1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 15 static inline bool bio_will_gap(struct request_queue *q, 16 struct request *prev_rq, struct bio *prev, struct bio *next) 17 { 18 struct bio_vec pb, nb; 19 20 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 21 return false; 22 23 /* 24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 25 * is quite difficult to respect the sg gap limit. We work hard to 26 * merge a huge number of small single bios in case of mkfs. 27 */ 28 if (prev_rq) 29 bio_get_first_bvec(prev_rq->bio, &pb); 30 else 31 bio_get_first_bvec(prev, &pb); 32 if (pb.bv_offset & queue_virt_boundary(q)) 33 return true; 34 35 /* 36 * We don't need to worry about the situation that the merged segment 37 * ends in unaligned virt boundary: 38 * 39 * - if 'pb' ends aligned, the merged segment ends aligned 40 * - if 'pb' ends unaligned, the next bio must include 41 * one single bvec of 'nb', otherwise the 'nb' can't 42 * merge with 'pb' 43 */ 44 bio_get_last_bvec(prev, &pb); 45 bio_get_first_bvec(next, &nb); 46 if (biovec_phys_mergeable(q, &pb, &nb)) 47 return false; 48 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 49 } 50 51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 52 { 53 return bio_will_gap(req->q, req, req->biotail, bio); 54 } 55 56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 57 { 58 return bio_will_gap(req->q, NULL, bio, req->bio); 59 } 60 61 static struct bio *blk_bio_discard_split(struct request_queue *q, 62 struct bio *bio, 63 struct bio_set *bs, 64 unsigned *nsegs) 65 { 66 unsigned int max_discard_sectors, granularity; 67 int alignment; 68 sector_t tmp; 69 unsigned split_sectors; 70 71 *nsegs = 1; 72 73 /* Zero-sector (unknown) and one-sector granularities are the same. */ 74 granularity = max(q->limits.discard_granularity >> 9, 1U); 75 76 max_discard_sectors = min(q->limits.max_discard_sectors, 77 bio_allowed_max_sectors(q)); 78 max_discard_sectors -= max_discard_sectors % granularity; 79 80 if (unlikely(!max_discard_sectors)) { 81 /* XXX: warn */ 82 return NULL; 83 } 84 85 if (bio_sectors(bio) <= max_discard_sectors) 86 return NULL; 87 88 split_sectors = max_discard_sectors; 89 90 /* 91 * If the next starting sector would be misaligned, stop the discard at 92 * the previous aligned sector. 93 */ 94 alignment = (q->limits.discard_alignment >> 9) % granularity; 95 96 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 97 tmp = sector_div(tmp, granularity); 98 99 if (split_sectors > tmp) 100 split_sectors -= tmp; 101 102 return bio_split(bio, split_sectors, GFP_NOIO, bs); 103 } 104 105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 106 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 107 { 108 *nsegs = 0; 109 110 if (!q->limits.max_write_zeroes_sectors) 111 return NULL; 112 113 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 114 return NULL; 115 116 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 117 } 118 119 static struct bio *blk_bio_write_same_split(struct request_queue *q, 120 struct bio *bio, 121 struct bio_set *bs, 122 unsigned *nsegs) 123 { 124 *nsegs = 1; 125 126 if (!q->limits.max_write_same_sectors) 127 return NULL; 128 129 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 130 return NULL; 131 132 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 133 } 134 135 /* 136 * Return the maximum number of sectors from the start of a bio that may be 137 * submitted as a single request to a block device. If enough sectors remain, 138 * align the end to the physical block size. Otherwise align the end to the 139 * logical block size. This approach minimizes the number of non-aligned 140 * requests that are submitted to a block device if the start of a bio is not 141 * aligned to a physical block boundary. 142 */ 143 static inline unsigned get_max_io_size(struct request_queue *q, 144 struct bio *bio) 145 { 146 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 147 unsigned max_sectors = sectors; 148 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 149 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 150 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 151 152 max_sectors += start_offset; 153 max_sectors &= ~(pbs - 1); 154 if (max_sectors > start_offset) 155 return max_sectors - start_offset; 156 157 return sectors & (lbs - 1); 158 } 159 160 static inline unsigned get_max_segment_size(const struct request_queue *q, 161 struct page *start_page, 162 unsigned long offset) 163 { 164 unsigned long mask = queue_segment_boundary(q); 165 166 offset = mask & (page_to_phys(start_page) + offset); 167 168 /* 169 * overflow may be triggered in case of zero page physical address 170 * on 32bit arch, use queue's max segment size when that happens. 171 */ 172 return min_not_zero(mask - offset + 1, 173 (unsigned long)queue_max_segment_size(q)); 174 } 175 176 /** 177 * bvec_split_segs - verify whether or not a bvec should be split in the middle 178 * @q: [in] request queue associated with the bio associated with @bv 179 * @bv: [in] bvec to examine 180 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 181 * by the number of segments from @bv that may be appended to that 182 * bio without exceeding @max_segs 183 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 184 * by the number of sectors from @bv that may be appended to that 185 * bio without exceeding @max_sectors 186 * @max_segs: [in] upper bound for *@nsegs 187 * @max_sectors: [in] upper bound for *@sectors 188 * 189 * When splitting a bio, it can happen that a bvec is encountered that is too 190 * big to fit in a single segment and hence that it has to be split in the 191 * middle. This function verifies whether or not that should happen. The value 192 * %true is returned if and only if appending the entire @bv to a bio with 193 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 194 * the block driver. 195 */ 196 static bool bvec_split_segs(const struct request_queue *q, 197 const struct bio_vec *bv, unsigned *nsegs, 198 unsigned *sectors, unsigned max_segs, 199 unsigned max_sectors) 200 { 201 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 202 unsigned len = min(bv->bv_len, max_len); 203 unsigned total_len = 0; 204 unsigned seg_size = 0; 205 206 while (len && *nsegs < max_segs) { 207 seg_size = get_max_segment_size(q, bv->bv_page, 208 bv->bv_offset + total_len); 209 seg_size = min(seg_size, len); 210 211 (*nsegs)++; 212 total_len += seg_size; 213 len -= seg_size; 214 215 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 216 break; 217 } 218 219 *sectors += total_len >> 9; 220 221 /* tell the caller to split the bvec if it is too big to fit */ 222 return len > 0 || bv->bv_len > max_len; 223 } 224 225 /** 226 * blk_bio_segment_split - split a bio in two bios 227 * @q: [in] request queue pointer 228 * @bio: [in] bio to be split 229 * @bs: [in] bio set to allocate the clone from 230 * @segs: [out] number of segments in the bio with the first half of the sectors 231 * 232 * Clone @bio, update the bi_iter of the clone to represent the first sectors 233 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 234 * following is guaranteed for the cloned bio: 235 * - That it has at most get_max_io_size(@q, @bio) sectors. 236 * - That it has at most queue_max_segments(@q) segments. 237 * 238 * Except for discard requests the cloned bio will point at the bi_io_vec of 239 * the original bio. It is the responsibility of the caller to ensure that the 240 * original bio is not freed before the cloned bio. The caller is also 241 * responsible for ensuring that @bs is only destroyed after processing of the 242 * split bio has finished. 243 */ 244 static struct bio *blk_bio_segment_split(struct request_queue *q, 245 struct bio *bio, 246 struct bio_set *bs, 247 unsigned *segs) 248 { 249 struct bio_vec bv, bvprv, *bvprvp = NULL; 250 struct bvec_iter iter; 251 unsigned nsegs = 0, sectors = 0; 252 const unsigned max_sectors = get_max_io_size(q, bio); 253 const unsigned max_segs = queue_max_segments(q); 254 255 bio_for_each_bvec(bv, bio, iter) { 256 /* 257 * If the queue doesn't support SG gaps and adding this 258 * offset would create a gap, disallow it. 259 */ 260 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 261 goto split; 262 263 if (nsegs < max_segs && 264 sectors + (bv.bv_len >> 9) <= max_sectors && 265 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 266 nsegs++; 267 sectors += bv.bv_len >> 9; 268 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 269 max_sectors)) { 270 goto split; 271 } 272 273 bvprv = bv; 274 bvprvp = &bvprv; 275 } 276 277 *segs = nsegs; 278 return NULL; 279 split: 280 *segs = nsegs; 281 return bio_split(bio, sectors, GFP_NOIO, bs); 282 } 283 284 /** 285 * __blk_queue_split - split a bio and submit the second half 286 * @q: [in] request queue pointer 287 * @bio: [in, out] bio to be split 288 * @nr_segs: [out] number of segments in the first bio 289 * 290 * Split a bio into two bios, chain the two bios, submit the second half and 291 * store a pointer to the first half in *@bio. If the second bio is still too 292 * big it will be split by a recursive call to this function. Since this 293 * function may allocate a new bio from @q->bio_split, it is the responsibility 294 * of the caller to ensure that @q is only released after processing of the 295 * split bio has finished. 296 */ 297 void __blk_queue_split(struct request_queue *q, struct bio **bio, 298 unsigned int *nr_segs) 299 { 300 struct bio *split = NULL; 301 302 switch (bio_op(*bio)) { 303 case REQ_OP_DISCARD: 304 case REQ_OP_SECURE_ERASE: 305 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 306 break; 307 case REQ_OP_WRITE_ZEROES: 308 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 309 nr_segs); 310 break; 311 case REQ_OP_WRITE_SAME: 312 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 313 nr_segs); 314 break; 315 default: 316 /* 317 * All drivers must accept single-segments bios that are <= 318 * PAGE_SIZE. This is a quick and dirty check that relies on 319 * the fact that bi_io_vec[0] is always valid if a bio has data. 320 * The check might lead to occasional false negatives when bios 321 * are cloned, but compared to the performance impact of cloned 322 * bios themselves the loop below doesn't matter anyway. 323 */ 324 if (!q->limits.chunk_sectors && 325 (*bio)->bi_vcnt == 1 && 326 ((*bio)->bi_io_vec[0].bv_len + 327 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { 328 *nr_segs = 1; 329 break; 330 } 331 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 332 break; 333 } 334 335 if (split) { 336 /* there isn't chance to merge the splitted bio */ 337 split->bi_opf |= REQ_NOMERGE; 338 339 /* 340 * Since we're recursing into make_request here, ensure 341 * that we mark this bio as already having entered the queue. 342 * If not, and the queue is going away, we can get stuck 343 * forever on waiting for the queue reference to drop. But 344 * that will never happen, as we're already holding a 345 * reference to it. 346 */ 347 bio_set_flag(*bio, BIO_QUEUE_ENTERED); 348 349 bio_chain(split, *bio); 350 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 351 generic_make_request(*bio); 352 *bio = split; 353 } 354 } 355 356 /** 357 * blk_queue_split - split a bio and submit the second half 358 * @q: [in] request queue pointer 359 * @bio: [in, out] bio to be split 360 * 361 * Split a bio into two bios, chains the two bios, submit the second half and 362 * store a pointer to the first half in *@bio. Since this function may allocate 363 * a new bio from @q->bio_split, it is the responsibility of the caller to 364 * ensure that @q is only released after processing of the split bio has 365 * finished. 366 */ 367 void blk_queue_split(struct request_queue *q, struct bio **bio) 368 { 369 unsigned int nr_segs; 370 371 __blk_queue_split(q, bio, &nr_segs); 372 } 373 EXPORT_SYMBOL(blk_queue_split); 374 375 unsigned int blk_recalc_rq_segments(struct request *rq) 376 { 377 unsigned int nr_phys_segs = 0; 378 unsigned int nr_sectors = 0; 379 struct req_iterator iter; 380 struct bio_vec bv; 381 382 if (!rq->bio) 383 return 0; 384 385 switch (bio_op(rq->bio)) { 386 case REQ_OP_DISCARD: 387 case REQ_OP_SECURE_ERASE: 388 case REQ_OP_WRITE_ZEROES: 389 return 0; 390 case REQ_OP_WRITE_SAME: 391 return 1; 392 } 393 394 rq_for_each_bvec(bv, rq, iter) 395 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 396 UINT_MAX, UINT_MAX); 397 return nr_phys_segs; 398 } 399 400 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 401 struct scatterlist *sglist) 402 { 403 if (!*sg) 404 return sglist; 405 406 /* 407 * If the driver previously mapped a shorter list, we could see a 408 * termination bit prematurely unless it fully inits the sg table 409 * on each mapping. We KNOW that there must be more entries here 410 * or the driver would be buggy, so force clear the termination bit 411 * to avoid doing a full sg_init_table() in drivers for each command. 412 */ 413 sg_unmark_end(*sg); 414 return sg_next(*sg); 415 } 416 417 static unsigned blk_bvec_map_sg(struct request_queue *q, 418 struct bio_vec *bvec, struct scatterlist *sglist, 419 struct scatterlist **sg) 420 { 421 unsigned nbytes = bvec->bv_len; 422 unsigned nsegs = 0, total = 0; 423 424 while (nbytes > 0) { 425 unsigned offset = bvec->bv_offset + total; 426 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 427 offset), nbytes); 428 struct page *page = bvec->bv_page; 429 430 /* 431 * Unfortunately a fair number of drivers barf on scatterlists 432 * that have an offset larger than PAGE_SIZE, despite other 433 * subsystems dealing with that invariant just fine. For now 434 * stick to the legacy format where we never present those from 435 * the block layer, but the code below should be removed once 436 * these offenders (mostly MMC/SD drivers) are fixed. 437 */ 438 page += (offset >> PAGE_SHIFT); 439 offset &= ~PAGE_MASK; 440 441 *sg = blk_next_sg(sg, sglist); 442 sg_set_page(*sg, page, len, offset); 443 444 total += len; 445 nbytes -= len; 446 nsegs++; 447 } 448 449 return nsegs; 450 } 451 452 static inline int __blk_bvec_map_sg(struct bio_vec bv, 453 struct scatterlist *sglist, struct scatterlist **sg) 454 { 455 *sg = blk_next_sg(sg, sglist); 456 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 457 return 1; 458 } 459 460 /* only try to merge bvecs into one sg if they are from two bios */ 461 static inline bool 462 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 463 struct bio_vec *bvprv, struct scatterlist **sg) 464 { 465 466 int nbytes = bvec->bv_len; 467 468 if (!*sg) 469 return false; 470 471 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 472 return false; 473 474 if (!biovec_phys_mergeable(q, bvprv, bvec)) 475 return false; 476 477 (*sg)->length += nbytes; 478 479 return true; 480 } 481 482 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 483 struct scatterlist *sglist, 484 struct scatterlist **sg) 485 { 486 struct bio_vec uninitialized_var(bvec), bvprv = { NULL }; 487 struct bvec_iter iter; 488 int nsegs = 0; 489 bool new_bio = false; 490 491 for_each_bio(bio) { 492 bio_for_each_bvec(bvec, bio, iter) { 493 /* 494 * Only try to merge bvecs from two bios given we 495 * have done bio internal merge when adding pages 496 * to bio 497 */ 498 if (new_bio && 499 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 500 goto next_bvec; 501 502 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 503 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 504 else 505 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 506 next_bvec: 507 new_bio = false; 508 } 509 if (likely(bio->bi_iter.bi_size)) { 510 bvprv = bvec; 511 new_bio = true; 512 } 513 } 514 515 return nsegs; 516 } 517 518 /* 519 * map a request to scatterlist, return number of sg entries setup. Caller 520 * must make sure sg can hold rq->nr_phys_segments entries 521 */ 522 int blk_rq_map_sg(struct request_queue *q, struct request *rq, 523 struct scatterlist *sglist) 524 { 525 struct scatterlist *sg = NULL; 526 int nsegs = 0; 527 528 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 529 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg); 530 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 531 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg); 532 else if (rq->bio) 533 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg); 534 535 if (unlikely(rq->rq_flags & RQF_COPY_USER) && 536 (blk_rq_bytes(rq) & q->dma_pad_mask)) { 537 unsigned int pad_len = 538 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 539 540 sg->length += pad_len; 541 rq->extra_len += pad_len; 542 } 543 544 if (q->dma_drain_size && q->dma_drain_needed(rq)) { 545 if (op_is_write(req_op(rq))) 546 memset(q->dma_drain_buffer, 0, q->dma_drain_size); 547 548 sg_unmark_end(sg); 549 sg = sg_next(sg); 550 sg_set_page(sg, virt_to_page(q->dma_drain_buffer), 551 q->dma_drain_size, 552 ((unsigned long)q->dma_drain_buffer) & 553 (PAGE_SIZE - 1)); 554 nsegs++; 555 rq->extra_len += q->dma_drain_size; 556 } 557 558 if (sg) 559 sg_mark_end(sg); 560 561 /* 562 * Something must have been wrong if the figured number of 563 * segment is bigger than number of req's physical segments 564 */ 565 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 566 567 return nsegs; 568 } 569 EXPORT_SYMBOL(blk_rq_map_sg); 570 571 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 572 unsigned int nr_phys_segs) 573 { 574 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q)) 575 goto no_merge; 576 577 if (blk_integrity_merge_bio(req->q, req, bio) == false) 578 goto no_merge; 579 580 /* 581 * This will form the start of a new hw segment. Bump both 582 * counters. 583 */ 584 req->nr_phys_segments += nr_phys_segs; 585 return 1; 586 587 no_merge: 588 req_set_nomerge(req->q, req); 589 return 0; 590 } 591 592 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 593 { 594 if (req_gap_back_merge(req, bio)) 595 return 0; 596 if (blk_integrity_rq(req) && 597 integrity_req_gap_back_merge(req, bio)) 598 return 0; 599 if (blk_rq_sectors(req) + bio_sectors(bio) > 600 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 601 req_set_nomerge(req->q, req); 602 return 0; 603 } 604 605 return ll_new_hw_segment(req, bio, nr_segs); 606 } 607 608 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 609 { 610 if (req_gap_front_merge(req, bio)) 611 return 0; 612 if (blk_integrity_rq(req) && 613 integrity_req_gap_front_merge(req, bio)) 614 return 0; 615 if (blk_rq_sectors(req) + bio_sectors(bio) > 616 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 617 req_set_nomerge(req->q, req); 618 return 0; 619 } 620 621 return ll_new_hw_segment(req, bio, nr_segs); 622 } 623 624 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 625 struct request *next) 626 { 627 unsigned short segments = blk_rq_nr_discard_segments(req); 628 629 if (segments >= queue_max_discard_segments(q)) 630 goto no_merge; 631 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 632 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 633 goto no_merge; 634 635 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 636 return true; 637 no_merge: 638 req_set_nomerge(q, req); 639 return false; 640 } 641 642 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 643 struct request *next) 644 { 645 int total_phys_segments; 646 647 if (req_gap_back_merge(req, next->bio)) 648 return 0; 649 650 /* 651 * Will it become too large? 652 */ 653 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 654 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 655 return 0; 656 657 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 658 if (total_phys_segments > queue_max_segments(q)) 659 return 0; 660 661 if (blk_integrity_merge_rq(q, req, next) == false) 662 return 0; 663 664 /* Merge is OK... */ 665 req->nr_phys_segments = total_phys_segments; 666 return 1; 667 } 668 669 /** 670 * blk_rq_set_mixed_merge - mark a request as mixed merge 671 * @rq: request to mark as mixed merge 672 * 673 * Description: 674 * @rq is about to be mixed merged. Make sure the attributes 675 * which can be mixed are set in each bio and mark @rq as mixed 676 * merged. 677 */ 678 void blk_rq_set_mixed_merge(struct request *rq) 679 { 680 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 681 struct bio *bio; 682 683 if (rq->rq_flags & RQF_MIXED_MERGE) 684 return; 685 686 /* 687 * @rq will no longer represent mixable attributes for all the 688 * contained bios. It will just track those of the first one. 689 * Distributes the attributs to each bio. 690 */ 691 for (bio = rq->bio; bio; bio = bio->bi_next) { 692 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 693 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 694 bio->bi_opf |= ff; 695 } 696 rq->rq_flags |= RQF_MIXED_MERGE; 697 } 698 699 static void blk_account_io_merge(struct request *req) 700 { 701 if (blk_do_io_stat(req)) { 702 struct hd_struct *part; 703 704 part_stat_lock(); 705 part = req->part; 706 707 part_dec_in_flight(req->q, part, rq_data_dir(req)); 708 709 hd_struct_put(part); 710 part_stat_unlock(); 711 } 712 } 713 /* 714 * Two cases of handling DISCARD merge: 715 * If max_discard_segments > 1, the driver takes every bio 716 * as a range and send them to controller together. The ranges 717 * needn't to be contiguous. 718 * Otherwise, the bios/requests will be handled as same as 719 * others which should be contiguous. 720 */ 721 static inline bool blk_discard_mergable(struct request *req) 722 { 723 if (req_op(req) == REQ_OP_DISCARD && 724 queue_max_discard_segments(req->q) > 1) 725 return true; 726 return false; 727 } 728 729 static enum elv_merge blk_try_req_merge(struct request *req, 730 struct request *next) 731 { 732 if (blk_discard_mergable(req)) 733 return ELEVATOR_DISCARD_MERGE; 734 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 735 return ELEVATOR_BACK_MERGE; 736 737 return ELEVATOR_NO_MERGE; 738 } 739 740 /* 741 * For non-mq, this has to be called with the request spinlock acquired. 742 * For mq with scheduling, the appropriate queue wide lock should be held. 743 */ 744 static struct request *attempt_merge(struct request_queue *q, 745 struct request *req, struct request *next) 746 { 747 if (!rq_mergeable(req) || !rq_mergeable(next)) 748 return NULL; 749 750 if (req_op(req) != req_op(next)) 751 return NULL; 752 753 if (rq_data_dir(req) != rq_data_dir(next) 754 || req->rq_disk != next->rq_disk) 755 return NULL; 756 757 if (req_op(req) == REQ_OP_WRITE_SAME && 758 !blk_write_same_mergeable(req->bio, next->bio)) 759 return NULL; 760 761 /* 762 * Don't allow merge of different write hints, or for a hint with 763 * non-hint IO. 764 */ 765 if (req->write_hint != next->write_hint) 766 return NULL; 767 768 if (req->ioprio != next->ioprio) 769 return NULL; 770 771 /* 772 * If we are allowed to merge, then append bio list 773 * from next to rq and release next. merge_requests_fn 774 * will have updated segment counts, update sector 775 * counts here. Handle DISCARDs separately, as they 776 * have separate settings. 777 */ 778 779 switch (blk_try_req_merge(req, next)) { 780 case ELEVATOR_DISCARD_MERGE: 781 if (!req_attempt_discard_merge(q, req, next)) 782 return NULL; 783 break; 784 case ELEVATOR_BACK_MERGE: 785 if (!ll_merge_requests_fn(q, req, next)) 786 return NULL; 787 break; 788 default: 789 return NULL; 790 } 791 792 /* 793 * If failfast settings disagree or any of the two is already 794 * a mixed merge, mark both as mixed before proceeding. This 795 * makes sure that all involved bios have mixable attributes 796 * set properly. 797 */ 798 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 799 (req->cmd_flags & REQ_FAILFAST_MASK) != 800 (next->cmd_flags & REQ_FAILFAST_MASK)) { 801 blk_rq_set_mixed_merge(req); 802 blk_rq_set_mixed_merge(next); 803 } 804 805 /* 806 * At this point we have either done a back merge or front merge. We 807 * need the smaller start_time_ns of the merged requests to be the 808 * current request for accounting purposes. 809 */ 810 if (next->start_time_ns < req->start_time_ns) 811 req->start_time_ns = next->start_time_ns; 812 813 req->biotail->bi_next = next->bio; 814 req->biotail = next->biotail; 815 816 req->__data_len += blk_rq_bytes(next); 817 818 if (!blk_discard_mergable(req)) 819 elv_merge_requests(q, req, next); 820 821 /* 822 * 'next' is going away, so update stats accordingly 823 */ 824 blk_account_io_merge(next); 825 826 /* 827 * ownership of bio passed from next to req, return 'next' for 828 * the caller to free 829 */ 830 next->bio = NULL; 831 return next; 832 } 833 834 struct request *attempt_back_merge(struct request_queue *q, struct request *rq) 835 { 836 struct request *next = elv_latter_request(q, rq); 837 838 if (next) 839 return attempt_merge(q, rq, next); 840 841 return NULL; 842 } 843 844 struct request *attempt_front_merge(struct request_queue *q, struct request *rq) 845 { 846 struct request *prev = elv_former_request(q, rq); 847 848 if (prev) 849 return attempt_merge(q, prev, rq); 850 851 return NULL; 852 } 853 854 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 855 struct request *next) 856 { 857 struct request *free; 858 859 free = attempt_merge(q, rq, next); 860 if (free) { 861 blk_put_request(free); 862 return 1; 863 } 864 865 return 0; 866 } 867 868 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 869 { 870 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 871 return false; 872 873 if (req_op(rq) != bio_op(bio)) 874 return false; 875 876 /* different data direction or already started, don't merge */ 877 if (bio_data_dir(bio) != rq_data_dir(rq)) 878 return false; 879 880 /* must be same device */ 881 if (rq->rq_disk != bio->bi_disk) 882 return false; 883 884 /* only merge integrity protected bio into ditto rq */ 885 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 886 return false; 887 888 /* must be using the same buffer */ 889 if (req_op(rq) == REQ_OP_WRITE_SAME && 890 !blk_write_same_mergeable(rq->bio, bio)) 891 return false; 892 893 /* 894 * Don't allow merge of different write hints, or for a hint with 895 * non-hint IO. 896 */ 897 if (rq->write_hint != bio->bi_write_hint) 898 return false; 899 900 if (rq->ioprio != bio_prio(bio)) 901 return false; 902 903 return true; 904 } 905 906 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 907 { 908 if (blk_discard_mergable(rq)) 909 return ELEVATOR_DISCARD_MERGE; 910 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 911 return ELEVATOR_BACK_MERGE; 912 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 913 return ELEVATOR_FRONT_MERGE; 914 return ELEVATOR_NO_MERGE; 915 } 916