1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 static struct bio *blk_bio_discard_split(struct request_queue *q, 99 struct bio *bio, 100 struct bio_set *bs, 101 unsigned *nsegs) 102 { 103 unsigned int max_discard_sectors, granularity; 104 int alignment; 105 sector_t tmp; 106 unsigned split_sectors; 107 108 *nsegs = 1; 109 110 /* Zero-sector (unknown) and one-sector granularities are the same. */ 111 granularity = max(q->limits.discard_granularity >> 9, 1U); 112 113 max_discard_sectors = min(q->limits.max_discard_sectors, 114 bio_allowed_max_sectors(q)); 115 max_discard_sectors -= max_discard_sectors % granularity; 116 117 if (unlikely(!max_discard_sectors)) { 118 /* XXX: warn */ 119 return NULL; 120 } 121 122 if (bio_sectors(bio) <= max_discard_sectors) 123 return NULL; 124 125 split_sectors = max_discard_sectors; 126 127 /* 128 * If the next starting sector would be misaligned, stop the discard at 129 * the previous aligned sector. 130 */ 131 alignment = (q->limits.discard_alignment >> 9) % granularity; 132 133 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 134 tmp = sector_div(tmp, granularity); 135 136 if (split_sectors > tmp) 137 split_sectors -= tmp; 138 139 return bio_split(bio, split_sectors, GFP_NOIO, bs); 140 } 141 142 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 143 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 144 { 145 *nsegs = 0; 146 147 if (!q->limits.max_write_zeroes_sectors) 148 return NULL; 149 150 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 151 return NULL; 152 153 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 154 } 155 156 /* 157 * Return the maximum number of sectors from the start of a bio that may be 158 * submitted as a single request to a block device. If enough sectors remain, 159 * align the end to the physical block size. Otherwise align the end to the 160 * logical block size. This approach minimizes the number of non-aligned 161 * requests that are submitted to a block device if the start of a bio is not 162 * aligned to a physical block boundary. 163 */ 164 static inline unsigned get_max_io_size(struct request_queue *q, 165 struct bio *bio) 166 { 167 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); 168 unsigned max_sectors = sectors; 169 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 170 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 171 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 172 173 max_sectors += start_offset; 174 max_sectors &= ~(pbs - 1); 175 if (max_sectors > start_offset) 176 return max_sectors - start_offset; 177 178 return sectors & ~(lbs - 1); 179 } 180 181 static inline unsigned get_max_segment_size(const struct request_queue *q, 182 struct page *start_page, 183 unsigned long offset) 184 { 185 unsigned long mask = queue_segment_boundary(q); 186 187 offset = mask & (page_to_phys(start_page) + offset); 188 189 /* 190 * overflow may be triggered in case of zero page physical address 191 * on 32bit arch, use queue's max segment size when that happens. 192 */ 193 return min_not_zero(mask - offset + 1, 194 (unsigned long)queue_max_segment_size(q)); 195 } 196 197 /** 198 * bvec_split_segs - verify whether or not a bvec should be split in the middle 199 * @q: [in] request queue associated with the bio associated with @bv 200 * @bv: [in] bvec to examine 201 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 202 * by the number of segments from @bv that may be appended to that 203 * bio without exceeding @max_segs 204 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 205 * by the number of sectors from @bv that may be appended to that 206 * bio without exceeding @max_sectors 207 * @max_segs: [in] upper bound for *@nsegs 208 * @max_sectors: [in] upper bound for *@sectors 209 * 210 * When splitting a bio, it can happen that a bvec is encountered that is too 211 * big to fit in a single segment and hence that it has to be split in the 212 * middle. This function verifies whether or not that should happen. The value 213 * %true is returned if and only if appending the entire @bv to a bio with 214 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 215 * the block driver. 216 */ 217 static bool bvec_split_segs(const struct request_queue *q, 218 const struct bio_vec *bv, unsigned *nsegs, 219 unsigned *sectors, unsigned max_segs, 220 unsigned max_sectors) 221 { 222 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 223 unsigned len = min(bv->bv_len, max_len); 224 unsigned total_len = 0; 225 unsigned seg_size = 0; 226 227 while (len && *nsegs < max_segs) { 228 seg_size = get_max_segment_size(q, bv->bv_page, 229 bv->bv_offset + total_len); 230 seg_size = min(seg_size, len); 231 232 (*nsegs)++; 233 total_len += seg_size; 234 len -= seg_size; 235 236 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 237 break; 238 } 239 240 *sectors += total_len >> 9; 241 242 /* tell the caller to split the bvec if it is too big to fit */ 243 return len > 0 || bv->bv_len > max_len; 244 } 245 246 /** 247 * blk_bio_segment_split - split a bio in two bios 248 * @q: [in] request queue pointer 249 * @bio: [in] bio to be split 250 * @bs: [in] bio set to allocate the clone from 251 * @segs: [out] number of segments in the bio with the first half of the sectors 252 * 253 * Clone @bio, update the bi_iter of the clone to represent the first sectors 254 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 255 * following is guaranteed for the cloned bio: 256 * - That it has at most get_max_io_size(@q, @bio) sectors. 257 * - That it has at most queue_max_segments(@q) segments. 258 * 259 * Except for discard requests the cloned bio will point at the bi_io_vec of 260 * the original bio. It is the responsibility of the caller to ensure that the 261 * original bio is not freed before the cloned bio. The caller is also 262 * responsible for ensuring that @bs is only destroyed after processing of the 263 * split bio has finished. 264 */ 265 static struct bio *blk_bio_segment_split(struct request_queue *q, 266 struct bio *bio, 267 struct bio_set *bs, 268 unsigned *segs) 269 { 270 struct bio_vec bv, bvprv, *bvprvp = NULL; 271 struct bvec_iter iter; 272 unsigned nsegs = 0, sectors = 0; 273 const unsigned max_sectors = get_max_io_size(q, bio); 274 const unsigned max_segs = queue_max_segments(q); 275 276 bio_for_each_bvec(bv, bio, iter) { 277 /* 278 * If the queue doesn't support SG gaps and adding this 279 * offset would create a gap, disallow it. 280 */ 281 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 282 goto split; 283 284 if (nsegs < max_segs && 285 sectors + (bv.bv_len >> 9) <= max_sectors && 286 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 287 nsegs++; 288 sectors += bv.bv_len >> 9; 289 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 290 max_sectors)) { 291 goto split; 292 } 293 294 bvprv = bv; 295 bvprvp = &bvprv; 296 } 297 298 *segs = nsegs; 299 return NULL; 300 split: 301 *segs = nsegs; 302 303 /* 304 * Bio splitting may cause subtle trouble such as hang when doing sync 305 * iopoll in direct IO routine. Given performance gain of iopoll for 306 * big IO can be trival, disable iopoll when split needed. 307 */ 308 bio_clear_polled(bio); 309 return bio_split(bio, sectors, GFP_NOIO, bs); 310 } 311 312 /** 313 * __blk_queue_split - split a bio and submit the second half 314 * @q: [in] request_queue new bio is being queued at 315 * @bio: [in, out] bio to be split 316 * @nr_segs: [out] number of segments in the first bio 317 * 318 * Split a bio into two bios, chain the two bios, submit the second half and 319 * store a pointer to the first half in *@bio. If the second bio is still too 320 * big it will be split by a recursive call to this function. Since this 321 * function may allocate a new bio from q->bio_split, it is the responsibility 322 * of the caller to ensure that q->bio_split is only released after processing 323 * of the split bio has finished. 324 */ 325 void __blk_queue_split(struct request_queue *q, struct bio **bio, 326 unsigned int *nr_segs) 327 { 328 struct bio *split = NULL; 329 330 switch (bio_op(*bio)) { 331 case REQ_OP_DISCARD: 332 case REQ_OP_SECURE_ERASE: 333 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 334 break; 335 case REQ_OP_WRITE_ZEROES: 336 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 337 nr_segs); 338 break; 339 default: 340 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 341 break; 342 } 343 344 if (split) { 345 /* there isn't chance to merge the splitted bio */ 346 split->bi_opf |= REQ_NOMERGE; 347 348 blkcg_bio_issue_init(split); 349 bio_chain(split, *bio); 350 trace_block_split(split, (*bio)->bi_iter.bi_sector); 351 submit_bio_noacct(*bio); 352 *bio = split; 353 } 354 } 355 356 /** 357 * blk_queue_split - split a bio and submit the second half 358 * @bio: [in, out] bio to be split 359 * 360 * Split a bio into two bios, chains the two bios, submit the second half and 361 * store a pointer to the first half in *@bio. Since this function may allocate 362 * a new bio from q->bio_split, it is the responsibility of the caller to ensure 363 * that q->bio_split is only released after processing of the split bio has 364 * finished. 365 */ 366 void blk_queue_split(struct bio **bio) 367 { 368 struct request_queue *q = bdev_get_queue((*bio)->bi_bdev); 369 unsigned int nr_segs; 370 371 if (blk_may_split(q, *bio)) 372 __blk_queue_split(q, bio, &nr_segs); 373 } 374 EXPORT_SYMBOL(blk_queue_split); 375 376 unsigned int blk_recalc_rq_segments(struct request *rq) 377 { 378 unsigned int nr_phys_segs = 0; 379 unsigned int nr_sectors = 0; 380 struct req_iterator iter; 381 struct bio_vec bv; 382 383 if (!rq->bio) 384 return 0; 385 386 switch (bio_op(rq->bio)) { 387 case REQ_OP_DISCARD: 388 case REQ_OP_SECURE_ERASE: 389 if (queue_max_discard_segments(rq->q) > 1) { 390 struct bio *bio = rq->bio; 391 392 for_each_bio(bio) 393 nr_phys_segs++; 394 return nr_phys_segs; 395 } 396 return 1; 397 case REQ_OP_WRITE_ZEROES: 398 return 0; 399 } 400 401 rq_for_each_bvec(bv, rq, iter) 402 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 403 UINT_MAX, UINT_MAX); 404 return nr_phys_segs; 405 } 406 407 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 408 struct scatterlist *sglist) 409 { 410 if (!*sg) 411 return sglist; 412 413 /* 414 * If the driver previously mapped a shorter list, we could see a 415 * termination bit prematurely unless it fully inits the sg table 416 * on each mapping. We KNOW that there must be more entries here 417 * or the driver would be buggy, so force clear the termination bit 418 * to avoid doing a full sg_init_table() in drivers for each command. 419 */ 420 sg_unmark_end(*sg); 421 return sg_next(*sg); 422 } 423 424 static unsigned blk_bvec_map_sg(struct request_queue *q, 425 struct bio_vec *bvec, struct scatterlist *sglist, 426 struct scatterlist **sg) 427 { 428 unsigned nbytes = bvec->bv_len; 429 unsigned nsegs = 0, total = 0; 430 431 while (nbytes > 0) { 432 unsigned offset = bvec->bv_offset + total; 433 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 434 offset), nbytes); 435 struct page *page = bvec->bv_page; 436 437 /* 438 * Unfortunately a fair number of drivers barf on scatterlists 439 * that have an offset larger than PAGE_SIZE, despite other 440 * subsystems dealing with that invariant just fine. For now 441 * stick to the legacy format where we never present those from 442 * the block layer, but the code below should be removed once 443 * these offenders (mostly MMC/SD drivers) are fixed. 444 */ 445 page += (offset >> PAGE_SHIFT); 446 offset &= ~PAGE_MASK; 447 448 *sg = blk_next_sg(sg, sglist); 449 sg_set_page(*sg, page, len, offset); 450 451 total += len; 452 nbytes -= len; 453 nsegs++; 454 } 455 456 return nsegs; 457 } 458 459 static inline int __blk_bvec_map_sg(struct bio_vec bv, 460 struct scatterlist *sglist, struct scatterlist **sg) 461 { 462 *sg = blk_next_sg(sg, sglist); 463 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 464 return 1; 465 } 466 467 /* only try to merge bvecs into one sg if they are from two bios */ 468 static inline bool 469 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 470 struct bio_vec *bvprv, struct scatterlist **sg) 471 { 472 473 int nbytes = bvec->bv_len; 474 475 if (!*sg) 476 return false; 477 478 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 479 return false; 480 481 if (!biovec_phys_mergeable(q, bvprv, bvec)) 482 return false; 483 484 (*sg)->length += nbytes; 485 486 return true; 487 } 488 489 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 490 struct scatterlist *sglist, 491 struct scatterlist **sg) 492 { 493 struct bio_vec bvec, bvprv = { NULL }; 494 struct bvec_iter iter; 495 int nsegs = 0; 496 bool new_bio = false; 497 498 for_each_bio(bio) { 499 bio_for_each_bvec(bvec, bio, iter) { 500 /* 501 * Only try to merge bvecs from two bios given we 502 * have done bio internal merge when adding pages 503 * to bio 504 */ 505 if (new_bio && 506 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 507 goto next_bvec; 508 509 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 510 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 511 else 512 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 513 next_bvec: 514 new_bio = false; 515 } 516 if (likely(bio->bi_iter.bi_size)) { 517 bvprv = bvec; 518 new_bio = true; 519 } 520 } 521 522 return nsegs; 523 } 524 525 /* 526 * map a request to scatterlist, return number of sg entries setup. Caller 527 * must make sure sg can hold rq->nr_phys_segments entries 528 */ 529 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 530 struct scatterlist *sglist, struct scatterlist **last_sg) 531 { 532 int nsegs = 0; 533 534 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 535 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 536 else if (rq->bio) 537 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 538 539 if (*last_sg) 540 sg_mark_end(*last_sg); 541 542 /* 543 * Something must have been wrong if the figured number of 544 * segment is bigger than number of req's physical segments 545 */ 546 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 547 548 return nsegs; 549 } 550 EXPORT_SYMBOL(__blk_rq_map_sg); 551 552 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 553 { 554 if (req_op(rq) == REQ_OP_DISCARD) 555 return queue_max_discard_segments(rq->q); 556 return queue_max_segments(rq->q); 557 } 558 559 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 560 sector_t offset) 561 { 562 struct request_queue *q = rq->q; 563 564 if (blk_rq_is_passthrough(rq)) 565 return q->limits.max_hw_sectors; 566 567 if (!q->limits.chunk_sectors || 568 req_op(rq) == REQ_OP_DISCARD || 569 req_op(rq) == REQ_OP_SECURE_ERASE) 570 return blk_queue_get_max_sectors(q, req_op(rq)); 571 572 return min(blk_max_size_offset(q, offset, 0), 573 blk_queue_get_max_sectors(q, req_op(rq))); 574 } 575 576 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 577 unsigned int nr_phys_segs) 578 { 579 if (!blk_cgroup_mergeable(req, bio)) 580 goto no_merge; 581 582 if (blk_integrity_merge_bio(req->q, req, bio) == false) 583 goto no_merge; 584 585 /* discard request merge won't add new segment */ 586 if (req_op(req) == REQ_OP_DISCARD) 587 return 1; 588 589 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 590 goto no_merge; 591 592 /* 593 * This will form the start of a new hw segment. Bump both 594 * counters. 595 */ 596 req->nr_phys_segments += nr_phys_segs; 597 return 1; 598 599 no_merge: 600 req_set_nomerge(req->q, req); 601 return 0; 602 } 603 604 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 605 { 606 if (req_gap_back_merge(req, bio)) 607 return 0; 608 if (blk_integrity_rq(req) && 609 integrity_req_gap_back_merge(req, bio)) 610 return 0; 611 if (!bio_crypt_ctx_back_mergeable(req, bio)) 612 return 0; 613 if (blk_rq_sectors(req) + bio_sectors(bio) > 614 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 615 req_set_nomerge(req->q, req); 616 return 0; 617 } 618 619 return ll_new_hw_segment(req, bio, nr_segs); 620 } 621 622 static int ll_front_merge_fn(struct request *req, struct bio *bio, 623 unsigned int nr_segs) 624 { 625 if (req_gap_front_merge(req, bio)) 626 return 0; 627 if (blk_integrity_rq(req) && 628 integrity_req_gap_front_merge(req, bio)) 629 return 0; 630 if (!bio_crypt_ctx_front_mergeable(req, bio)) 631 return 0; 632 if (blk_rq_sectors(req) + bio_sectors(bio) > 633 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 634 req_set_nomerge(req->q, req); 635 return 0; 636 } 637 638 return ll_new_hw_segment(req, bio, nr_segs); 639 } 640 641 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 642 struct request *next) 643 { 644 unsigned short segments = blk_rq_nr_discard_segments(req); 645 646 if (segments >= queue_max_discard_segments(q)) 647 goto no_merge; 648 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 649 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 650 goto no_merge; 651 652 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 653 return true; 654 no_merge: 655 req_set_nomerge(q, req); 656 return false; 657 } 658 659 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 660 struct request *next) 661 { 662 int total_phys_segments; 663 664 if (req_gap_back_merge(req, next->bio)) 665 return 0; 666 667 /* 668 * Will it become too large? 669 */ 670 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 671 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 672 return 0; 673 674 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 675 if (total_phys_segments > blk_rq_get_max_segments(req)) 676 return 0; 677 678 if (!blk_cgroup_mergeable(req, next->bio)) 679 return 0; 680 681 if (blk_integrity_merge_rq(q, req, next) == false) 682 return 0; 683 684 if (!bio_crypt_ctx_merge_rq(req, next)) 685 return 0; 686 687 /* Merge is OK... */ 688 req->nr_phys_segments = total_phys_segments; 689 return 1; 690 } 691 692 /** 693 * blk_rq_set_mixed_merge - mark a request as mixed merge 694 * @rq: request to mark as mixed merge 695 * 696 * Description: 697 * @rq is about to be mixed merged. Make sure the attributes 698 * which can be mixed are set in each bio and mark @rq as mixed 699 * merged. 700 */ 701 void blk_rq_set_mixed_merge(struct request *rq) 702 { 703 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 704 struct bio *bio; 705 706 if (rq->rq_flags & RQF_MIXED_MERGE) 707 return; 708 709 /* 710 * @rq will no longer represent mixable attributes for all the 711 * contained bios. It will just track those of the first one. 712 * Distributes the attributs to each bio. 713 */ 714 for (bio = rq->bio; bio; bio = bio->bi_next) { 715 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 716 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 717 bio->bi_opf |= ff; 718 } 719 rq->rq_flags |= RQF_MIXED_MERGE; 720 } 721 722 static void blk_account_io_merge_request(struct request *req) 723 { 724 if (blk_do_io_stat(req)) { 725 part_stat_lock(); 726 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 727 part_stat_unlock(); 728 } 729 } 730 731 static enum elv_merge blk_try_req_merge(struct request *req, 732 struct request *next) 733 { 734 if (blk_discard_mergable(req)) 735 return ELEVATOR_DISCARD_MERGE; 736 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 737 return ELEVATOR_BACK_MERGE; 738 739 return ELEVATOR_NO_MERGE; 740 } 741 742 /* 743 * For non-mq, this has to be called with the request spinlock acquired. 744 * For mq with scheduling, the appropriate queue wide lock should be held. 745 */ 746 static struct request *attempt_merge(struct request_queue *q, 747 struct request *req, struct request *next) 748 { 749 if (!rq_mergeable(req) || !rq_mergeable(next)) 750 return NULL; 751 752 if (req_op(req) != req_op(next)) 753 return NULL; 754 755 if (rq_data_dir(req) != rq_data_dir(next)) 756 return NULL; 757 758 if (req->ioprio != next->ioprio) 759 return NULL; 760 761 /* 762 * If we are allowed to merge, then append bio list 763 * from next to rq and release next. merge_requests_fn 764 * will have updated segment counts, update sector 765 * counts here. Handle DISCARDs separately, as they 766 * have separate settings. 767 */ 768 769 switch (blk_try_req_merge(req, next)) { 770 case ELEVATOR_DISCARD_MERGE: 771 if (!req_attempt_discard_merge(q, req, next)) 772 return NULL; 773 break; 774 case ELEVATOR_BACK_MERGE: 775 if (!ll_merge_requests_fn(q, req, next)) 776 return NULL; 777 break; 778 default: 779 return NULL; 780 } 781 782 /* 783 * If failfast settings disagree or any of the two is already 784 * a mixed merge, mark both as mixed before proceeding. This 785 * makes sure that all involved bios have mixable attributes 786 * set properly. 787 */ 788 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 789 (req->cmd_flags & REQ_FAILFAST_MASK) != 790 (next->cmd_flags & REQ_FAILFAST_MASK)) { 791 blk_rq_set_mixed_merge(req); 792 blk_rq_set_mixed_merge(next); 793 } 794 795 /* 796 * At this point we have either done a back merge or front merge. We 797 * need the smaller start_time_ns of the merged requests to be the 798 * current request for accounting purposes. 799 */ 800 if (next->start_time_ns < req->start_time_ns) 801 req->start_time_ns = next->start_time_ns; 802 803 req->biotail->bi_next = next->bio; 804 req->biotail = next->biotail; 805 806 req->__data_len += blk_rq_bytes(next); 807 808 if (!blk_discard_mergable(req)) 809 elv_merge_requests(q, req, next); 810 811 /* 812 * 'next' is going away, so update stats accordingly 813 */ 814 blk_account_io_merge_request(next); 815 816 trace_block_rq_merge(next); 817 818 /* 819 * ownership of bio passed from next to req, return 'next' for 820 * the caller to free 821 */ 822 next->bio = NULL; 823 return next; 824 } 825 826 static struct request *attempt_back_merge(struct request_queue *q, 827 struct request *rq) 828 { 829 struct request *next = elv_latter_request(q, rq); 830 831 if (next) 832 return attempt_merge(q, rq, next); 833 834 return NULL; 835 } 836 837 static struct request *attempt_front_merge(struct request_queue *q, 838 struct request *rq) 839 { 840 struct request *prev = elv_former_request(q, rq); 841 842 if (prev) 843 return attempt_merge(q, prev, rq); 844 845 return NULL; 846 } 847 848 /* 849 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 850 * otherwise. The caller is responsible for freeing 'next' if the merge 851 * happened. 852 */ 853 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 854 struct request *next) 855 { 856 return attempt_merge(q, rq, next); 857 } 858 859 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 860 { 861 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 862 return false; 863 864 if (req_op(rq) != bio_op(bio)) 865 return false; 866 867 /* different data direction or already started, don't merge */ 868 if (bio_data_dir(bio) != rq_data_dir(rq)) 869 return false; 870 871 /* don't merge across cgroup boundaries */ 872 if (!blk_cgroup_mergeable(rq, bio)) 873 return false; 874 875 /* only merge integrity protected bio into ditto rq */ 876 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 877 return false; 878 879 /* Only merge if the crypt contexts are compatible */ 880 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 881 return false; 882 883 if (rq->ioprio != bio_prio(bio)) 884 return false; 885 886 return true; 887 } 888 889 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 890 { 891 if (blk_discard_mergable(rq)) 892 return ELEVATOR_DISCARD_MERGE; 893 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 894 return ELEVATOR_BACK_MERGE; 895 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 896 return ELEVATOR_FRONT_MERGE; 897 return ELEVATOR_NO_MERGE; 898 } 899 900 static void blk_account_io_merge_bio(struct request *req) 901 { 902 if (!blk_do_io_stat(req)) 903 return; 904 905 part_stat_lock(); 906 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 907 part_stat_unlock(); 908 } 909 910 enum bio_merge_status { 911 BIO_MERGE_OK, 912 BIO_MERGE_NONE, 913 BIO_MERGE_FAILED, 914 }; 915 916 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 917 struct bio *bio, unsigned int nr_segs) 918 { 919 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 920 921 if (!ll_back_merge_fn(req, bio, nr_segs)) 922 return BIO_MERGE_FAILED; 923 924 trace_block_bio_backmerge(bio); 925 rq_qos_merge(req->q, req, bio); 926 927 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 928 blk_rq_set_mixed_merge(req); 929 930 req->biotail->bi_next = bio; 931 req->biotail = bio; 932 req->__data_len += bio->bi_iter.bi_size; 933 934 bio_crypt_free_ctx(bio); 935 936 blk_account_io_merge_bio(req); 937 return BIO_MERGE_OK; 938 } 939 940 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 941 struct bio *bio, unsigned int nr_segs) 942 { 943 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 944 945 if (!ll_front_merge_fn(req, bio, nr_segs)) 946 return BIO_MERGE_FAILED; 947 948 trace_block_bio_frontmerge(bio); 949 rq_qos_merge(req->q, req, bio); 950 951 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 952 blk_rq_set_mixed_merge(req); 953 954 bio->bi_next = req->bio; 955 req->bio = bio; 956 957 req->__sector = bio->bi_iter.bi_sector; 958 req->__data_len += bio->bi_iter.bi_size; 959 960 bio_crypt_do_front_merge(req, bio); 961 962 blk_account_io_merge_bio(req); 963 return BIO_MERGE_OK; 964 } 965 966 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 967 struct request *req, struct bio *bio) 968 { 969 unsigned short segments = blk_rq_nr_discard_segments(req); 970 971 if (segments >= queue_max_discard_segments(q)) 972 goto no_merge; 973 if (blk_rq_sectors(req) + bio_sectors(bio) > 974 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 975 goto no_merge; 976 977 rq_qos_merge(q, req, bio); 978 979 req->biotail->bi_next = bio; 980 req->biotail = bio; 981 req->__data_len += bio->bi_iter.bi_size; 982 req->nr_phys_segments = segments + 1; 983 984 blk_account_io_merge_bio(req); 985 return BIO_MERGE_OK; 986 no_merge: 987 req_set_nomerge(q, req); 988 return BIO_MERGE_FAILED; 989 } 990 991 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 992 struct request *rq, 993 struct bio *bio, 994 unsigned int nr_segs, 995 bool sched_allow_merge) 996 { 997 if (!blk_rq_merge_ok(rq, bio)) 998 return BIO_MERGE_NONE; 999 1000 switch (blk_try_merge(rq, bio)) { 1001 case ELEVATOR_BACK_MERGE: 1002 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1003 return bio_attempt_back_merge(rq, bio, nr_segs); 1004 break; 1005 case ELEVATOR_FRONT_MERGE: 1006 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1007 return bio_attempt_front_merge(rq, bio, nr_segs); 1008 break; 1009 case ELEVATOR_DISCARD_MERGE: 1010 return bio_attempt_discard_merge(q, rq, bio); 1011 default: 1012 return BIO_MERGE_NONE; 1013 } 1014 1015 return BIO_MERGE_FAILED; 1016 } 1017 1018 /** 1019 * blk_attempt_plug_merge - try to merge with %current's plugged list 1020 * @q: request_queue new bio is being queued at 1021 * @bio: new bio being queued 1022 * @nr_segs: number of segments in @bio 1023 * from the passed in @q already in the plug list 1024 * 1025 * Determine whether @bio being queued on @q can be merged with the previous 1026 * request on %current's plugged list. Returns %true if merge was successful, 1027 * otherwise %false. 1028 * 1029 * Plugging coalesces IOs from the same issuer for the same purpose without 1030 * going through @q->queue_lock. As such it's more of an issuing mechanism 1031 * than scheduling, and the request, while may have elvpriv data, is not 1032 * added on the elevator at this point. In addition, we don't have 1033 * reliable access to the elevator outside queue lock. Only check basic 1034 * merging parameters without querying the elevator. 1035 * 1036 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1037 */ 1038 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1039 unsigned int nr_segs) 1040 { 1041 struct blk_plug *plug; 1042 struct request *rq; 1043 1044 plug = blk_mq_plug(q, bio); 1045 if (!plug || rq_list_empty(plug->mq_list)) 1046 return false; 1047 1048 rq_list_for_each(&plug->mq_list, rq) { 1049 if (rq->q == q) { 1050 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1051 BIO_MERGE_OK) 1052 return true; 1053 break; 1054 } 1055 1056 /* 1057 * Only keep iterating plug list for merges if we have multiple 1058 * queues 1059 */ 1060 if (!plug->multiple_queues) 1061 break; 1062 } 1063 return false; 1064 } 1065 1066 /* 1067 * Iterate list of requests and see if we can merge this bio with any 1068 * of them. 1069 */ 1070 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1071 struct bio *bio, unsigned int nr_segs) 1072 { 1073 struct request *rq; 1074 int checked = 8; 1075 1076 list_for_each_entry_reverse(rq, list, queuelist) { 1077 if (!checked--) 1078 break; 1079 1080 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1081 case BIO_MERGE_NONE: 1082 continue; 1083 case BIO_MERGE_OK: 1084 return true; 1085 case BIO_MERGE_FAILED: 1086 return false; 1087 } 1088 1089 } 1090 1091 return false; 1092 } 1093 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1094 1095 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1096 unsigned int nr_segs, struct request **merged_request) 1097 { 1098 struct request *rq; 1099 1100 switch (elv_merge(q, &rq, bio)) { 1101 case ELEVATOR_BACK_MERGE: 1102 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1103 return false; 1104 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1105 return false; 1106 *merged_request = attempt_back_merge(q, rq); 1107 if (!*merged_request) 1108 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1109 return true; 1110 case ELEVATOR_FRONT_MERGE: 1111 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1112 return false; 1113 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1114 return false; 1115 *merged_request = attempt_front_merge(q, rq); 1116 if (!*merged_request) 1117 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1118 return true; 1119 case ELEVATOR_DISCARD_MERGE: 1120 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1121 default: 1122 return false; 1123 } 1124 } 1125 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1126