1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_split_discard(struct bio *bio, 109 const struct queue_limits *lim, 110 unsigned *nsegs, struct bio_set *bs) 111 { 112 unsigned int max_discard_sectors, granularity; 113 sector_t tmp; 114 unsigned split_sectors; 115 116 *nsegs = 1; 117 118 /* Zero-sector (unknown) and one-sector granularities are the same. */ 119 granularity = max(lim->discard_granularity >> 9, 1U); 120 121 max_discard_sectors = 122 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 123 max_discard_sectors -= max_discard_sectors % granularity; 124 125 if (unlikely(!max_discard_sectors)) { 126 /* XXX: warn */ 127 return NULL; 128 } 129 130 if (bio_sectors(bio) <= max_discard_sectors) 131 return NULL; 132 133 split_sectors = max_discard_sectors; 134 135 /* 136 * If the next starting sector would be misaligned, stop the discard at 137 * the previous aligned sector. 138 */ 139 tmp = bio->bi_iter.bi_sector + split_sectors - 140 ((lim->discard_alignment >> 9) % granularity); 141 tmp = sector_div(tmp, granularity); 142 143 if (split_sectors > tmp) 144 split_sectors -= tmp; 145 146 return bio_split(bio, split_sectors, GFP_NOIO, bs); 147 } 148 149 static struct bio *bio_split_write_zeroes(struct bio *bio, 150 const struct queue_limits *lim, 151 unsigned *nsegs, struct bio_set *bs) 152 { 153 *nsegs = 0; 154 if (!lim->max_write_zeroes_sectors) 155 return NULL; 156 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors) 157 return NULL; 158 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs); 159 } 160 161 /* 162 * Return the maximum number of sectors from the start of a bio that may be 163 * submitted as a single request to a block device. If enough sectors remain, 164 * align the end to the physical block size. Otherwise align the end to the 165 * logical block size. This approach minimizes the number of non-aligned 166 * requests that are submitted to a block device if the start of a bio is not 167 * aligned to a physical block boundary. 168 */ 169 static inline unsigned get_max_io_size(struct bio *bio, 170 const struct queue_limits *lim) 171 { 172 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 173 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 174 unsigned max_sectors = lim->max_sectors, start, end; 175 176 if (lim->chunk_sectors) { 177 max_sectors = min(max_sectors, 178 blk_chunk_sectors_left(bio->bi_iter.bi_sector, 179 lim->chunk_sectors)); 180 } 181 182 start = bio->bi_iter.bi_sector & (pbs - 1); 183 end = (start + max_sectors) & ~(pbs - 1); 184 if (end > start) 185 return end - start; 186 return max_sectors & ~(lbs - 1); 187 } 188 189 /** 190 * get_max_segment_size() - maximum number of bytes to add as a single segment 191 * @lim: Request queue limits. 192 * @start_page: See below. 193 * @offset: Offset from @start_page where to add a segment. 194 * 195 * Returns the maximum number of bytes that can be added as a single segment. 196 */ 197 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 198 struct page *start_page, unsigned long offset) 199 { 200 unsigned long mask = lim->seg_boundary_mask; 201 202 offset = mask & (page_to_phys(start_page) + offset); 203 204 /* 205 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 206 * after having calculated the minimum. 207 */ 208 return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1; 209 } 210 211 /** 212 * bvec_split_segs - verify whether or not a bvec should be split in the middle 213 * @lim: [in] queue limits to split based on 214 * @bv: [in] bvec to examine 215 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 216 * by the number of segments from @bv that may be appended to that 217 * bio without exceeding @max_segs 218 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 219 * by the number of bytes from @bv that may be appended to that 220 * bio without exceeding @max_bytes 221 * @max_segs: [in] upper bound for *@nsegs 222 * @max_bytes: [in] upper bound for *@bytes 223 * 224 * When splitting a bio, it can happen that a bvec is encountered that is too 225 * big to fit in a single segment and hence that it has to be split in the 226 * middle. This function verifies whether or not that should happen. The value 227 * %true is returned if and only if appending the entire @bv to a bio with 228 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 229 * the block driver. 230 */ 231 static bool bvec_split_segs(const struct queue_limits *lim, 232 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, 233 unsigned max_segs, unsigned max_bytes) 234 { 235 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 236 unsigned len = min(bv->bv_len, max_len); 237 unsigned total_len = 0; 238 unsigned seg_size = 0; 239 240 while (len && *nsegs < max_segs) { 241 seg_size = get_max_segment_size(lim, bv->bv_page, 242 bv->bv_offset + total_len); 243 seg_size = min(seg_size, len); 244 245 (*nsegs)++; 246 total_len += seg_size; 247 len -= seg_size; 248 249 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 250 break; 251 } 252 253 *bytes += total_len; 254 255 /* tell the caller to split the bvec if it is too big to fit */ 256 return len > 0 || bv->bv_len > max_len; 257 } 258 259 static unsigned int bio_split_alignment(struct bio *bio, 260 const struct queue_limits *lim) 261 { 262 if (op_is_write(bio_op(bio)) && lim->zone_write_granularity) 263 return lim->zone_write_granularity; 264 return lim->logical_block_size; 265 } 266 267 /** 268 * bio_split_rw - split a bio in two bios 269 * @bio: [in] bio to be split 270 * @lim: [in] queue limits to split based on 271 * @segs: [out] number of segments in the bio with the first half of the sectors 272 * @bs: [in] bio set to allocate the clone from 273 * @max_bytes: [in] maximum number of bytes per bio 274 * 275 * Clone @bio, update the bi_iter of the clone to represent the first sectors 276 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 277 * following is guaranteed for the cloned bio: 278 * - That it has at most @max_bytes worth of data 279 * - That it has at most queue_max_segments(@q) segments. 280 * 281 * Except for discard requests the cloned bio will point at the bi_io_vec of 282 * the original bio. It is the responsibility of the caller to ensure that the 283 * original bio is not freed before the cloned bio. The caller is also 284 * responsible for ensuring that @bs is only destroyed after processing of the 285 * split bio has finished. 286 */ 287 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 288 unsigned *segs, struct bio_set *bs, unsigned max_bytes) 289 { 290 struct bio_vec bv, bvprv, *bvprvp = NULL; 291 struct bvec_iter iter; 292 unsigned nsegs = 0, bytes = 0; 293 294 bio_for_each_bvec(bv, bio, iter) { 295 /* 296 * If the queue doesn't support SG gaps and adding this 297 * offset would create a gap, disallow it. 298 */ 299 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 300 goto split; 301 302 if (nsegs < lim->max_segments && 303 bytes + bv.bv_len <= max_bytes && 304 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 305 nsegs++; 306 bytes += bv.bv_len; 307 } else { 308 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 309 lim->max_segments, max_bytes)) 310 goto split; 311 } 312 313 bvprv = bv; 314 bvprvp = &bvprv; 315 } 316 317 *segs = nsegs; 318 return NULL; 319 split: 320 /* 321 * We can't sanely support splitting for a REQ_NOWAIT bio. End it 322 * with EAGAIN if splitting is required and return an error pointer. 323 */ 324 if (bio->bi_opf & REQ_NOWAIT) { 325 bio->bi_status = BLK_STS_AGAIN; 326 bio_endio(bio); 327 return ERR_PTR(-EAGAIN); 328 } 329 330 *segs = nsegs; 331 332 /* 333 * Individual bvecs might not be logical block aligned. Round down the 334 * split size so that each bio is properly block size aligned, even if 335 * we do not use the full hardware limits. 336 */ 337 bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim)); 338 339 /* 340 * Bio splitting may cause subtle trouble such as hang when doing sync 341 * iopoll in direct IO routine. Given performance gain of iopoll for 342 * big IO can be trival, disable iopoll when split needed. 343 */ 344 bio_clear_polled(bio); 345 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs); 346 } 347 EXPORT_SYMBOL_GPL(bio_split_rw); 348 349 /** 350 * __bio_split_to_limits - split a bio to fit the queue limits 351 * @bio: bio to be split 352 * @lim: queue limits to split based on 353 * @nr_segs: returns the number of segments in the returned bio 354 * 355 * Check if @bio needs splitting based on the queue limits, and if so split off 356 * a bio fitting the limits from the beginning of @bio and return it. @bio is 357 * shortened to the remainder and re-submitted. 358 * 359 * The split bio is allocated from @q->bio_split, which is provided by the 360 * block layer. 361 */ 362 struct bio *__bio_split_to_limits(struct bio *bio, 363 const struct queue_limits *lim, 364 unsigned int *nr_segs) 365 { 366 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split; 367 struct bio *split; 368 369 switch (bio_op(bio)) { 370 case REQ_OP_DISCARD: 371 case REQ_OP_SECURE_ERASE: 372 split = bio_split_discard(bio, lim, nr_segs, bs); 373 break; 374 case REQ_OP_WRITE_ZEROES: 375 split = bio_split_write_zeroes(bio, lim, nr_segs, bs); 376 break; 377 default: 378 split = bio_split_rw(bio, lim, nr_segs, bs, 379 get_max_io_size(bio, lim) << SECTOR_SHIFT); 380 if (IS_ERR(split)) 381 return NULL; 382 break; 383 } 384 385 if (split) { 386 /* there isn't chance to merge the split bio */ 387 split->bi_opf |= REQ_NOMERGE; 388 389 blkcg_bio_issue_init(split); 390 bio_chain(split, bio); 391 trace_block_split(split, bio->bi_iter.bi_sector); 392 submit_bio_noacct(bio); 393 return split; 394 } 395 return bio; 396 } 397 398 /** 399 * bio_split_to_limits - split a bio to fit the queue limits 400 * @bio: bio to be split 401 * 402 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 403 * if so split off a bio fitting the limits from the beginning of @bio and 404 * return it. @bio is shortened to the remainder and re-submitted. 405 * 406 * The split bio is allocated from @q->bio_split, which is provided by the 407 * block layer. 408 */ 409 struct bio *bio_split_to_limits(struct bio *bio) 410 { 411 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits; 412 unsigned int nr_segs; 413 414 if (bio_may_exceed_limits(bio, lim)) 415 return __bio_split_to_limits(bio, lim, &nr_segs); 416 return bio; 417 } 418 EXPORT_SYMBOL(bio_split_to_limits); 419 420 unsigned int blk_recalc_rq_segments(struct request *rq) 421 { 422 unsigned int nr_phys_segs = 0; 423 unsigned int bytes = 0; 424 struct req_iterator iter; 425 struct bio_vec bv; 426 427 if (!rq->bio) 428 return 0; 429 430 switch (bio_op(rq->bio)) { 431 case REQ_OP_DISCARD: 432 case REQ_OP_SECURE_ERASE: 433 if (queue_max_discard_segments(rq->q) > 1) { 434 struct bio *bio = rq->bio; 435 436 for_each_bio(bio) 437 nr_phys_segs++; 438 return nr_phys_segs; 439 } 440 return 1; 441 case REQ_OP_WRITE_ZEROES: 442 return 0; 443 default: 444 break; 445 } 446 447 rq_for_each_bvec(bv, rq, iter) 448 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 449 UINT_MAX, UINT_MAX); 450 return nr_phys_segs; 451 } 452 453 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 454 struct scatterlist *sglist) 455 { 456 if (!*sg) 457 return sglist; 458 459 /* 460 * If the driver previously mapped a shorter list, we could see a 461 * termination bit prematurely unless it fully inits the sg table 462 * on each mapping. We KNOW that there must be more entries here 463 * or the driver would be buggy, so force clear the termination bit 464 * to avoid doing a full sg_init_table() in drivers for each command. 465 */ 466 sg_unmark_end(*sg); 467 return sg_next(*sg); 468 } 469 470 static unsigned blk_bvec_map_sg(struct request_queue *q, 471 struct bio_vec *bvec, struct scatterlist *sglist, 472 struct scatterlist **sg) 473 { 474 unsigned nbytes = bvec->bv_len; 475 unsigned nsegs = 0, total = 0; 476 477 while (nbytes > 0) { 478 unsigned offset = bvec->bv_offset + total; 479 unsigned len = min(get_max_segment_size(&q->limits, 480 bvec->bv_page, offset), nbytes); 481 struct page *page = bvec->bv_page; 482 483 /* 484 * Unfortunately a fair number of drivers barf on scatterlists 485 * that have an offset larger than PAGE_SIZE, despite other 486 * subsystems dealing with that invariant just fine. For now 487 * stick to the legacy format where we never present those from 488 * the block layer, but the code below should be removed once 489 * these offenders (mostly MMC/SD drivers) are fixed. 490 */ 491 page += (offset >> PAGE_SHIFT); 492 offset &= ~PAGE_MASK; 493 494 *sg = blk_next_sg(sg, sglist); 495 sg_set_page(*sg, page, len, offset); 496 497 total += len; 498 nbytes -= len; 499 nsegs++; 500 } 501 502 return nsegs; 503 } 504 505 static inline int __blk_bvec_map_sg(struct bio_vec bv, 506 struct scatterlist *sglist, struct scatterlist **sg) 507 { 508 *sg = blk_next_sg(sg, sglist); 509 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 510 return 1; 511 } 512 513 /* only try to merge bvecs into one sg if they are from two bios */ 514 static inline bool 515 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 516 struct bio_vec *bvprv, struct scatterlist **sg) 517 { 518 519 int nbytes = bvec->bv_len; 520 521 if (!*sg) 522 return false; 523 524 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 525 return false; 526 527 if (!biovec_phys_mergeable(q, bvprv, bvec)) 528 return false; 529 530 (*sg)->length += nbytes; 531 532 return true; 533 } 534 535 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 536 struct scatterlist *sglist, 537 struct scatterlist **sg) 538 { 539 struct bio_vec bvec, bvprv = { NULL }; 540 struct bvec_iter iter; 541 int nsegs = 0; 542 bool new_bio = false; 543 544 for_each_bio(bio) { 545 bio_for_each_bvec(bvec, bio, iter) { 546 /* 547 * Only try to merge bvecs from two bios given we 548 * have done bio internal merge when adding pages 549 * to bio 550 */ 551 if (new_bio && 552 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 553 goto next_bvec; 554 555 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 556 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 557 else 558 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 559 next_bvec: 560 new_bio = false; 561 } 562 if (likely(bio->bi_iter.bi_size)) { 563 bvprv = bvec; 564 new_bio = true; 565 } 566 } 567 568 return nsegs; 569 } 570 571 /* 572 * map a request to scatterlist, return number of sg entries setup. Caller 573 * must make sure sg can hold rq->nr_phys_segments entries 574 */ 575 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 576 struct scatterlist *sglist, struct scatterlist **last_sg) 577 { 578 int nsegs = 0; 579 580 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 581 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 582 else if (rq->bio) 583 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 584 585 if (*last_sg) 586 sg_mark_end(*last_sg); 587 588 /* 589 * Something must have been wrong if the figured number of 590 * segment is bigger than number of req's physical segments 591 */ 592 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 593 594 return nsegs; 595 } 596 EXPORT_SYMBOL(__blk_rq_map_sg); 597 598 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 599 sector_t offset) 600 { 601 struct request_queue *q = rq->q; 602 unsigned int max_sectors; 603 604 if (blk_rq_is_passthrough(rq)) 605 return q->limits.max_hw_sectors; 606 607 max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 608 if (!q->limits.chunk_sectors || 609 req_op(rq) == REQ_OP_DISCARD || 610 req_op(rq) == REQ_OP_SECURE_ERASE) 611 return max_sectors; 612 return min(max_sectors, 613 blk_chunk_sectors_left(offset, q->limits.chunk_sectors)); 614 } 615 616 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 617 unsigned int nr_phys_segs) 618 { 619 if (!blk_cgroup_mergeable(req, bio)) 620 goto no_merge; 621 622 if (blk_integrity_merge_bio(req->q, req, bio) == false) 623 goto no_merge; 624 625 /* discard request merge won't add new segment */ 626 if (req_op(req) == REQ_OP_DISCARD) 627 return 1; 628 629 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 630 goto no_merge; 631 632 /* 633 * This will form the start of a new hw segment. Bump both 634 * counters. 635 */ 636 req->nr_phys_segments += nr_phys_segs; 637 return 1; 638 639 no_merge: 640 req_set_nomerge(req->q, req); 641 return 0; 642 } 643 644 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 645 { 646 if (req_gap_back_merge(req, bio)) 647 return 0; 648 if (blk_integrity_rq(req) && 649 integrity_req_gap_back_merge(req, bio)) 650 return 0; 651 if (!bio_crypt_ctx_back_mergeable(req, bio)) 652 return 0; 653 if (blk_rq_sectors(req) + bio_sectors(bio) > 654 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 655 req_set_nomerge(req->q, req); 656 return 0; 657 } 658 659 return ll_new_hw_segment(req, bio, nr_segs); 660 } 661 662 static int ll_front_merge_fn(struct request *req, struct bio *bio, 663 unsigned int nr_segs) 664 { 665 if (req_gap_front_merge(req, bio)) 666 return 0; 667 if (blk_integrity_rq(req) && 668 integrity_req_gap_front_merge(req, bio)) 669 return 0; 670 if (!bio_crypt_ctx_front_mergeable(req, bio)) 671 return 0; 672 if (blk_rq_sectors(req) + bio_sectors(bio) > 673 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 674 req_set_nomerge(req->q, req); 675 return 0; 676 } 677 678 return ll_new_hw_segment(req, bio, nr_segs); 679 } 680 681 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 682 struct request *next) 683 { 684 unsigned short segments = blk_rq_nr_discard_segments(req); 685 686 if (segments >= queue_max_discard_segments(q)) 687 goto no_merge; 688 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 689 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 690 goto no_merge; 691 692 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 693 return true; 694 no_merge: 695 req_set_nomerge(q, req); 696 return false; 697 } 698 699 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 700 struct request *next) 701 { 702 int total_phys_segments; 703 704 if (req_gap_back_merge(req, next->bio)) 705 return 0; 706 707 /* 708 * Will it become too large? 709 */ 710 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 711 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 712 return 0; 713 714 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 715 if (total_phys_segments > blk_rq_get_max_segments(req)) 716 return 0; 717 718 if (!blk_cgroup_mergeable(req, next->bio)) 719 return 0; 720 721 if (blk_integrity_merge_rq(q, req, next) == false) 722 return 0; 723 724 if (!bio_crypt_ctx_merge_rq(req, next)) 725 return 0; 726 727 /* Merge is OK... */ 728 req->nr_phys_segments = total_phys_segments; 729 return 1; 730 } 731 732 /** 733 * blk_rq_set_mixed_merge - mark a request as mixed merge 734 * @rq: request to mark as mixed merge 735 * 736 * Description: 737 * @rq is about to be mixed merged. Make sure the attributes 738 * which can be mixed are set in each bio and mark @rq as mixed 739 * merged. 740 */ 741 void blk_rq_set_mixed_merge(struct request *rq) 742 { 743 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 744 struct bio *bio; 745 746 if (rq->rq_flags & RQF_MIXED_MERGE) 747 return; 748 749 /* 750 * @rq will no longer represent mixable attributes for all the 751 * contained bios. It will just track those of the first one. 752 * Distributes the attributs to each bio. 753 */ 754 for (bio = rq->bio; bio; bio = bio->bi_next) { 755 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 756 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 757 bio->bi_opf |= ff; 758 } 759 rq->rq_flags |= RQF_MIXED_MERGE; 760 } 761 762 static inline blk_opf_t bio_failfast(const struct bio *bio) 763 { 764 if (bio->bi_opf & REQ_RAHEAD) 765 return REQ_FAILFAST_MASK; 766 767 return bio->bi_opf & REQ_FAILFAST_MASK; 768 } 769 770 /* 771 * After we are marked as MIXED_MERGE, any new RA bio has to be updated 772 * as failfast, and request's failfast has to be updated in case of 773 * front merge. 774 */ 775 static inline void blk_update_mixed_merge(struct request *req, 776 struct bio *bio, bool front_merge) 777 { 778 if (req->rq_flags & RQF_MIXED_MERGE) { 779 if (bio->bi_opf & REQ_RAHEAD) 780 bio->bi_opf |= REQ_FAILFAST_MASK; 781 782 if (front_merge) { 783 req->cmd_flags &= ~REQ_FAILFAST_MASK; 784 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK; 785 } 786 } 787 } 788 789 static void blk_account_io_merge_request(struct request *req) 790 { 791 if (blk_do_io_stat(req)) { 792 part_stat_lock(); 793 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 794 part_stat_local_dec(req->part, 795 in_flight[op_is_write(req_op(req))]); 796 part_stat_unlock(); 797 } 798 } 799 800 static enum elv_merge blk_try_req_merge(struct request *req, 801 struct request *next) 802 { 803 if (blk_discard_mergable(req)) 804 return ELEVATOR_DISCARD_MERGE; 805 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 806 return ELEVATOR_BACK_MERGE; 807 808 return ELEVATOR_NO_MERGE; 809 } 810 811 /* 812 * For non-mq, this has to be called with the request spinlock acquired. 813 * For mq with scheduling, the appropriate queue wide lock should be held. 814 */ 815 static struct request *attempt_merge(struct request_queue *q, 816 struct request *req, struct request *next) 817 { 818 if (!rq_mergeable(req) || !rq_mergeable(next)) 819 return NULL; 820 821 if (req_op(req) != req_op(next)) 822 return NULL; 823 824 if (rq_data_dir(req) != rq_data_dir(next)) 825 return NULL; 826 827 if (req->ioprio != next->ioprio) 828 return NULL; 829 830 /* 831 * If we are allowed to merge, then append bio list 832 * from next to rq and release next. merge_requests_fn 833 * will have updated segment counts, update sector 834 * counts here. Handle DISCARDs separately, as they 835 * have separate settings. 836 */ 837 838 switch (blk_try_req_merge(req, next)) { 839 case ELEVATOR_DISCARD_MERGE: 840 if (!req_attempt_discard_merge(q, req, next)) 841 return NULL; 842 break; 843 case ELEVATOR_BACK_MERGE: 844 if (!ll_merge_requests_fn(q, req, next)) 845 return NULL; 846 break; 847 default: 848 return NULL; 849 } 850 851 /* 852 * If failfast settings disagree or any of the two is already 853 * a mixed merge, mark both as mixed before proceeding. This 854 * makes sure that all involved bios have mixable attributes 855 * set properly. 856 */ 857 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 858 (req->cmd_flags & REQ_FAILFAST_MASK) != 859 (next->cmd_flags & REQ_FAILFAST_MASK)) { 860 blk_rq_set_mixed_merge(req); 861 blk_rq_set_mixed_merge(next); 862 } 863 864 /* 865 * At this point we have either done a back merge or front merge. We 866 * need the smaller start_time_ns of the merged requests to be the 867 * current request for accounting purposes. 868 */ 869 if (next->start_time_ns < req->start_time_ns) 870 req->start_time_ns = next->start_time_ns; 871 872 req->biotail->bi_next = next->bio; 873 req->biotail = next->biotail; 874 875 req->__data_len += blk_rq_bytes(next); 876 877 if (!blk_discard_mergable(req)) 878 elv_merge_requests(q, req, next); 879 880 blk_crypto_rq_put_keyslot(next); 881 882 /* 883 * 'next' is going away, so update stats accordingly 884 */ 885 blk_account_io_merge_request(next); 886 887 trace_block_rq_merge(next); 888 889 /* 890 * ownership of bio passed from next to req, return 'next' for 891 * the caller to free 892 */ 893 next->bio = NULL; 894 return next; 895 } 896 897 static struct request *attempt_back_merge(struct request_queue *q, 898 struct request *rq) 899 { 900 struct request *next = elv_latter_request(q, rq); 901 902 if (next) 903 return attempt_merge(q, rq, next); 904 905 return NULL; 906 } 907 908 static struct request *attempt_front_merge(struct request_queue *q, 909 struct request *rq) 910 { 911 struct request *prev = elv_former_request(q, rq); 912 913 if (prev) 914 return attempt_merge(q, prev, rq); 915 916 return NULL; 917 } 918 919 /* 920 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 921 * otherwise. The caller is responsible for freeing 'next' if the merge 922 * happened. 923 */ 924 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 925 struct request *next) 926 { 927 return attempt_merge(q, rq, next); 928 } 929 930 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 931 { 932 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 933 return false; 934 935 if (req_op(rq) != bio_op(bio)) 936 return false; 937 938 /* different data direction or already started, don't merge */ 939 if (bio_data_dir(bio) != rq_data_dir(rq)) 940 return false; 941 942 /* don't merge across cgroup boundaries */ 943 if (!blk_cgroup_mergeable(rq, bio)) 944 return false; 945 946 /* only merge integrity protected bio into ditto rq */ 947 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 948 return false; 949 950 /* Only merge if the crypt contexts are compatible */ 951 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 952 return false; 953 954 if (rq->ioprio != bio_prio(bio)) 955 return false; 956 957 return true; 958 } 959 960 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 961 { 962 if (blk_discard_mergable(rq)) 963 return ELEVATOR_DISCARD_MERGE; 964 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 965 return ELEVATOR_BACK_MERGE; 966 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 967 return ELEVATOR_FRONT_MERGE; 968 return ELEVATOR_NO_MERGE; 969 } 970 971 static void blk_account_io_merge_bio(struct request *req) 972 { 973 if (!blk_do_io_stat(req)) 974 return; 975 976 part_stat_lock(); 977 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 978 part_stat_unlock(); 979 } 980 981 enum bio_merge_status { 982 BIO_MERGE_OK, 983 BIO_MERGE_NONE, 984 BIO_MERGE_FAILED, 985 }; 986 987 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 988 struct bio *bio, unsigned int nr_segs) 989 { 990 const blk_opf_t ff = bio_failfast(bio); 991 992 if (!ll_back_merge_fn(req, bio, nr_segs)) 993 return BIO_MERGE_FAILED; 994 995 trace_block_bio_backmerge(bio); 996 rq_qos_merge(req->q, req, bio); 997 998 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 999 blk_rq_set_mixed_merge(req); 1000 1001 blk_update_mixed_merge(req, bio, false); 1002 1003 req->biotail->bi_next = bio; 1004 req->biotail = bio; 1005 req->__data_len += bio->bi_iter.bi_size; 1006 1007 bio_crypt_free_ctx(bio); 1008 1009 blk_account_io_merge_bio(req); 1010 return BIO_MERGE_OK; 1011 } 1012 1013 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 1014 struct bio *bio, unsigned int nr_segs) 1015 { 1016 const blk_opf_t ff = bio_failfast(bio); 1017 1018 if (!ll_front_merge_fn(req, bio, nr_segs)) 1019 return BIO_MERGE_FAILED; 1020 1021 trace_block_bio_frontmerge(bio); 1022 rq_qos_merge(req->q, req, bio); 1023 1024 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1025 blk_rq_set_mixed_merge(req); 1026 1027 blk_update_mixed_merge(req, bio, true); 1028 1029 bio->bi_next = req->bio; 1030 req->bio = bio; 1031 1032 req->__sector = bio->bi_iter.bi_sector; 1033 req->__data_len += bio->bi_iter.bi_size; 1034 1035 bio_crypt_do_front_merge(req, bio); 1036 1037 blk_account_io_merge_bio(req); 1038 return BIO_MERGE_OK; 1039 } 1040 1041 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1042 struct request *req, struct bio *bio) 1043 { 1044 unsigned short segments = blk_rq_nr_discard_segments(req); 1045 1046 if (segments >= queue_max_discard_segments(q)) 1047 goto no_merge; 1048 if (blk_rq_sectors(req) + bio_sectors(bio) > 1049 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1050 goto no_merge; 1051 1052 rq_qos_merge(q, req, bio); 1053 1054 req->biotail->bi_next = bio; 1055 req->biotail = bio; 1056 req->__data_len += bio->bi_iter.bi_size; 1057 req->nr_phys_segments = segments + 1; 1058 1059 blk_account_io_merge_bio(req); 1060 return BIO_MERGE_OK; 1061 no_merge: 1062 req_set_nomerge(q, req); 1063 return BIO_MERGE_FAILED; 1064 } 1065 1066 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1067 struct request *rq, 1068 struct bio *bio, 1069 unsigned int nr_segs, 1070 bool sched_allow_merge) 1071 { 1072 if (!blk_rq_merge_ok(rq, bio)) 1073 return BIO_MERGE_NONE; 1074 1075 switch (blk_try_merge(rq, bio)) { 1076 case ELEVATOR_BACK_MERGE: 1077 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1078 return bio_attempt_back_merge(rq, bio, nr_segs); 1079 break; 1080 case ELEVATOR_FRONT_MERGE: 1081 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1082 return bio_attempt_front_merge(rq, bio, nr_segs); 1083 break; 1084 case ELEVATOR_DISCARD_MERGE: 1085 return bio_attempt_discard_merge(q, rq, bio); 1086 default: 1087 return BIO_MERGE_NONE; 1088 } 1089 1090 return BIO_MERGE_FAILED; 1091 } 1092 1093 /** 1094 * blk_attempt_plug_merge - try to merge with %current's plugged list 1095 * @q: request_queue new bio is being queued at 1096 * @bio: new bio being queued 1097 * @nr_segs: number of segments in @bio 1098 * from the passed in @q already in the plug list 1099 * 1100 * Determine whether @bio being queued on @q can be merged with the previous 1101 * request on %current's plugged list. Returns %true if merge was successful, 1102 * otherwise %false. 1103 * 1104 * Plugging coalesces IOs from the same issuer for the same purpose without 1105 * going through @q->queue_lock. As such it's more of an issuing mechanism 1106 * than scheduling, and the request, while may have elvpriv data, is not 1107 * added on the elevator at this point. In addition, we don't have 1108 * reliable access to the elevator outside queue lock. Only check basic 1109 * merging parameters without querying the elevator. 1110 * 1111 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1112 */ 1113 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1114 unsigned int nr_segs) 1115 { 1116 struct blk_plug *plug; 1117 struct request *rq; 1118 1119 plug = blk_mq_plug(bio); 1120 if (!plug || rq_list_empty(plug->mq_list)) 1121 return false; 1122 1123 rq_list_for_each(&plug->mq_list, rq) { 1124 if (rq->q == q) { 1125 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1126 BIO_MERGE_OK) 1127 return true; 1128 break; 1129 } 1130 1131 /* 1132 * Only keep iterating plug list for merges if we have multiple 1133 * queues 1134 */ 1135 if (!plug->multiple_queues) 1136 break; 1137 } 1138 return false; 1139 } 1140 1141 /* 1142 * Iterate list of requests and see if we can merge this bio with any 1143 * of them. 1144 */ 1145 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1146 struct bio *bio, unsigned int nr_segs) 1147 { 1148 struct request *rq; 1149 int checked = 8; 1150 1151 list_for_each_entry_reverse(rq, list, queuelist) { 1152 if (!checked--) 1153 break; 1154 1155 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1156 case BIO_MERGE_NONE: 1157 continue; 1158 case BIO_MERGE_OK: 1159 return true; 1160 case BIO_MERGE_FAILED: 1161 return false; 1162 } 1163 1164 } 1165 1166 return false; 1167 } 1168 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1169 1170 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1171 unsigned int nr_segs, struct request **merged_request) 1172 { 1173 struct request *rq; 1174 1175 switch (elv_merge(q, &rq, bio)) { 1176 case ELEVATOR_BACK_MERGE: 1177 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1178 return false; 1179 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1180 return false; 1181 *merged_request = attempt_back_merge(q, rq); 1182 if (!*merged_request) 1183 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1184 return true; 1185 case ELEVATOR_FRONT_MERGE: 1186 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1187 return false; 1188 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1189 return false; 1190 *merged_request = attempt_front_merge(q, rq); 1191 if (!*merged_request) 1192 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1193 return true; 1194 case ELEVATOR_DISCARD_MERGE: 1195 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1196 default: 1197 return false; 1198 } 1199 } 1200 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1201