment_size(q, bv->bv_page, 203 bv->bv_offset + total_len); 204 seg_size = min(seg_size, len); 205 206 (*nsegs)++; 207 total_len += seg_size; 208 len -= seg_size; 209 210 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 211 break; 212 } 213 214 *sectors += total_len >> 9; 215 216 /* tell the caller to split the bvec if it is too big to fit */ 217 return len > 0 || bv->bv_len > max_len; 218 } 219 220 /** 221 * blk_bio_segment_split - split a bio in two bios 222 * @q: [in] request queue pointer 223 * @bio: [in] bio to be split 224 * @bs: [in] bio set to allocate the clone from 225 * @segs: [out] number of segments in the bio with the first half of the sectors 226 * 227 * Clone @bio, update the bi_iter of the clone to represent the first sectors 228 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 229 * following is guaranteed for the cloned bio: 230 * - That it has at most get_max_io_size(@q, @bio) sectors. 231 * - That it has at most queue_max_segments(@q) segments. 232 * 233 * Except for discard requests the cloned bio will point at the bi_io_vec of 234 * the original bio. It is the responsibility of the caller to ensure that the 235 * original bio is not freed before the cloned bio. The caller is also 236 * responsible for ensuring that @bs is only destroyed after processing of the 237 * split bio has finished. 238 */ 239 static struct bio *blk_bio_segment_split(struct request_queue *q, 240 struct bio *bio, 241 struct bio_set *bs, 242 unsigned *segs) 243 { 244 struct bio_vec bv, bvprv, *bvprvp = NULL; 245 struct bvec_iter iter; 246 unsigned nsegs = 0, sectors = 0; 247 const unsigned max_sectors = get_max_io_size(q, bio); 248 const unsigned max_segs = queue_max_segments(q); 249 250 bio_for_each_bvec(bv, bio, iter) { 251 /* 252 * If the queue doesn't support SG gaps and adding this 253 * offset would create a gap, disallow it. 254 */ 255 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 256 goto split; 257 258 if (nsegs < max_segs && 259 sectors + (bv.bv_len >> 9) <= max_sectors && 260 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 261 nsegs++; 262 sectors += bv.bv_len >> 9; 263 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 264 max_sectors)) { 265 goto split; 266 } 267 268 bvprv = bv; 269 bvprvp = &bvprv; 270 } 271 272 *segs = nsegs; 273 return NULL; 274 split: 275 *segs = nsegs; 276 return bio_split(bio, sectors, GFP_NOIO, bs); 277 } 278 279 /** 280 * __blk_queue_split - split a bio and submit the second half 281 * @q: [in] request queue pointer 282 * @bio: [in, out] bio to be split 283 * @nr_segs: [out] number of segments in the first bio 284 * 285 * Split a bio into two bios, chain the two bios, submit the second half and 286 * store a pointer to the first half in *@bio. If the second bio is still too 287 * big it will be split by a recursive call to this function. Since this 288 * function may allocate a new bio from @q->bio_split, it is the responsibility 289 * of the caller to ensure that @q is only released after processing of the 290 * split bio has finished. 291 */ 292 void __blk_queue_split(struct request_queue *q, struct bio **bio, 293 unsigned int *nr_segs) 294 { 295 struct bio *split = NULL; 296 297 switch (bio_op(*bio)) { 298 case REQ_OP_DISCARD: 299 case REQ_OP_SECURE_ERASE: 300 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 301 break; 302 case REQ_OP_WRITE_ZEROES: 303 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 304 nr_segs); 305 break; 306 case REQ_OP_WRITE_SAME: 307 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 308 nr_segs); 309 break; 310 default: 311 /* 312 * All drivers must accept single-segments bios that are <= 313 * PAGE_SIZE. This is a quick and dirty check that relies on 314 * the fact that bi_io_vec[0] is always valid if a bio has data. 315 * The check might lead to occasional false negatives when bios 316 * are cloned, but compared to the performance impact of cloned 317 * bios themselves the loop below doesn't matter anyway. 318 */ 319 if (!q->limits.chunk_sectors && 320 (*bio)->bi_vcnt == 1 && 321 ((*bio)->bi_io_vec[0].bv_len + 322 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { 323 *nr_segs = 1; 324 break; 325 } 326 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 327 break; 328 } 329 330 if (split) { 331 /* there isn't chance to merge the splitted bio */ 332 split->bi_opf |= REQ_NOMERGE; 333 334 /* 335 * Since we're recursing into make_request here, ensure 336 * that we mark this bio as already having entered the queue. 337 * If not, and the queue is going away, we can get stuck 338 * forever on waiting for the queue reference to drop. But 339 * that will never happen, as we're already holding a 340 * reference to it. 341 */ 342 bio_set_flag(*bio, BIO_QUEUE_ENTERED); 343 344 bio_chain(split, *bio); 345 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 346 generic_make_request(*bio); 347 *bio = split; 348 } 349 } 350 351 /** 352 * blk_queue_split - split a bio and submit the second half 353 * @q: [in] request queue pointer 354 * @bio: [in, out] bio to be split 355 * 356 * Split a bio into two bios, chains the two bios, submit the second half and 357 * store a pointer to the first half in *@bio. Since this function may allocate 358 * a new bio from @q->bio_split, it is the responsibility of the caller to 359 * ensure that @q is only released after processing of the split bio has 360 * finished. 361 */ 362 void blk_queue_split(struct request_queue *q, struct bio **bio) 363 { 364 unsigned int nr_segs; 365 366 __blk_queue_split(q, bio, &nr_segs); 367 } 368 EXPORT_SYMBOL(blk_queue_split); 369 370 unsigned int blk_recalc_rq_segments(struct request *rq) 371 { 372 unsigned int nr_phys_segs = 0; 373 unsigned int nr_sectors = 0; 374 struct req_iterator iter; 375 struct bio_vec bv; 376 377 if (!rq->bio) 378 return 0; 379 380 switch (bio_op(rq->bio)) { 381 case REQ_OP_DISCARD: 382 case REQ_OP_SECURE_ERASE: 383 case REQ_OP_WRITE_ZEROES: 384 return 0; 385 case REQ_OP_WRITE_SAME: 386 return 1; 387 } 388 389 rq_for_each_bvec(bv, rq, iter) 390 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 391 UINT_MAX, UINT_MAX); 392 return nr_phys_segs; 393 } 394 395 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 396 struct scatterlist *sglist) 397 { 398 if (!*sg) 399 return sglist; 400 401 /* 402 * If the driver previously mapped a shorter list, we could see a 403 * termination bit prematurely unless it fully inits the sg table 404 * on each mapping. We KNOW that there must be more entries here 405 * or the driver would be buggy, so force clear the termination bit 406 * to avoid doing a full sg_init_table() in drivers for each command. 407 */ 408 sg_unmark_end(*sg); 409 return sg_next(*sg); 410 } 411 412 static unsigned blk_bvec_map_sg(struct request_queue *q, 413 struct bio_vec *bvec, struct scatterlist *sglist, 414 struct scatterlist **sg) 415 { 416 unsigned nbytes = bvec->bv_len; 417 unsigned nsegs = 0, total = 0; 418 419 while (nbytes > 0) { 420 unsigned offset = bvec->bv_offset + total; 421 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 422 offset), nbytes); 423 struct page *page = bvec->bv_page; 424 425 /* 426 * Unfortunately a fair number of drivers barf on scatterlists 427 * that have an offset larger than PAGE_SIZE, despite other 428 * subsystems dealing with that invariant just fine. For now 429 * stick to the legacy format where we never present those from 430 * the block layer, but the code below should be removed once 431 * these offenders (mostly MMC/SD drivers) are fixed. 432 */ 433 page += (offset >> PAGE_SHIFT); 434 offset &= ~PAGE_MASK; 435 436 *sg = blk_next_sg(sg, sglist); 437 sg_set_page(*sg, page, len, offset); 438 439 total += len; 440 nbytes -= len; 441 nsegs++; 442 } 443 444 return nsegs; 445 } 446 447 static inline int __blk_bvec_map_sg(struct bio_vec bv, 448 struct scatterlist *sglist, struct scatterlist **sg) 449 { 450 *sg = blk_next_sg(sg, sglist); 451 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 452 return 1; 453 } 454 455 /* only try to merge bvecs into one sg if they are from two bios */ 456 static inline bool 457 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 458 struct bio_vec *bvprv, struct scatterlist **sg) 459 { 460 461 int nbytes = bvec->bv_len; 462 463 if (!*sg) 464 return false; 465 466 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 467 return false; 468 469 if (!biovec_phys_mergeable(q, bvprv, bvec)) 470 return false; 471 472 (*sg)->length += nbytes; 473 474 return true; 475 } 476 477 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 478 struct scatterlist *sglist, 479 struct scatterlist **sg) 480 { 481 struct bio_vec uninitialized_var(bvec), bvprv = { NULL }; 482 struct bvec_iter iter; 483 int nsegs = 0; 484 bool new_bio = false; 485 486 for_each_bio(bio) { 487 bio_for_each_bvec(bvec, bio, iter) { 488 /* 489 * Only try to merge bvecs from two bios given we 490 * have done bio internal merge when adding pages 491 * to bio 492 */ 493 if (new_bio && 494 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 495 goto next_bvec; 496 497 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 498 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 499 else 500 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 501 next_bvec: 502 new_bio = false; 503 } 504 if (likely(bio->bi_iter.bi_size)) { 505 bvprv = bvec; 506 new_bio = true; 507 } 508 } 509 510 return nsegs; 511 } 512 513 /* 514 * map a request to scatterlist, return number of sg entries setup. Caller 515 * must make sure sg can hold rq->nr_phys_segments entries 516 */ 517 int blk_rq_map_sg(struct request_queue *q, struct request *rq, 518 struct scatterlist *sglist) 519 { 520 struct scatterlist *sg = NULL; 521 int nsegs = 0; 522 523 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 524 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg); 525 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 526 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg); 527 else if (rq->bio) 528 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg); 529 530 if (unlikely(rq->rq_flags & RQF_COPY_USER) && 531 (blk_rq_bytes(rq) & q->dma_pad_mask)) { 532 unsigned int pad_len = 533 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 534 535 sg->length += pad_len; 536 rq->extra_len += pad_len; 537 } 538 539 if (q->dma_drain_size && q->dma_drain_needed(rq)) { 540 if (op_is_write(req_op(rq))) 541 memset(q->dma_drain_buffer, 0, q->dma_drain_size); 542 543 sg_unmark_end(sg); 544 sg = sg_next(sg); 545 sg_set_page(sg, virt_to_page(q->dma_drain_buffer), 546 q->dma_drain_size, 547 ((unsigned long)q->dma_drain_buffer) & 548 (PAGE_SIZE - 1)); 549 nsegs++; 550 rq->extra_len += q->dma_drain_size; 551 } 552 553 if (sg) 554 sg_mark_end(sg); 555 556 /* 557 * Something must have been wrong if the figured number of 558 * segment is bigger than number of req's physical segments 559 */ 560 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 561 562 return nsegs; 563 } 564 EXPORT_SYMBOL(blk_rq_map_sg); 565 566 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 567 unsigned int nr_phys_segs) 568 { 569 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q)) 570 goto no_merge; 571 572 if (blk_integrity_merge_bio(req->q, req, bio) == false) 573 goto no_merge; 574 575 /* 576 * This will form the start of a new hw segment. Bump both 577 * counters. 578 */ 579 req->nr_phys_segments += nr_phys_segs; 580 return 1; 581 582 no_merge: 583 req_set_nomerge(req->q, req); 584 return 0; 585 } 586 587 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 588 { 589 if (req_gap_back_merge(req, bio)) 590 return 0; 591 if (blk_integrity_rq(req) && 592 integrity_req_gap_back_merge(req, bio)) 593 return 0; 594 if (blk_rq_sectors(req) + bio_sectors(bio) > 595 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 596 req_set_nomerge(req->q, req); 597 return 0; 598 } 599 600 return ll_new_hw_segment(req, bio, nr_segs); 601 } 602 603 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 604 { 605 if (req_gap_front_merge(req, bio)) 606 return 0; 607 if (blk_integrity_rq(req) && 608 integrity_req_gap_front_merge(req, bio)) 609 return 0; 610 if (blk_rq_sectors(req) + bio_sectors(bio) > 611 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 612 req_set_nomerge(req->q, req); 613 return 0; 614 } 615 616 return ll_new_hw_segment(req, bio, nr_segs); 617 } 618 619 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 620 struct request *next) 621 { 622 unsigned short segments = blk_rq_nr_discard_segments(req); 623 624 if (segments >= queue_max_discard_segments(q)) 625 goto no_merge; 626 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 627 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 628 goto no_merge; 629 630 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 631 return true; 632 no_merge: 633 req_set_nomerge(q, req); 634 return false; 635 } 636 637 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 638 struct request *next) 639 { 640 int total_phys_segments; 641 642 if (req_gap_back_merge(req, next->bio)) 643 return 0; 644 645 /* 646 * Will it become too large? 647 */ 648 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 649 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 650 return 0; 651 652 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 653 if (total_phys_segments > queue_max_segments(q)) 654 return 0; 655 656 if (blk_integrity_merge_rq(q, req, next) == false) 657 return 0; 658 659 /* Merge is OK... */ 660 req->nr_phys_segments = total_phys_segments; 661 return 1; 662 } 663 664 /** 665 * blk_rq_set_mixed_merge - mark a request as mixed merge 666 * @rq: request to mark as mixed merge 667 * 668 * Description: 669 * @rq is about to be mixed merged. Make sure the attributes 670 * which can be mixed are set in each bio and mark @rq as mixed 671 * merged. 672 */ 673 void blk_rq_set_mixed_merge(struct request *rq) 674 { 675 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 676 struct bio *bio; 677 678 if (rq->rq_flags & RQF_MIXED_MERGE) 679 return; 680 681 /* 682 * @rq will no longer represent mixable attributes for all the 683 * contained bios. It will just track those of the first one. 684 * Distributes the attributs to each bio. 685 */ 686 for (bio = rq->bio; bio; bio = bio->bi_next) { 687 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 688 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 689 bio->bi_opf |= ff; 690 } 691 rq->rq_flags |= RQF_MIXED_MERGE; 692 } 693 694 static void blk_account_io_merge(struct request *req) 695 { 696 if (blk_do_io_stat(req)) { 697 struct hd_struct *part; 698 699 part_stat_lock(); 700 part = req->part; 701 702 part_dec_in_flight(req->q, part, rq_data_dir(req)); 703 704 hd_struct_put(part); 705 part_stat_unlock(); 706 } 707 } 708 /* 709 * Two cases of handling DISCARD merge: 710 * If max_discard_segments > 1, the driver takes every bio 711 * as a range and send them to controller together. The ranges 712 * needn't to be contiguous. 713 * Otherwise, the bios/requests will be handled as same as 714 * others which should be contiguous. 715 */ 716 static inline bool blk_discard_mergable(struct request *req) 717 { 718 if (req_op(req) == REQ_OP_DISCARD && 719 queue_max_discard_segments(req->q) > 1) 720 return true; 721 return false; 722 } 723 724 static enum elv_merge blk_try_req_merge(struct request *req, 725 struct request *next) 726 { 727 if (blk_discard_mergable(req)) 728 return ELEVATOR_DISCARD_MERGE; 729 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 730 return ELEVATOR_BACK_MERGE; 731 732 return ELEVATOR_NO_MERGE; 733 } 734 735 /* 736 * For non-mq, this has to be called with the request spinlock acquired. 737 * For mq with scheduling, the appropriate queue wide lock should be held. 738 */ 739 static struct request *attempt_merge(struct request_queue *q, 740 struct request *req, struct request *next) 741 { 742 if (!rq_mergeable(req) || !rq_mergeable(next)) 743 return NULL; 744 745 if (req_op(req) != req_op(next)) 746 return NULL; 747 748 if (rq_data_dir(req) != rq_data_dir(next) 749 || req->rq_disk != next->rq_disk) 750 return NULL; 751 752 if (req_op(req) == REQ_OP_WRITE_SAME && 753 !blk_write_same_mergeable(req->bio, next->bio)) 754 return NULL; 755 756 /* 757 * Don't allow merge of different write hints, or for a hint with 758 * non-hint IO. 759 */ 760 if (req->write_hint != next->write_hint) 761 return NULL; 762 763 if (req->ioprio != next->ioprio) 764 return NULL; 765 766 /* 767 * If we are allowed to merge, then append bio list 768 * from next to rq and release next. merge_requests_fn 769 * will have updated segment counts, update sector 770 * counts here. Handle DISCARDs separately, as they 771 * have separate settings. 772 */ 773 774 switch (blk_try_req_merge(req, next)) { 775 case ELEVATOR_DISCARD_MERGE: 776 if (!req_attempt_discard_merge(q, req, next)) 777 return NULL; 778 break; 779 case ELEVATOR_BACK_MERGE: 780 if (!ll_merge_requests_fn(q, req, next)) 781 return NULL; 782 break; 783 default: 784 return NULL; 785 } 786 787 /* 788 * If failfast settings disagree or any of the two is already 789 * a mixed merge, mark both as mixed before proceeding. This 790 * makes sure that all involved bios have mixable attributes 791 * set properly. 792 */ 793 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 794 (req->cmd_flags & REQ_FAILFAST_MASK) != 795 (next->cmd_flags & REQ_FAILFAST_MASK)) { 796 blk_rq_set_mixed_merge(req); 797 blk_rq_set_mixed_merge(next); 798 } 799 800 /* 801 * At this point we have either done a back merge or front merge. We 802 * need the smaller start_time_ns of the merged requests to be the 803 * current request for accounting purposes. 804 */ 805 if (next->start_time_ns < req->start_time_ns) 806 req->start_time_ns = next->start_time_ns; 807 808 req->biotail->bi_next = next->bio; 809 req->biotail = next->biotail; 810 811 req->__data_len += blk_rq_bytes(next); 812 813 if (!blk_discard_mergable(req)) 814 elv_merge_requests(q, req, next); 815 816 /* 817 * 'next' is going away, so update stats accordingly 818 */ 819 blk_account_io_merge(next); 820 821 /* 822 * ownership of bio passed from next to req, return 'next' for 823 * the caller to free 824 */ 825 next->bio = NULL; 826 return next; 827 } 828 829 struct request *attempt_back_merge(struct request_queue *q, struct request *rq) 830 { 831 struct request *next = elv_latter_request(q, rq); 832 833 if (next) 834 return attempt_merge(q, rq, next); 835 836 return NULL; 837 } 838 839 struct request *attempt_front_merge(struct request_queue *q, struct request *rq) 840 { 841 struct request *prev = elv_former_request(q, rq); 842 843 if (prev) 844 return attempt_merge(q, prev, rq); 845 846 return NULL; 847 } 848 849 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 850 struct request *next) 851 { 852 struct request *free; 853 854 free = attempt_merge(q, rq, next); 855 if (free) { 856 blk_put_request(free); 857 return 1; 858 } 859 860 return 0; 861 } 862 863 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 864 { 865 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 866 return false; 867 868 if (req_op(rq) != bio_op(bio)) 869 return false; 870 871 /* different data direction or already started, don't merge */ 872 if (bio_data_dir(bio) != rq_data_dir(rq)) 873 return false; 874 875 /* must be same device */ 876 if (rq->rq_disk != bio->bi_disk) 877 return false; 878 879 /* only merge integrity protected bio into ditto rq */ 880 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 881 return false; 882 883 /* must be using the same buffer */ 884 if (req_op(rq) == REQ_OP_WRITE_SAME && 885 !blk_write_same_mergeable(rq->bio, bio)) 886 return false; 887 888 /* 889 * Don't allow merge of different write hints, or for a hint with 890 * non-hint IO. 891 */ 892 if (rq->write_hint != bio->bi_write_hint) 893 return false; 894 895 if (rq->ioprio != bio_prio(bio)) 896 return false; 897 898 return true; 899 } 900 901 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 902 { 903 if (blk_discard_mergable(rq)) 904 return ELEVATOR_DISCARD_MERGE; 905 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 906 return ELEVATOR_BACK_MERGE; 907 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 908 return ELEVATOR_FRONT_MERGE; 909 return ELEVATOR_NO_MERGE; 910 } 911