1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 15 static inline bool bio_will_gap(struct request_queue *q, 16 struct request *prev_rq, struct bio *prev, struct bio *next) 17 { 18 struct bio_vec pb, nb; 19 20 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 21 return false; 22 23 /* 24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 25 * is quite difficult to respect the sg gap limit. We work hard to 26 * merge a huge number of small single bios in case of mkfs. 27 */ 28 if (prev_rq) 29 bio_get_first_bvec(prev_rq->bio, &pb); 30 else 31 bio_get_first_bvec(prev, &pb); 32 if (pb.bv_offset & queue_virt_boundary(q)) 33 return true; 34 35 /* 36 * We don't need to worry about the situation that the merged segment 37 * ends in unaligned virt boundary: 38 * 39 * - if 'pb' ends aligned, the merged segment ends aligned 40 * - if 'pb' ends unaligned, the next bio must include 41 * one single bvec of 'nb', otherwise the 'nb' can't 42 * merge with 'pb' 43 */ 44 bio_get_last_bvec(prev, &pb); 45 bio_get_first_bvec(next, &nb); 46 if (biovec_phys_mergeable(q, &pb, &nb)) 47 return false; 48 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 49 } 50 51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 52 { 53 return bio_will_gap(req->q, req, req->biotail, bio); 54 } 55 56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 57 { 58 return bio_will_gap(req->q, NULL, bio, req->bio); 59 } 60 61 static struct bio *blk_bio_discard_split(struct request_queue *q, 62 struct bio *bio, 63 struct bio_set *bs, 64 unsigned *nsegs) 65 { 66 unsigned int max_discard_sectors, granularity; 67 int alignment; 68 sector_t tmp; 69 unsigned split_sectors; 70 71 *nsegs = 1; 72 73 /* Zero-sector (unknown) and one-sector granularities are the same. */ 74 granularity = max(q->limits.discard_granularity >> 9, 1U); 75 76 max_discard_sectors = min(q->limits.max_discard_sectors, 77 bio_allowed_max_sectors(q)); 78 max_discard_sectors -= max_discard_sectors % granularity; 79 80 if (unlikely(!max_discard_sectors)) { 81 /* XXX: warn */ 82 return NULL; 83 } 84 85 if (bio_sectors(bio) <= max_discard_sectors) 86 return NULL; 87 88 split_sectors = max_discard_sectors; 89 90 /* 91 * If the next starting sector would be misaligned, stop the discard at 92 * the previous aligned sector. 93 */ 94 alignment = (q->limits.discard_alignment >> 9) % granularity; 95 96 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 97 tmp = sector_div(tmp, granularity); 98 99 if (split_sectors > tmp) 100 split_sectors -= tmp; 101 102 return bio_split(bio, split_sectors, GFP_NOIO, bs); 103 } 104 105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 106 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 107 { 108 *nsegs = 0; 109 110 if (!q->limits.max_write_zeroes_sectors) 111 return NULL; 112 113 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 114 return NULL; 115 116 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 117 } 118 119 static struct bio *blk_bio_write_same_split(struct request_queue *q, 120 struct bio *bio, 121 struct bio_set *bs, 122 unsigned *nsegs) 123 { 124 *nsegs = 1; 125 126 if (!q->limits.max_write_same_sectors) 127 return NULL; 128 129 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 130 return NULL; 131 132 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 133 } 134 135 /* 136 * Return the maximum number of sectors from the start of a bio that may be 137 * submitted as a single request to a block device. If enough sectors remain, 138 * align the end to the physical block size. Otherwise align the end to the 139 * logical block size. This approach minimizes the number of non-aligned 140 * requests that are submitted to a block device if the start of a bio is not 141 * aligned to a physical block boundary. 142 */ 143 static inline unsigned get_max_io_size(struct request_queue *q, 144 struct bio *bio) 145 { 146 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 147 unsigned max_sectors = sectors; 148 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 149 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 150 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 151 152 max_sectors += start_offset; 153 max_sectors &= ~(pbs - 1); 154 if (max_sectors > start_offset) 155 return max_sectors - start_offset; 156 157 return sectors & (lbs - 1); 158 } 159 160 static inline unsigned get_max_segment_size(const struct request_queue *q, 161 struct page *start_page, 162 unsigned long offset) 163 { 164 unsigned long mask = queue_segment_boundary(q); 165 166 offset = mask & (page_to_phys(start_page) + offset); 167 168 /* 169 * overflow may be triggered in case of zero page physical address 170 * on 32bit arch, use queue's max segment size when that happens. 171 */ 172 return min_not_zero(mask - offset + 1, 173 (unsigned long)queue_max_segment_size(q)); 174 } 175 176 /** 177 * bvec_split_segs - verify whether or not a bvec should be split in the middle 178 * @q: [in] request queue associated with the bio associated with @bv 179 * @bv: [in] bvec to examine 180 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 181 * by the number of segments from @bv that may be appended to that 182 * bio without exceeding @max_segs 183 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 184 * by the number of sectors from @bv that may be appended to that 185 * bio without exceeding @max_sectors 186 * @max_segs: [in] upper bound for *@nsegs 187 * @max_sectors: [in] upper bound for *@sectors 188 * 189 * When splitting a bio, it can happen that a bvec is encountered that is too 190 * big to fit in a single segment and hence that it has to be split in the 191 * middle. This function verifies whether or not that should happen. The value 192 * %true is returned if and only if appending the entire @bv to a bio with 193 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 194 * the block driver. 195 */ 196 static bool bvec_split_segs(const struct request_queue *q, 197 const struct bio_vec *bv, unsigned *nsegs, 198 unsigned *sectors, unsigned max_segs, 199 unsigned max_sectors) 200 { 201 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 202 unsigned len = min(bv->bv_len, max_len); 203 unsigned total_len = 0; 204 unsigned seg_size = 0; 205 206 while (len && *nsegs < max_segs) { 207 seg_size = get_max_segment_size(q, bv->bv_page, 208 bv->bv_offset + total_len); 209 seg_size = min(seg_size, len); 210 211 (*nsegs)++; 212 total_len += seg_size; 213 len -= seg_size; 214 215 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 216 break; 217 } 218 219 *sectors += total_len >> 9; 220 221 /* tell the caller to split the bvec if it is too big to fit */ 222 return len > 0 || bv->bv_len > max_len; 223 } 224 225 /** 226 * blk_bio_segment_split - split a bio in two bios 227 * @q: [in] request queue pointer 228 * @bio: [in] bio to be split 229 * @bs: [in] bio set to allocate the clone from 230 * @segs: [out] number of segments in the bio with the first half of the sectors 231 * 232 * Clone @bio, update the bi_iter of the clone to represent the first sectors 233 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 234 * following is guaranteed for the cloned bio: 235 * - That it has at most get_max_io_size(@q, @bio) sectors. 236 * - That it has at most queue_max_segments(@q) segments. 237 * 238 * Except for discard requests the cloned bio will point at the bi_io_vec of 239 * the original bio. It is the responsibility of the caller to ensure that the 240 * original bio is not freed before the cloned bio. The caller is also 241 * responsible for ensuring that @bs is only destroyed after processing of the 242 * split bio has finished. 243 */ 244 static struct bio *blk_bio_segment_split(struct request_queue *q, 245 struct bio *bio, 246 struct bio_set *bs, 247 unsigned *segs) 248 { 249 struct bio_vec bv, bvprv, *bvprvp = NULL; 250 struct bvec_iter iter; 251 unsigned nsegs = 0, sectors = 0; 252 const unsigned max_sectors = get_max_io_size(q, bio); 253 const unsigned max_segs = queue_max_segments(q); 254 255 bio_for_each_bvec(bv, bio, iter) { 256 /* 257 * If the queue doesn't support SG gaps and adding this 258 * offset would create a gap, disallow it. 259 */ 260 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 261 goto split; 262 263 if (nsegs < max_segs && 264 sectors + (bv.bv_len >> 9) <= max_sectors && 265 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 266 nsegs++; 267 sectors += bv.bv_len >> 9; 268 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 269 max_sectors)) { 270 goto split; 271 } 272 273 bvprv = bv; 274 bvprvp = &bvprv; 275 } 276 277 *segs = nsegs; 278 return NULL; 279 split: 280 *segs = nsegs; 281 return bio_split(bio, sectors, GFP_NOIO, bs); 282 } 283 284 /** 285 * __blk_queue_split - split a bio and submit the second half 286 * @bio: [in, out] bio to be split 287 * @nr_segs: [out] number of segments in the first bio 288 * 289 * Split a bio into two bios, chain the two bios, submit the second half and 290 * store a pointer to the first half in *@bio. If the second bio is still too 291 * big it will be split by a recursive call to this function. Since this 292 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is 293 * the responsibility of the caller to ensure that 294 * @bio->bi_disk->queue->bio_split is only released after processing of the 295 * split bio has finished. 296 */ 297 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs) 298 { 299 struct request_queue *q = (*bio)->bi_disk->queue; 300 struct bio *split = NULL; 301 302 switch (bio_op(*bio)) { 303 case REQ_OP_DISCARD: 304 case REQ_OP_SECURE_ERASE: 305 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 306 break; 307 case REQ_OP_WRITE_ZEROES: 308 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 309 nr_segs); 310 break; 311 case REQ_OP_WRITE_SAME: 312 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 313 nr_segs); 314 break; 315 default: 316 /* 317 * All drivers must accept single-segments bios that are <= 318 * PAGE_SIZE. This is a quick and dirty check that relies on 319 * the fact that bi_io_vec[0] is always valid if a bio has data. 320 * The check might lead to occasional false negatives when bios 321 * are cloned, but compared to the performance impact of cloned 322 * bios themselves the loop below doesn't matter anyway. 323 */ 324 if (!q->limits.chunk_sectors && 325 (*bio)->bi_vcnt == 1 && 326 ((*bio)->bi_io_vec[0].bv_len + 327 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { 328 *nr_segs = 1; 329 break; 330 } 331 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 332 break; 333 } 334 335 if (split) { 336 /* there isn't chance to merge the splitted bio */ 337 split->bi_opf |= REQ_NOMERGE; 338 339 bio_chain(split, *bio); 340 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 341 submit_bio_noacct(*bio); 342 *bio = split; 343 } 344 } 345 346 /** 347 * blk_queue_split - split a bio and submit the second half 348 * @bio: [in, out] bio to be split 349 * 350 * Split a bio into two bios, chains the two bios, submit the second half and 351 * store a pointer to the first half in *@bio. Since this function may allocate 352 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of 353 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released 354 * after processing of the split bio has finished. 355 */ 356 void blk_queue_split(struct bio **bio) 357 { 358 unsigned int nr_segs; 359 360 __blk_queue_split(bio, &nr_segs); 361 } 362 EXPORT_SYMBOL(blk_queue_split); 363 364 unsigned int blk_recalc_rq_segments(struct request *rq) 365 { 366 unsigned int nr_phys_segs = 0; 367 unsigned int nr_sectors = 0; 368 struct req_iterator iter; 369 struct bio_vec bv; 370 371 if (!rq->bio) 372 return 0; 373 374 switch (bio_op(rq->bio)) { 375 case REQ_OP_DISCARD: 376 case REQ_OP_SECURE_ERASE: 377 case REQ_OP_WRITE_ZEROES: 378 return 0; 379 case REQ_OP_WRITE_SAME: 380 return 1; 381 } 382 383 rq_for_each_bvec(bv, rq, iter) 384 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 385 UINT_MAX, UINT_MAX); 386 return nr_phys_segs; 387 } 388 389 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 390 struct scatterlist *sglist) 391 { 392 if (!*sg) 393 return sglist; 394 395 /* 396 * If the driver previously mapped a shorter list, we could see a 397 * termination bit prematurely unless it fully inits the sg table 398 * on each mapping. We KNOW that there must be more entries here 399 * or the driver would be buggy, so force clear the termination bit 400 * to avoid doing a full sg_init_table() in drivers for each command. 401 */ 402 sg_unmark_end(*sg); 403 return sg_next(*sg); 404 } 405 406 static unsigned blk_bvec_map_sg(struct request_queue *q, 407 struct bio_vec *bvec, struct scatterlist *sglist, 408 struct scatterlist **sg) 409 { 410 unsigned nbytes = bvec->bv_len; 411 unsigned nsegs = 0, total = 0; 412 413 while (nbytes > 0) { 414 unsigned offset = bvec->bv_offset + total; 415 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 416 offset), nbytes); 417 struct page *page = bvec->bv_page; 418 419 /* 420 * Unfortunately a fair number of drivers barf on scatterlists 421 * that have an offset larger than PAGE_SIZE, despite other 422 * subsystems dealing with that invariant just fine. For now 423 * stick to the legacy format where we never present those from 424 * the block layer, but the code below should be removed once 425 * these offenders (mostly MMC/SD drivers) are fixed. 426 */ 427 page += (offset >> PAGE_SHIFT); 428 offset &= ~PAGE_MASK; 429 430 *sg = blk_next_sg(sg, sglist); 431 sg_set_page(*sg, page, len, offset); 432 433 total += len; 434 nbytes -= len; 435 nsegs++; 436 } 437 438 return nsegs; 439 } 440 441 static inline int __blk_bvec_map_sg(struct bio_vec bv, 442 struct scatterlist *sglist, struct scatterlist **sg) 443 { 444 *sg = blk_next_sg(sg, sglist); 445 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 446 return 1; 447 } 448 449 /* only try to merge bvecs into one sg if they are from two bios */ 450 static inline bool 451 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 452 struct bio_vec *bvprv, struct scatterlist **sg) 453 { 454 455 int nbytes = bvec->bv_len; 456 457 if (!*sg) 458 return false; 459 460 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 461 return false; 462 463 if (!biovec_phys_mergeable(q, bvprv, bvec)) 464 return false; 465 466 (*sg)->length += nbytes; 467 468 return true; 469 } 470 471 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 472 struct scatterlist *sglist, 473 struct scatterlist **sg) 474 { 475 struct bio_vec bvec, bvprv = { NULL }; 476 struct bvec_iter iter; 477 int nsegs = 0; 478 bool new_bio = false; 479 480 for_each_bio(bio) { 481 bio_for_each_bvec(bvec, bio, iter) { 482 /* 483 * Only try to merge bvecs from two bios given we 484 * have done bio internal merge when adding pages 485 * to bio 486 */ 487 if (new_bio && 488 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 489 goto next_bvec; 490 491 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 492 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 493 else 494 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 495 next_bvec: 496 new_bio = false; 497 } 498 if (likely(bio->bi_iter.bi_size)) { 499 bvprv = bvec; 500 new_bio = true; 501 } 502 } 503 504 return nsegs; 505 } 506 507 /* 508 * map a request to scatterlist, return number of sg entries setup. Caller 509 * must make sure sg can hold rq->nr_phys_segments entries 510 */ 511 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 512 struct scatterlist *sglist, struct scatterlist **last_sg) 513 { 514 int nsegs = 0; 515 516 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 517 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 518 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 519 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); 520 else if (rq->bio) 521 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 522 523 if (*last_sg) 524 sg_mark_end(*last_sg); 525 526 /* 527 * Something must have been wrong if the figured number of 528 * segment is bigger than number of req's physical segments 529 */ 530 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 531 532 return nsegs; 533 } 534 EXPORT_SYMBOL(__blk_rq_map_sg); 535 536 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 537 unsigned int nr_phys_segs) 538 { 539 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q)) 540 goto no_merge; 541 542 if (blk_integrity_merge_bio(req->q, req, bio) == false) 543 goto no_merge; 544 545 /* 546 * This will form the start of a new hw segment. Bump both 547 * counters. 548 */ 549 req->nr_phys_segments += nr_phys_segs; 550 return 1; 551 552 no_merge: 553 req_set_nomerge(req->q, req); 554 return 0; 555 } 556 557 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 558 { 559 if (req_gap_back_merge(req, bio)) 560 return 0; 561 if (blk_integrity_rq(req) && 562 integrity_req_gap_back_merge(req, bio)) 563 return 0; 564 if (!bio_crypt_ctx_back_mergeable(req, bio)) 565 return 0; 566 if (blk_rq_sectors(req) + bio_sectors(bio) > 567 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 568 req_set_nomerge(req->q, req); 569 return 0; 570 } 571 572 return ll_new_hw_segment(req, bio, nr_segs); 573 } 574 575 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 576 { 577 if (req_gap_front_merge(req, bio)) 578 return 0; 579 if (blk_integrity_rq(req) && 580 integrity_req_gap_front_merge(req, bio)) 581 return 0; 582 if (!bio_crypt_ctx_front_mergeable(req, bio)) 583 return 0; 584 if (blk_rq_sectors(req) + bio_sectors(bio) > 585 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 586 req_set_nomerge(req->q, req); 587 return 0; 588 } 589 590 return ll_new_hw_segment(req, bio, nr_segs); 591 } 592 593 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 594 struct request *next) 595 { 596 unsigned short segments = blk_rq_nr_discard_segments(req); 597 598 if (segments >= queue_max_discard_segments(q)) 599 goto no_merge; 600 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 601 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 602 goto no_merge; 603 604 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 605 return true; 606 no_merge: 607 req_set_nomerge(q, req); 608 return false; 609 } 610 611 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 612 struct request *next) 613 { 614 int total_phys_segments; 615 616 if (req_gap_back_merge(req, next->bio)) 617 return 0; 618 619 /* 620 * Will it become too large? 621 */ 622 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 623 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 624 return 0; 625 626 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 627 if (total_phys_segments > queue_max_segments(q)) 628 return 0; 629 630 if (blk_integrity_merge_rq(q, req, next) == false) 631 return 0; 632 633 if (!bio_crypt_ctx_merge_rq(req, next)) 634 return 0; 635 636 /* Merge is OK... */ 637 req->nr_phys_segments = total_phys_segments; 638 return 1; 639 } 640 641 /** 642 * blk_rq_set_mixed_merge - mark a request as mixed merge 643 * @rq: request to mark as mixed merge 644 * 645 * Description: 646 * @rq is about to be mixed merged. Make sure the attributes 647 * which can be mixed are set in each bio and mark @rq as mixed 648 * merged. 649 */ 650 void blk_rq_set_mixed_merge(struct request *rq) 651 { 652 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 653 struct bio *bio; 654 655 if (rq->rq_flags & RQF_MIXED_MERGE) 656 return; 657 658 /* 659 * @rq will no longer represent mixable attributes for all the 660 * contained bios. It will just track those of the first one. 661 * Distributes the attributs to each bio. 662 */ 663 for (bio = rq->bio; bio; bio = bio->bi_next) { 664 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 665 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 666 bio->bi_opf |= ff; 667 } 668 rq->rq_flags |= RQF_MIXED_MERGE; 669 } 670 671 static void blk_account_io_merge_request(struct request *req) 672 { 673 if (blk_do_io_stat(req)) { 674 part_stat_lock(); 675 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 676 part_stat_unlock(); 677 678 hd_struct_put(req->part); 679 } 680 } 681 682 /* 683 * Two cases of handling DISCARD merge: 684 * If max_discard_segments > 1, the driver takes every bio 685 * as a range and send them to controller together. The ranges 686 * needn't to be contiguous. 687 * Otherwise, the bios/requests will be handled as same as 688 * others which should be contiguous. 689 */ 690 static inline bool blk_discard_mergable(struct request *req) 691 { 692 if (req_op(req) == REQ_OP_DISCARD && 693 queue_max_discard_segments(req->q) > 1) 694 return true; 695 return false; 696 } 697 698 static enum elv_merge blk_try_req_merge(struct request *req, 699 struct request *next) 700 { 701 if (blk_discard_mergable(req)) 702 return ELEVATOR_DISCARD_MERGE; 703 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 704 return ELEVATOR_BACK_MERGE; 705 706 return ELEVATOR_NO_MERGE; 707 } 708 709 /* 710 * For non-mq, this has to be called with the request spinlock acquired. 711 * For mq with scheduling, the appropriate queue wide lock should be held. 712 */ 713 static struct request *attempt_merge(struct request_queue *q, 714 struct request *req, struct request *next) 715 { 716 if (!rq_mergeable(req) || !rq_mergeable(next)) 717 return NULL; 718 719 if (req_op(req) != req_op(next)) 720 return NULL; 721 722 if (rq_data_dir(req) != rq_data_dir(next) 723 || req->rq_disk != next->rq_disk) 724 return NULL; 725 726 if (req_op(req) == REQ_OP_WRITE_SAME && 727 !blk_write_same_mergeable(req->bio, next->bio)) 728 return NULL; 729 730 /* 731 * Don't allow merge of different write hints, or for a hint with 732 * non-hint IO. 733 */ 734 if (req->write_hint != next->write_hint) 735 return NULL; 736 737 if (req->ioprio != next->ioprio) 738 return NULL; 739 740 /* 741 * If we are allowed to merge, then append bio list 742 * from next to rq and release next. merge_requests_fn 743 * will have updated segment counts, update sector 744 * counts here. Handle DISCARDs separately, as they 745 * have separate settings. 746 */ 747 748 switch (blk_try_req_merge(req, next)) { 749 case ELEVATOR_DISCARD_MERGE: 750 if (!req_attempt_discard_merge(q, req, next)) 751 return NULL; 752 break; 753 case ELEVATOR_BACK_MERGE: 754 if (!ll_merge_requests_fn(q, req, next)) 755 return NULL; 756 break; 757 default: 758 return NULL; 759 } 760 761 /* 762 * If failfast settings disagree or any of the two is already 763 * a mixed merge, mark both as mixed before proceeding. This 764 * makes sure that all involved bios have mixable attributes 765 * set properly. 766 */ 767 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 768 (req->cmd_flags & REQ_FAILFAST_MASK) != 769 (next->cmd_flags & REQ_FAILFAST_MASK)) { 770 blk_rq_set_mixed_merge(req); 771 blk_rq_set_mixed_merge(next); 772 } 773 774 /* 775 * At this point we have either done a back merge or front merge. We 776 * need the smaller start_time_ns of the merged requests to be the 777 * current request for accounting purposes. 778 */ 779 if (next->start_time_ns < req->start_time_ns) 780 req->start_time_ns = next->start_time_ns; 781 782 req->biotail->bi_next = next->bio; 783 req->biotail = next->biotail; 784 785 req->__data_len += blk_rq_bytes(next); 786 787 if (!blk_discard_mergable(req)) 788 elv_merge_requests(q, req, next); 789 790 /* 791 * 'next' is going away, so update stats accordingly 792 */ 793 blk_account_io_merge_request(next); 794 795 trace_block_rq_merge(q, next); 796 797 /* 798 * ownership of bio passed from next to req, return 'next' for 799 * the caller to free 800 */ 801 next->bio = NULL; 802 return next; 803 } 804 805 struct request *attempt_back_merge(struct request_queue *q, struct request *rq) 806 { 807 struct request *next = elv_latter_request(q, rq); 808 809 if (next) 810 return attempt_merge(q, rq, next); 811 812 return NULL; 813 } 814 815 struct request *attempt_front_merge(struct request_queue *q, struct request *rq) 816 { 817 struct request *prev = elv_former_request(q, rq); 818 819 if (prev) 820 return attempt_merge(q, prev, rq); 821 822 return NULL; 823 } 824 825 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 826 struct request *next) 827 { 828 struct request *free; 829 830 free = attempt_merge(q, rq, next); 831 if (free) { 832 blk_put_request(free); 833 return 1; 834 } 835 836 return 0; 837 } 838 839 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 840 { 841 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 842 return false; 843 844 if (req_op(rq) != bio_op(bio)) 845 return false; 846 847 /* different data direction or already started, don't merge */ 848 if (bio_data_dir(bio) != rq_data_dir(rq)) 849 return false; 850 851 /* must be same device */ 852 if (rq->rq_disk != bio->bi_disk) 853 return false; 854 855 /* only merge integrity protected bio into ditto rq */ 856 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 857 return false; 858 859 /* Only merge if the crypt contexts are compatible */ 860 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 861 return false; 862 863 /* must be using the same buffer */ 864 if (req_op(rq) == REQ_OP_WRITE_SAME && 865 !blk_write_same_mergeable(rq->bio, bio)) 866 return false; 867 868 /* 869 * Don't allow merge of different write hints, or for a hint with 870 * non-hint IO. 871 */ 872 if (rq->write_hint != bio->bi_write_hint) 873 return false; 874 875 if (rq->ioprio != bio_prio(bio)) 876 return false; 877 878 return true; 879 } 880 881 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 882 { 883 if (blk_discard_mergable(rq)) 884 return ELEVATOR_DISCARD_MERGE; 885 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 886 return ELEVATOR_BACK_MERGE; 887 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 888 return ELEVATOR_FRONT_MERGE; 889 return ELEVATOR_NO_MERGE; 890 } 891