xref: /openbmc/linux/block/blk-merge.c (revision 4981b8a2d9fafa0d8060c83ffb19cd55c6798046)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87 
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 /*
99  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100  * is defined as 'unsigned int', meantime it has to be aligned to with the
101  * logical block size, which is the minimum accepted unit by hardware.
102  */
103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105 	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107 
108 static struct bio *bio_split_discard(struct bio *bio,
109 				     const struct queue_limits *lim,
110 				     unsigned *nsegs, struct bio_set *bs)
111 {
112 	unsigned int max_discard_sectors, granularity;
113 	sector_t tmp;
114 	unsigned split_sectors;
115 
116 	*nsegs = 1;
117 
118 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
119 	granularity = max(lim->discard_granularity >> 9, 1U);
120 
121 	max_discard_sectors =
122 		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
123 	max_discard_sectors -= max_discard_sectors % granularity;
124 
125 	if (unlikely(!max_discard_sectors)) {
126 		/* XXX: warn */
127 		return NULL;
128 	}
129 
130 	if (bio_sectors(bio) <= max_discard_sectors)
131 		return NULL;
132 
133 	split_sectors = max_discard_sectors;
134 
135 	/*
136 	 * If the next starting sector would be misaligned, stop the discard at
137 	 * the previous aligned sector.
138 	 */
139 	tmp = bio->bi_iter.bi_sector + split_sectors -
140 		((lim->discard_alignment >> 9) % granularity);
141 	tmp = sector_div(tmp, granularity);
142 
143 	if (split_sectors > tmp)
144 		split_sectors -= tmp;
145 
146 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
147 }
148 
149 static struct bio *bio_split_write_zeroes(struct bio *bio,
150 					  const struct queue_limits *lim,
151 					  unsigned *nsegs, struct bio_set *bs)
152 {
153 	*nsegs = 0;
154 	if (!lim->max_write_zeroes_sectors)
155 		return NULL;
156 	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
157 		return NULL;
158 	return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
159 }
160 
161 /*
162  * Return the maximum number of sectors from the start of a bio that may be
163  * submitted as a single request to a block device. If enough sectors remain,
164  * align the end to the physical block size. Otherwise align the end to the
165  * logical block size. This approach minimizes the number of non-aligned
166  * requests that are submitted to a block device if the start of a bio is not
167  * aligned to a physical block boundary.
168  */
169 static inline unsigned get_max_io_size(struct bio *bio,
170 				       const struct queue_limits *lim)
171 {
172 	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
173 	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
174 	unsigned max_sectors = lim->max_sectors, start, end;
175 
176 	if (lim->chunk_sectors) {
177 		max_sectors = min(max_sectors,
178 			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
179 					       lim->chunk_sectors));
180 	}
181 
182 	start = bio->bi_iter.bi_sector & (pbs - 1);
183 	end = (start + max_sectors) & ~(pbs - 1);
184 	if (end > start)
185 		return end - start;
186 	return max_sectors & ~(lbs - 1);
187 }
188 
189 /**
190  * get_max_segment_size() - maximum number of bytes to add as a single segment
191  * @lim: Request queue limits.
192  * @start_page: See below.
193  * @offset: Offset from @start_page where to add a segment.
194  *
195  * Returns the maximum number of bytes that can be added as a single segment.
196  */
197 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
198 		struct page *start_page, unsigned long offset)
199 {
200 	unsigned long mask = lim->seg_boundary_mask;
201 
202 	offset = mask & (page_to_phys(start_page) + offset);
203 
204 	/*
205 	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
206 	 * after having calculated the minimum.
207 	 */
208 	return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1;
209 }
210 
211 /**
212  * bvec_split_segs - verify whether or not a bvec should be split in the middle
213  * @lim:      [in] queue limits to split based on
214  * @bv:       [in] bvec to examine
215  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
216  *            by the number of segments from @bv that may be appended to that
217  *            bio without exceeding @max_segs
218  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
219  *            by the number of bytes from @bv that may be appended to that
220  *            bio without exceeding @max_bytes
221  * @max_segs: [in] upper bound for *@nsegs
222  * @max_bytes: [in] upper bound for *@bytes
223  *
224  * When splitting a bio, it can happen that a bvec is encountered that is too
225  * big to fit in a single segment and hence that it has to be split in the
226  * middle. This function verifies whether or not that should happen. The value
227  * %true is returned if and only if appending the entire @bv to a bio with
228  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
229  * the block driver.
230  */
231 static bool bvec_split_segs(const struct queue_limits *lim,
232 		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
233 		unsigned max_segs, unsigned max_bytes)
234 {
235 	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
236 	unsigned len = min(bv->bv_len, max_len);
237 	unsigned total_len = 0;
238 	unsigned seg_size = 0;
239 
240 	while (len && *nsegs < max_segs) {
241 		seg_size = get_max_segment_size(lim, bv->bv_page,
242 						bv->bv_offset + total_len);
243 		seg_size = min(seg_size, len);
244 
245 		(*nsegs)++;
246 		total_len += seg_size;
247 		len -= seg_size;
248 
249 		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
250 			break;
251 	}
252 
253 	*bytes += total_len;
254 
255 	/* tell the caller to split the bvec if it is too big to fit */
256 	return len > 0 || bv->bv_len > max_len;
257 }
258 
259 static unsigned int bio_split_alignment(struct bio *bio,
260 		const struct queue_limits *lim)
261 {
262 	if (op_is_write(bio_op(bio)) && lim->zone_write_granularity)
263 		return lim->zone_write_granularity;
264 	return lim->logical_block_size;
265 }
266 
267 /**
268  * bio_split_rw - split a bio in two bios
269  * @bio:  [in] bio to be split
270  * @lim:  [in] queue limits to split based on
271  * @segs: [out] number of segments in the bio with the first half of the sectors
272  * @bs:	  [in] bio set to allocate the clone from
273  * @max_bytes: [in] maximum number of bytes per bio
274  *
275  * Clone @bio, update the bi_iter of the clone to represent the first sectors
276  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
277  * following is guaranteed for the cloned bio:
278  * - That it has at most @max_bytes worth of data
279  * - That it has at most queue_max_segments(@q) segments.
280  *
281  * Except for discard requests the cloned bio will point at the bi_io_vec of
282  * the original bio. It is the responsibility of the caller to ensure that the
283  * original bio is not freed before the cloned bio. The caller is also
284  * responsible for ensuring that @bs is only destroyed after processing of the
285  * split bio has finished.
286  */
287 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
288 		unsigned *segs, struct bio_set *bs, unsigned max_bytes)
289 {
290 	struct bio_vec bv, bvprv, *bvprvp = NULL;
291 	struct bvec_iter iter;
292 	unsigned nsegs = 0, bytes = 0;
293 
294 	bio_for_each_bvec(bv, bio, iter) {
295 		/*
296 		 * If the queue doesn't support SG gaps and adding this
297 		 * offset would create a gap, disallow it.
298 		 */
299 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
300 			goto split;
301 
302 		if (nsegs < lim->max_segments &&
303 		    bytes + bv.bv_len <= max_bytes &&
304 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
305 			nsegs++;
306 			bytes += bv.bv_len;
307 		} else {
308 			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
309 					lim->max_segments, max_bytes))
310 				goto split;
311 		}
312 
313 		bvprv = bv;
314 		bvprvp = &bvprv;
315 	}
316 
317 	*segs = nsegs;
318 	return NULL;
319 split:
320 	/*
321 	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
322 	 * with EAGAIN if splitting is required and return an error pointer.
323 	 */
324 	if (bio->bi_opf & REQ_NOWAIT) {
325 		bio->bi_status = BLK_STS_AGAIN;
326 		bio_endio(bio);
327 		return ERR_PTR(-EAGAIN);
328 	}
329 
330 	*segs = nsegs;
331 
332 	/*
333 	 * Individual bvecs might not be logical block aligned. Round down the
334 	 * split size so that each bio is properly block size aligned, even if
335 	 * we do not use the full hardware limits.
336 	 */
337 	bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim));
338 
339 	/*
340 	 * Bio splitting may cause subtle trouble such as hang when doing sync
341 	 * iopoll in direct IO routine. Given performance gain of iopoll for
342 	 * big IO can be trival, disable iopoll when split needed.
343 	 */
344 	bio_clear_polled(bio);
345 	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
346 }
347 EXPORT_SYMBOL_GPL(bio_split_rw);
348 
349 /**
350  * __bio_split_to_limits - split a bio to fit the queue limits
351  * @bio:     bio to be split
352  * @lim:     queue limits to split based on
353  * @nr_segs: returns the number of segments in the returned bio
354  *
355  * Check if @bio needs splitting based on the queue limits, and if so split off
356  * a bio fitting the limits from the beginning of @bio and return it.  @bio is
357  * shortened to the remainder and re-submitted.
358  *
359  * The split bio is allocated from @q->bio_split, which is provided by the
360  * block layer.
361  */
362 struct bio *__bio_split_to_limits(struct bio *bio,
363 				  const struct queue_limits *lim,
364 				  unsigned int *nr_segs)
365 {
366 	struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
367 	struct bio *split;
368 
369 	switch (bio_op(bio)) {
370 	case REQ_OP_DISCARD:
371 	case REQ_OP_SECURE_ERASE:
372 		split = bio_split_discard(bio, lim, nr_segs, bs);
373 		break;
374 	case REQ_OP_WRITE_ZEROES:
375 		split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
376 		break;
377 	default:
378 		split = bio_split_rw(bio, lim, nr_segs, bs,
379 				get_max_io_size(bio, lim) << SECTOR_SHIFT);
380 		if (IS_ERR(split))
381 			return NULL;
382 		break;
383 	}
384 
385 	if (split) {
386 		/* there isn't chance to merge the split bio */
387 		split->bi_opf |= REQ_NOMERGE;
388 
389 		blkcg_bio_issue_init(split);
390 		bio_chain(split, bio);
391 		trace_block_split(split, bio->bi_iter.bi_sector);
392 		submit_bio_noacct(bio);
393 		return split;
394 	}
395 	return bio;
396 }
397 
398 /**
399  * bio_split_to_limits - split a bio to fit the queue limits
400  * @bio:     bio to be split
401  *
402  * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
403  * if so split off a bio fitting the limits from the beginning of @bio and
404  * return it.  @bio is shortened to the remainder and re-submitted.
405  *
406  * The split bio is allocated from @q->bio_split, which is provided by the
407  * block layer.
408  */
409 struct bio *bio_split_to_limits(struct bio *bio)
410 {
411 	const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
412 	unsigned int nr_segs;
413 
414 	if (bio_may_exceed_limits(bio, lim))
415 		return __bio_split_to_limits(bio, lim, &nr_segs);
416 	return bio;
417 }
418 EXPORT_SYMBOL(bio_split_to_limits);
419 
420 unsigned int blk_recalc_rq_segments(struct request *rq)
421 {
422 	unsigned int nr_phys_segs = 0;
423 	unsigned int bytes = 0;
424 	struct req_iterator iter;
425 	struct bio_vec bv;
426 
427 	if (!rq->bio)
428 		return 0;
429 
430 	switch (bio_op(rq->bio)) {
431 	case REQ_OP_DISCARD:
432 	case REQ_OP_SECURE_ERASE:
433 		if (queue_max_discard_segments(rq->q) > 1) {
434 			struct bio *bio = rq->bio;
435 
436 			for_each_bio(bio)
437 				nr_phys_segs++;
438 			return nr_phys_segs;
439 		}
440 		return 1;
441 	case REQ_OP_WRITE_ZEROES:
442 		return 0;
443 	default:
444 		break;
445 	}
446 
447 	rq_for_each_bvec(bv, rq, iter)
448 		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
449 				UINT_MAX, UINT_MAX);
450 	return nr_phys_segs;
451 }
452 
453 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
454 		struct scatterlist *sglist)
455 {
456 	if (!*sg)
457 		return sglist;
458 
459 	/*
460 	 * If the driver previously mapped a shorter list, we could see a
461 	 * termination bit prematurely unless it fully inits the sg table
462 	 * on each mapping. We KNOW that there must be more entries here
463 	 * or the driver would be buggy, so force clear the termination bit
464 	 * to avoid doing a full sg_init_table() in drivers for each command.
465 	 */
466 	sg_unmark_end(*sg);
467 	return sg_next(*sg);
468 }
469 
470 static unsigned blk_bvec_map_sg(struct request_queue *q,
471 		struct bio_vec *bvec, struct scatterlist *sglist,
472 		struct scatterlist **sg)
473 {
474 	unsigned nbytes = bvec->bv_len;
475 	unsigned nsegs = 0, total = 0;
476 
477 	while (nbytes > 0) {
478 		unsigned offset = bvec->bv_offset + total;
479 		unsigned len = min(get_max_segment_size(&q->limits,
480 				   bvec->bv_page, offset), nbytes);
481 		struct page *page = bvec->bv_page;
482 
483 		/*
484 		 * Unfortunately a fair number of drivers barf on scatterlists
485 		 * that have an offset larger than PAGE_SIZE, despite other
486 		 * subsystems dealing with that invariant just fine.  For now
487 		 * stick to the legacy format where we never present those from
488 		 * the block layer, but the code below should be removed once
489 		 * these offenders (mostly MMC/SD drivers) are fixed.
490 		 */
491 		page += (offset >> PAGE_SHIFT);
492 		offset &= ~PAGE_MASK;
493 
494 		*sg = blk_next_sg(sg, sglist);
495 		sg_set_page(*sg, page, len, offset);
496 
497 		total += len;
498 		nbytes -= len;
499 		nsegs++;
500 	}
501 
502 	return nsegs;
503 }
504 
505 static inline int __blk_bvec_map_sg(struct bio_vec bv,
506 		struct scatterlist *sglist, struct scatterlist **sg)
507 {
508 	*sg = blk_next_sg(sg, sglist);
509 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
510 	return 1;
511 }
512 
513 /* only try to merge bvecs into one sg if they are from two bios */
514 static inline bool
515 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
516 			   struct bio_vec *bvprv, struct scatterlist **sg)
517 {
518 
519 	int nbytes = bvec->bv_len;
520 
521 	if (!*sg)
522 		return false;
523 
524 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
525 		return false;
526 
527 	if (!biovec_phys_mergeable(q, bvprv, bvec))
528 		return false;
529 
530 	(*sg)->length += nbytes;
531 
532 	return true;
533 }
534 
535 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
536 			     struct scatterlist *sglist,
537 			     struct scatterlist **sg)
538 {
539 	struct bio_vec bvec, bvprv = { NULL };
540 	struct bvec_iter iter;
541 	int nsegs = 0;
542 	bool new_bio = false;
543 
544 	for_each_bio(bio) {
545 		bio_for_each_bvec(bvec, bio, iter) {
546 			/*
547 			 * Only try to merge bvecs from two bios given we
548 			 * have done bio internal merge when adding pages
549 			 * to bio
550 			 */
551 			if (new_bio &&
552 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
553 				goto next_bvec;
554 
555 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
556 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
557 			else
558 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
559  next_bvec:
560 			new_bio = false;
561 		}
562 		if (likely(bio->bi_iter.bi_size)) {
563 			bvprv = bvec;
564 			new_bio = true;
565 		}
566 	}
567 
568 	return nsegs;
569 }
570 
571 /*
572  * map a request to scatterlist, return number of sg entries setup. Caller
573  * must make sure sg can hold rq->nr_phys_segments entries
574  */
575 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
576 		struct scatterlist *sglist, struct scatterlist **last_sg)
577 {
578 	int nsegs = 0;
579 
580 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
581 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
582 	else if (rq->bio)
583 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
584 
585 	if (*last_sg)
586 		sg_mark_end(*last_sg);
587 
588 	/*
589 	 * Something must have been wrong if the figured number of
590 	 * segment is bigger than number of req's physical segments
591 	 */
592 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
593 
594 	return nsegs;
595 }
596 EXPORT_SYMBOL(__blk_rq_map_sg);
597 
598 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
599 						  sector_t offset)
600 {
601 	struct request_queue *q = rq->q;
602 	unsigned int max_sectors;
603 
604 	if (blk_rq_is_passthrough(rq))
605 		return q->limits.max_hw_sectors;
606 
607 	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
608 	if (!q->limits.chunk_sectors ||
609 	    req_op(rq) == REQ_OP_DISCARD ||
610 	    req_op(rq) == REQ_OP_SECURE_ERASE)
611 		return max_sectors;
612 	return min(max_sectors,
613 		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
614 }
615 
616 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
617 		unsigned int nr_phys_segs)
618 {
619 	if (!blk_cgroup_mergeable(req, bio))
620 		goto no_merge;
621 
622 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
623 		goto no_merge;
624 
625 	/* discard request merge won't add new segment */
626 	if (req_op(req) == REQ_OP_DISCARD)
627 		return 1;
628 
629 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
630 		goto no_merge;
631 
632 	/*
633 	 * This will form the start of a new hw segment.  Bump both
634 	 * counters.
635 	 */
636 	req->nr_phys_segments += nr_phys_segs;
637 	return 1;
638 
639 no_merge:
640 	req_set_nomerge(req->q, req);
641 	return 0;
642 }
643 
644 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
645 {
646 	if (req_gap_back_merge(req, bio))
647 		return 0;
648 	if (blk_integrity_rq(req) &&
649 	    integrity_req_gap_back_merge(req, bio))
650 		return 0;
651 	if (!bio_crypt_ctx_back_mergeable(req, bio))
652 		return 0;
653 	if (blk_rq_sectors(req) + bio_sectors(bio) >
654 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
655 		req_set_nomerge(req->q, req);
656 		return 0;
657 	}
658 
659 	return ll_new_hw_segment(req, bio, nr_segs);
660 }
661 
662 static int ll_front_merge_fn(struct request *req, struct bio *bio,
663 		unsigned int nr_segs)
664 {
665 	if (req_gap_front_merge(req, bio))
666 		return 0;
667 	if (blk_integrity_rq(req) &&
668 	    integrity_req_gap_front_merge(req, bio))
669 		return 0;
670 	if (!bio_crypt_ctx_front_mergeable(req, bio))
671 		return 0;
672 	if (blk_rq_sectors(req) + bio_sectors(bio) >
673 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
674 		req_set_nomerge(req->q, req);
675 		return 0;
676 	}
677 
678 	return ll_new_hw_segment(req, bio, nr_segs);
679 }
680 
681 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
682 		struct request *next)
683 {
684 	unsigned short segments = blk_rq_nr_discard_segments(req);
685 
686 	if (segments >= queue_max_discard_segments(q))
687 		goto no_merge;
688 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
689 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
690 		goto no_merge;
691 
692 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
693 	return true;
694 no_merge:
695 	req_set_nomerge(q, req);
696 	return false;
697 }
698 
699 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
700 				struct request *next)
701 {
702 	int total_phys_segments;
703 
704 	if (req_gap_back_merge(req, next->bio))
705 		return 0;
706 
707 	/*
708 	 * Will it become too large?
709 	 */
710 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
711 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
712 		return 0;
713 
714 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
715 	if (total_phys_segments > blk_rq_get_max_segments(req))
716 		return 0;
717 
718 	if (!blk_cgroup_mergeable(req, next->bio))
719 		return 0;
720 
721 	if (blk_integrity_merge_rq(q, req, next) == false)
722 		return 0;
723 
724 	if (!bio_crypt_ctx_merge_rq(req, next))
725 		return 0;
726 
727 	/* Merge is OK... */
728 	req->nr_phys_segments = total_phys_segments;
729 	return 1;
730 }
731 
732 /**
733  * blk_rq_set_mixed_merge - mark a request as mixed merge
734  * @rq: request to mark as mixed merge
735  *
736  * Description:
737  *     @rq is about to be mixed merged.  Make sure the attributes
738  *     which can be mixed are set in each bio and mark @rq as mixed
739  *     merged.
740  */
741 void blk_rq_set_mixed_merge(struct request *rq)
742 {
743 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
744 	struct bio *bio;
745 
746 	if (rq->rq_flags & RQF_MIXED_MERGE)
747 		return;
748 
749 	/*
750 	 * @rq will no longer represent mixable attributes for all the
751 	 * contained bios.  It will just track those of the first one.
752 	 * Distributes the attributs to each bio.
753 	 */
754 	for (bio = rq->bio; bio; bio = bio->bi_next) {
755 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
756 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
757 		bio->bi_opf |= ff;
758 	}
759 	rq->rq_flags |= RQF_MIXED_MERGE;
760 }
761 
762 static inline blk_opf_t bio_failfast(const struct bio *bio)
763 {
764 	if (bio->bi_opf & REQ_RAHEAD)
765 		return REQ_FAILFAST_MASK;
766 
767 	return bio->bi_opf & REQ_FAILFAST_MASK;
768 }
769 
770 /*
771  * After we are marked as MIXED_MERGE, any new RA bio has to be updated
772  * as failfast, and request's failfast has to be updated in case of
773  * front merge.
774  */
775 static inline void blk_update_mixed_merge(struct request *req,
776 		struct bio *bio, bool front_merge)
777 {
778 	if (req->rq_flags & RQF_MIXED_MERGE) {
779 		if (bio->bi_opf & REQ_RAHEAD)
780 			bio->bi_opf |= REQ_FAILFAST_MASK;
781 
782 		if (front_merge) {
783 			req->cmd_flags &= ~REQ_FAILFAST_MASK;
784 			req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
785 		}
786 	}
787 }
788 
789 static void blk_account_io_merge_request(struct request *req)
790 {
791 	if (blk_do_io_stat(req)) {
792 		part_stat_lock();
793 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
794 		part_stat_local_dec(req->part,
795 				    in_flight[op_is_write(req_op(req))]);
796 		part_stat_unlock();
797 	}
798 }
799 
800 static enum elv_merge blk_try_req_merge(struct request *req,
801 					struct request *next)
802 {
803 	if (blk_discard_mergable(req))
804 		return ELEVATOR_DISCARD_MERGE;
805 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
806 		return ELEVATOR_BACK_MERGE;
807 
808 	return ELEVATOR_NO_MERGE;
809 }
810 
811 /*
812  * For non-mq, this has to be called with the request spinlock acquired.
813  * For mq with scheduling, the appropriate queue wide lock should be held.
814  */
815 static struct request *attempt_merge(struct request_queue *q,
816 				     struct request *req, struct request *next)
817 {
818 	if (!rq_mergeable(req) || !rq_mergeable(next))
819 		return NULL;
820 
821 	if (req_op(req) != req_op(next))
822 		return NULL;
823 
824 	if (rq_data_dir(req) != rq_data_dir(next))
825 		return NULL;
826 
827 	if (req->ioprio != next->ioprio)
828 		return NULL;
829 
830 	/*
831 	 * If we are allowed to merge, then append bio list
832 	 * from next to rq and release next. merge_requests_fn
833 	 * will have updated segment counts, update sector
834 	 * counts here. Handle DISCARDs separately, as they
835 	 * have separate settings.
836 	 */
837 
838 	switch (blk_try_req_merge(req, next)) {
839 	case ELEVATOR_DISCARD_MERGE:
840 		if (!req_attempt_discard_merge(q, req, next))
841 			return NULL;
842 		break;
843 	case ELEVATOR_BACK_MERGE:
844 		if (!ll_merge_requests_fn(q, req, next))
845 			return NULL;
846 		break;
847 	default:
848 		return NULL;
849 	}
850 
851 	/*
852 	 * If failfast settings disagree or any of the two is already
853 	 * a mixed merge, mark both as mixed before proceeding.  This
854 	 * makes sure that all involved bios have mixable attributes
855 	 * set properly.
856 	 */
857 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
858 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
859 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
860 		blk_rq_set_mixed_merge(req);
861 		blk_rq_set_mixed_merge(next);
862 	}
863 
864 	/*
865 	 * At this point we have either done a back merge or front merge. We
866 	 * need the smaller start_time_ns of the merged requests to be the
867 	 * current request for accounting purposes.
868 	 */
869 	if (next->start_time_ns < req->start_time_ns)
870 		req->start_time_ns = next->start_time_ns;
871 
872 	req->biotail->bi_next = next->bio;
873 	req->biotail = next->biotail;
874 
875 	req->__data_len += blk_rq_bytes(next);
876 
877 	if (!blk_discard_mergable(req))
878 		elv_merge_requests(q, req, next);
879 
880 	blk_crypto_rq_put_keyslot(next);
881 
882 	/*
883 	 * 'next' is going away, so update stats accordingly
884 	 */
885 	blk_account_io_merge_request(next);
886 
887 	trace_block_rq_merge(next);
888 
889 	/*
890 	 * ownership of bio passed from next to req, return 'next' for
891 	 * the caller to free
892 	 */
893 	next->bio = NULL;
894 	return next;
895 }
896 
897 static struct request *attempt_back_merge(struct request_queue *q,
898 		struct request *rq)
899 {
900 	struct request *next = elv_latter_request(q, rq);
901 
902 	if (next)
903 		return attempt_merge(q, rq, next);
904 
905 	return NULL;
906 }
907 
908 static struct request *attempt_front_merge(struct request_queue *q,
909 		struct request *rq)
910 {
911 	struct request *prev = elv_former_request(q, rq);
912 
913 	if (prev)
914 		return attempt_merge(q, prev, rq);
915 
916 	return NULL;
917 }
918 
919 /*
920  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
921  * otherwise. The caller is responsible for freeing 'next' if the merge
922  * happened.
923  */
924 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
925 			   struct request *next)
926 {
927 	return attempt_merge(q, rq, next);
928 }
929 
930 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
931 {
932 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
933 		return false;
934 
935 	if (req_op(rq) != bio_op(bio))
936 		return false;
937 
938 	/* different data direction or already started, don't merge */
939 	if (bio_data_dir(bio) != rq_data_dir(rq))
940 		return false;
941 
942 	/* don't merge across cgroup boundaries */
943 	if (!blk_cgroup_mergeable(rq, bio))
944 		return false;
945 
946 	/* only merge integrity protected bio into ditto rq */
947 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
948 		return false;
949 
950 	/* Only merge if the crypt contexts are compatible */
951 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
952 		return false;
953 
954 	if (rq->ioprio != bio_prio(bio))
955 		return false;
956 
957 	return true;
958 }
959 
960 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
961 {
962 	if (blk_discard_mergable(rq))
963 		return ELEVATOR_DISCARD_MERGE;
964 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
965 		return ELEVATOR_BACK_MERGE;
966 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
967 		return ELEVATOR_FRONT_MERGE;
968 	return ELEVATOR_NO_MERGE;
969 }
970 
971 static void blk_account_io_merge_bio(struct request *req)
972 {
973 	if (!blk_do_io_stat(req))
974 		return;
975 
976 	part_stat_lock();
977 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
978 	part_stat_unlock();
979 }
980 
981 enum bio_merge_status {
982 	BIO_MERGE_OK,
983 	BIO_MERGE_NONE,
984 	BIO_MERGE_FAILED,
985 };
986 
987 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
988 		struct bio *bio, unsigned int nr_segs)
989 {
990 	const blk_opf_t ff = bio_failfast(bio);
991 
992 	if (!ll_back_merge_fn(req, bio, nr_segs))
993 		return BIO_MERGE_FAILED;
994 
995 	trace_block_bio_backmerge(bio);
996 	rq_qos_merge(req->q, req, bio);
997 
998 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
999 		blk_rq_set_mixed_merge(req);
1000 
1001 	blk_update_mixed_merge(req, bio, false);
1002 
1003 	req->biotail->bi_next = bio;
1004 	req->biotail = bio;
1005 	req->__data_len += bio->bi_iter.bi_size;
1006 
1007 	bio_crypt_free_ctx(bio);
1008 
1009 	blk_account_io_merge_bio(req);
1010 	return BIO_MERGE_OK;
1011 }
1012 
1013 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1014 		struct bio *bio, unsigned int nr_segs)
1015 {
1016 	const blk_opf_t ff = bio_failfast(bio);
1017 
1018 	if (!ll_front_merge_fn(req, bio, nr_segs))
1019 		return BIO_MERGE_FAILED;
1020 
1021 	trace_block_bio_frontmerge(bio);
1022 	rq_qos_merge(req->q, req, bio);
1023 
1024 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1025 		blk_rq_set_mixed_merge(req);
1026 
1027 	blk_update_mixed_merge(req, bio, true);
1028 
1029 	bio->bi_next = req->bio;
1030 	req->bio = bio;
1031 
1032 	req->__sector = bio->bi_iter.bi_sector;
1033 	req->__data_len += bio->bi_iter.bi_size;
1034 
1035 	bio_crypt_do_front_merge(req, bio);
1036 
1037 	blk_account_io_merge_bio(req);
1038 	return BIO_MERGE_OK;
1039 }
1040 
1041 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1042 		struct request *req, struct bio *bio)
1043 {
1044 	unsigned short segments = blk_rq_nr_discard_segments(req);
1045 
1046 	if (segments >= queue_max_discard_segments(q))
1047 		goto no_merge;
1048 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1049 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1050 		goto no_merge;
1051 
1052 	rq_qos_merge(q, req, bio);
1053 
1054 	req->biotail->bi_next = bio;
1055 	req->biotail = bio;
1056 	req->__data_len += bio->bi_iter.bi_size;
1057 	req->nr_phys_segments = segments + 1;
1058 
1059 	blk_account_io_merge_bio(req);
1060 	return BIO_MERGE_OK;
1061 no_merge:
1062 	req_set_nomerge(q, req);
1063 	return BIO_MERGE_FAILED;
1064 }
1065 
1066 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1067 						   struct request *rq,
1068 						   struct bio *bio,
1069 						   unsigned int nr_segs,
1070 						   bool sched_allow_merge)
1071 {
1072 	if (!blk_rq_merge_ok(rq, bio))
1073 		return BIO_MERGE_NONE;
1074 
1075 	switch (blk_try_merge(rq, bio)) {
1076 	case ELEVATOR_BACK_MERGE:
1077 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1078 			return bio_attempt_back_merge(rq, bio, nr_segs);
1079 		break;
1080 	case ELEVATOR_FRONT_MERGE:
1081 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1082 			return bio_attempt_front_merge(rq, bio, nr_segs);
1083 		break;
1084 	case ELEVATOR_DISCARD_MERGE:
1085 		return bio_attempt_discard_merge(q, rq, bio);
1086 	default:
1087 		return BIO_MERGE_NONE;
1088 	}
1089 
1090 	return BIO_MERGE_FAILED;
1091 }
1092 
1093 /**
1094  * blk_attempt_plug_merge - try to merge with %current's plugged list
1095  * @q: request_queue new bio is being queued at
1096  * @bio: new bio being queued
1097  * @nr_segs: number of segments in @bio
1098  * from the passed in @q already in the plug list
1099  *
1100  * Determine whether @bio being queued on @q can be merged with the previous
1101  * request on %current's plugged list.  Returns %true if merge was successful,
1102  * otherwise %false.
1103  *
1104  * Plugging coalesces IOs from the same issuer for the same purpose without
1105  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1106  * than scheduling, and the request, while may have elvpriv data, is not
1107  * added on the elevator at this point.  In addition, we don't have
1108  * reliable access to the elevator outside queue lock.  Only check basic
1109  * merging parameters without querying the elevator.
1110  *
1111  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1112  */
1113 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1114 		unsigned int nr_segs)
1115 {
1116 	struct blk_plug *plug;
1117 	struct request *rq;
1118 
1119 	plug = blk_mq_plug(bio);
1120 	if (!plug || rq_list_empty(plug->mq_list))
1121 		return false;
1122 
1123 	rq_list_for_each(&plug->mq_list, rq) {
1124 		if (rq->q == q) {
1125 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1126 			    BIO_MERGE_OK)
1127 				return true;
1128 			break;
1129 		}
1130 
1131 		/*
1132 		 * Only keep iterating plug list for merges if we have multiple
1133 		 * queues
1134 		 */
1135 		if (!plug->multiple_queues)
1136 			break;
1137 	}
1138 	return false;
1139 }
1140 
1141 /*
1142  * Iterate list of requests and see if we can merge this bio with any
1143  * of them.
1144  */
1145 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1146 			struct bio *bio, unsigned int nr_segs)
1147 {
1148 	struct request *rq;
1149 	int checked = 8;
1150 
1151 	list_for_each_entry_reverse(rq, list, queuelist) {
1152 		if (!checked--)
1153 			break;
1154 
1155 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1156 		case BIO_MERGE_NONE:
1157 			continue;
1158 		case BIO_MERGE_OK:
1159 			return true;
1160 		case BIO_MERGE_FAILED:
1161 			return false;
1162 		}
1163 
1164 	}
1165 
1166 	return false;
1167 }
1168 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1169 
1170 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1171 		unsigned int nr_segs, struct request **merged_request)
1172 {
1173 	struct request *rq;
1174 
1175 	switch (elv_merge(q, &rq, bio)) {
1176 	case ELEVATOR_BACK_MERGE:
1177 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1178 			return false;
1179 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1180 			return false;
1181 		*merged_request = attempt_back_merge(q, rq);
1182 		if (!*merged_request)
1183 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1184 		return true;
1185 	case ELEVATOR_FRONT_MERGE:
1186 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1187 			return false;
1188 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1189 			return false;
1190 		*merged_request = attempt_front_merge(q, rq);
1191 		if (!*merged_request)
1192 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1193 		return true;
1194 	case ELEVATOR_DISCARD_MERGE:
1195 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1196 	default:
1197 		return false;
1198 	}
1199 }
1200 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1201