xref: /openbmc/linux/block/blk-merge.c (revision 16458cf3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
86 }
87 
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 static struct bio *blk_bio_discard_split(struct request_queue *q,
99 					 struct bio *bio,
100 					 struct bio_set *bs,
101 					 unsigned *nsegs)
102 {
103 	unsigned int max_discard_sectors, granularity;
104 	int alignment;
105 	sector_t tmp;
106 	unsigned split_sectors;
107 
108 	*nsegs = 1;
109 
110 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
111 	granularity = max(q->limits.discard_granularity >> 9, 1U);
112 
113 	max_discard_sectors = min(q->limits.max_discard_sectors,
114 			bio_allowed_max_sectors(q));
115 	max_discard_sectors -= max_discard_sectors % granularity;
116 
117 	if (unlikely(!max_discard_sectors)) {
118 		/* XXX: warn */
119 		return NULL;
120 	}
121 
122 	if (bio_sectors(bio) <= max_discard_sectors)
123 		return NULL;
124 
125 	split_sectors = max_discard_sectors;
126 
127 	/*
128 	 * If the next starting sector would be misaligned, stop the discard at
129 	 * the previous aligned sector.
130 	 */
131 	alignment = (q->limits.discard_alignment >> 9) % granularity;
132 
133 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
134 	tmp = sector_div(tmp, granularity);
135 
136 	if (split_sectors > tmp)
137 		split_sectors -= tmp;
138 
139 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
140 }
141 
142 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
143 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
144 {
145 	*nsegs = 0;
146 
147 	if (!q->limits.max_write_zeroes_sectors)
148 		return NULL;
149 
150 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
151 		return NULL;
152 
153 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
154 }
155 
156 /*
157  * Return the maximum number of sectors from the start of a bio that may be
158  * submitted as a single request to a block device. If enough sectors remain,
159  * align the end to the physical block size. Otherwise align the end to the
160  * logical block size. This approach minimizes the number of non-aligned
161  * requests that are submitted to a block device if the start of a bio is not
162  * aligned to a physical block boundary.
163  */
164 static inline unsigned get_max_io_size(struct request_queue *q,
165 				       struct bio *bio)
166 {
167 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
168 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
169 	unsigned max_sectors = queue_max_sectors(q), start, end;
170 
171 	if (q->limits.chunk_sectors) {
172 		max_sectors = min(max_sectors,
173 			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
174 					       q->limits.chunk_sectors));
175 	}
176 
177 	start = bio->bi_iter.bi_sector & (pbs - 1);
178 	end = (start + max_sectors) & ~(pbs - 1);
179 	if (end > start)
180 		return end - start;
181 	return max_sectors & ~(lbs - 1);
182 }
183 
184 static inline unsigned get_max_segment_size(const struct request_queue *q,
185 					    struct page *start_page,
186 					    unsigned long offset)
187 {
188 	unsigned long mask = queue_segment_boundary(q);
189 
190 	offset = mask & (page_to_phys(start_page) + offset);
191 
192 	/*
193 	 * overflow may be triggered in case of zero page physical address
194 	 * on 32bit arch, use queue's max segment size when that happens.
195 	 */
196 	return min_not_zero(mask - offset + 1,
197 			(unsigned long)queue_max_segment_size(q));
198 }
199 
200 /**
201  * bvec_split_segs - verify whether or not a bvec should be split in the middle
202  * @q:        [in] request queue associated with the bio associated with @bv
203  * @bv:       [in] bvec to examine
204  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
205  *            by the number of segments from @bv that may be appended to that
206  *            bio without exceeding @max_segs
207  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
208  *            by the number of bytes from @bv that may be appended to that
209  *            bio without exceeding @max_bytes
210  * @max_segs: [in] upper bound for *@nsegs
211  * @max_bytes: [in] upper bound for *@bytes
212  *
213  * When splitting a bio, it can happen that a bvec is encountered that is too
214  * big to fit in a single segment and hence that it has to be split in the
215  * middle. This function verifies whether or not that should happen. The value
216  * %true is returned if and only if appending the entire @bv to a bio with
217  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
218  * the block driver.
219  */
220 static bool bvec_split_segs(const struct request_queue *q,
221 			    const struct bio_vec *bv, unsigned *nsegs,
222 			    unsigned *bytes, unsigned max_segs,
223 			    unsigned max_bytes)
224 {
225 	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
226 	unsigned len = min(bv->bv_len, max_len);
227 	unsigned total_len = 0;
228 	unsigned seg_size = 0;
229 
230 	while (len && *nsegs < max_segs) {
231 		seg_size = get_max_segment_size(q, bv->bv_page,
232 						bv->bv_offset + total_len);
233 		seg_size = min(seg_size, len);
234 
235 		(*nsegs)++;
236 		total_len += seg_size;
237 		len -= seg_size;
238 
239 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
240 			break;
241 	}
242 
243 	*bytes += total_len;
244 
245 	/* tell the caller to split the bvec if it is too big to fit */
246 	return len > 0 || bv->bv_len > max_len;
247 }
248 
249 /**
250  * blk_bio_segment_split - split a bio in two bios
251  * @q:    [in] request queue pointer
252  * @bio:  [in] bio to be split
253  * @bs:	  [in] bio set to allocate the clone from
254  * @segs: [out] number of segments in the bio with the first half of the sectors
255  *
256  * Clone @bio, update the bi_iter of the clone to represent the first sectors
257  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
258  * following is guaranteed for the cloned bio:
259  * - That it has at most get_max_io_size(@q, @bio) sectors.
260  * - That it has at most queue_max_segments(@q) segments.
261  *
262  * Except for discard requests the cloned bio will point at the bi_io_vec of
263  * the original bio. It is the responsibility of the caller to ensure that the
264  * original bio is not freed before the cloned bio. The caller is also
265  * responsible for ensuring that @bs is only destroyed after processing of the
266  * split bio has finished.
267  */
268 static struct bio *blk_bio_segment_split(struct request_queue *q,
269 					 struct bio *bio,
270 					 struct bio_set *bs,
271 					 unsigned *segs)
272 {
273 	struct bio_vec bv, bvprv, *bvprvp = NULL;
274 	struct bvec_iter iter;
275 	unsigned nsegs = 0, bytes = 0;
276 	const unsigned max_bytes = get_max_io_size(q, bio) << 9;
277 	const unsigned max_segs = queue_max_segments(q);
278 
279 	bio_for_each_bvec(bv, bio, iter) {
280 		/*
281 		 * If the queue doesn't support SG gaps and adding this
282 		 * offset would create a gap, disallow it.
283 		 */
284 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
285 			goto split;
286 
287 		if (nsegs < max_segs &&
288 		    bytes + bv.bv_len <= max_bytes &&
289 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
290 			nsegs++;
291 			bytes += bv.bv_len;
292 		} else if (bvec_split_segs(q, &bv, &nsegs, &bytes, max_segs,
293 					   max_bytes)) {
294 			goto split;
295 		}
296 
297 		bvprv = bv;
298 		bvprvp = &bvprv;
299 	}
300 
301 	*segs = nsegs;
302 	return NULL;
303 split:
304 	*segs = nsegs;
305 
306 	/*
307 	 * Individual bvecs might not be logical block aligned. Round down the
308 	 * split size so that each bio is properly block size aligned, even if
309 	 * we do not use the full hardware limits.
310 	 */
311 	bytes = ALIGN_DOWN(bytes, queue_logical_block_size(q));
312 
313 	/*
314 	 * Bio splitting may cause subtle trouble such as hang when doing sync
315 	 * iopoll in direct IO routine. Given performance gain of iopoll for
316 	 * big IO can be trival, disable iopoll when split needed.
317 	 */
318 	bio_clear_polled(bio);
319 	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
320 }
321 
322 /**
323  * __blk_queue_split - split a bio and submit the second half
324  * @q:       [in] request_queue new bio is being queued at
325  * @bio:     [in, out] bio to be split
326  * @nr_segs: [out] number of segments in the first bio
327  *
328  * Split a bio into two bios, chain the two bios, submit the second half and
329  * store a pointer to the first half in *@bio. If the second bio is still too
330  * big it will be split by a recursive call to this function. Since this
331  * function may allocate a new bio from q->bio_split, it is the responsibility
332  * of the caller to ensure that q->bio_split is only released after processing
333  * of the split bio has finished.
334  */
335 void __blk_queue_split(struct request_queue *q, struct bio **bio,
336 		       unsigned int *nr_segs)
337 {
338 	struct bio *split = NULL;
339 
340 	switch (bio_op(*bio)) {
341 	case REQ_OP_DISCARD:
342 	case REQ_OP_SECURE_ERASE:
343 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
344 		break;
345 	case REQ_OP_WRITE_ZEROES:
346 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
347 				nr_segs);
348 		break;
349 	default:
350 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
351 		break;
352 	}
353 
354 	if (split) {
355 		/* there isn't chance to merge the splitted bio */
356 		split->bi_opf |= REQ_NOMERGE;
357 
358 		bio_chain(split, *bio);
359 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
360 		submit_bio_noacct(*bio);
361 		*bio = split;
362 	}
363 }
364 
365 /**
366  * blk_queue_split - split a bio and submit the second half
367  * @bio: [in, out] bio to be split
368  *
369  * Split a bio into two bios, chains the two bios, submit the second half and
370  * store a pointer to the first half in *@bio. Since this function may allocate
371  * a new bio from q->bio_split, it is the responsibility of the caller to ensure
372  * that q->bio_split is only released after processing of the split bio has
373  * finished.
374  */
375 void blk_queue_split(struct bio **bio)
376 {
377 	struct request_queue *q = bdev_get_queue((*bio)->bi_bdev);
378 	unsigned int nr_segs;
379 
380 	if (blk_may_split(q, *bio))
381 		__blk_queue_split(q, bio, &nr_segs);
382 }
383 EXPORT_SYMBOL(blk_queue_split);
384 
385 unsigned int blk_recalc_rq_segments(struct request *rq)
386 {
387 	unsigned int nr_phys_segs = 0;
388 	unsigned int bytes = 0;
389 	struct req_iterator iter;
390 	struct bio_vec bv;
391 
392 	if (!rq->bio)
393 		return 0;
394 
395 	switch (bio_op(rq->bio)) {
396 	case REQ_OP_DISCARD:
397 	case REQ_OP_SECURE_ERASE:
398 		if (queue_max_discard_segments(rq->q) > 1) {
399 			struct bio *bio = rq->bio;
400 
401 			for_each_bio(bio)
402 				nr_phys_segs++;
403 			return nr_phys_segs;
404 		}
405 		return 1;
406 	case REQ_OP_WRITE_ZEROES:
407 		return 0;
408 	default:
409 		break;
410 	}
411 
412 	rq_for_each_bvec(bv, rq, iter)
413 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &bytes,
414 				UINT_MAX, UINT_MAX);
415 	return nr_phys_segs;
416 }
417 
418 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
419 		struct scatterlist *sglist)
420 {
421 	if (!*sg)
422 		return sglist;
423 
424 	/*
425 	 * If the driver previously mapped a shorter list, we could see a
426 	 * termination bit prematurely unless it fully inits the sg table
427 	 * on each mapping. We KNOW that there must be more entries here
428 	 * or the driver would be buggy, so force clear the termination bit
429 	 * to avoid doing a full sg_init_table() in drivers for each command.
430 	 */
431 	sg_unmark_end(*sg);
432 	return sg_next(*sg);
433 }
434 
435 static unsigned blk_bvec_map_sg(struct request_queue *q,
436 		struct bio_vec *bvec, struct scatterlist *sglist,
437 		struct scatterlist **sg)
438 {
439 	unsigned nbytes = bvec->bv_len;
440 	unsigned nsegs = 0, total = 0;
441 
442 	while (nbytes > 0) {
443 		unsigned offset = bvec->bv_offset + total;
444 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
445 					offset), nbytes);
446 		struct page *page = bvec->bv_page;
447 
448 		/*
449 		 * Unfortunately a fair number of drivers barf on scatterlists
450 		 * that have an offset larger than PAGE_SIZE, despite other
451 		 * subsystems dealing with that invariant just fine.  For now
452 		 * stick to the legacy format where we never present those from
453 		 * the block layer, but the code below should be removed once
454 		 * these offenders (mostly MMC/SD drivers) are fixed.
455 		 */
456 		page += (offset >> PAGE_SHIFT);
457 		offset &= ~PAGE_MASK;
458 
459 		*sg = blk_next_sg(sg, sglist);
460 		sg_set_page(*sg, page, len, offset);
461 
462 		total += len;
463 		nbytes -= len;
464 		nsegs++;
465 	}
466 
467 	return nsegs;
468 }
469 
470 static inline int __blk_bvec_map_sg(struct bio_vec bv,
471 		struct scatterlist *sglist, struct scatterlist **sg)
472 {
473 	*sg = blk_next_sg(sg, sglist);
474 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
475 	return 1;
476 }
477 
478 /* only try to merge bvecs into one sg if they are from two bios */
479 static inline bool
480 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
481 			   struct bio_vec *bvprv, struct scatterlist **sg)
482 {
483 
484 	int nbytes = bvec->bv_len;
485 
486 	if (!*sg)
487 		return false;
488 
489 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
490 		return false;
491 
492 	if (!biovec_phys_mergeable(q, bvprv, bvec))
493 		return false;
494 
495 	(*sg)->length += nbytes;
496 
497 	return true;
498 }
499 
500 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
501 			     struct scatterlist *sglist,
502 			     struct scatterlist **sg)
503 {
504 	struct bio_vec bvec, bvprv = { NULL };
505 	struct bvec_iter iter;
506 	int nsegs = 0;
507 	bool new_bio = false;
508 
509 	for_each_bio(bio) {
510 		bio_for_each_bvec(bvec, bio, iter) {
511 			/*
512 			 * Only try to merge bvecs from two bios given we
513 			 * have done bio internal merge when adding pages
514 			 * to bio
515 			 */
516 			if (new_bio &&
517 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
518 				goto next_bvec;
519 
520 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
521 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
522 			else
523 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
524  next_bvec:
525 			new_bio = false;
526 		}
527 		if (likely(bio->bi_iter.bi_size)) {
528 			bvprv = bvec;
529 			new_bio = true;
530 		}
531 	}
532 
533 	return nsegs;
534 }
535 
536 /*
537  * map a request to scatterlist, return number of sg entries setup. Caller
538  * must make sure sg can hold rq->nr_phys_segments entries
539  */
540 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
541 		struct scatterlist *sglist, struct scatterlist **last_sg)
542 {
543 	int nsegs = 0;
544 
545 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
546 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
547 	else if (rq->bio)
548 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
549 
550 	if (*last_sg)
551 		sg_mark_end(*last_sg);
552 
553 	/*
554 	 * Something must have been wrong if the figured number of
555 	 * segment is bigger than number of req's physical segments
556 	 */
557 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
558 
559 	return nsegs;
560 }
561 EXPORT_SYMBOL(__blk_rq_map_sg);
562 
563 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
564 {
565 	if (req_op(rq) == REQ_OP_DISCARD)
566 		return queue_max_discard_segments(rq->q);
567 	return queue_max_segments(rq->q);
568 }
569 
570 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
571 						  sector_t offset)
572 {
573 	struct request_queue *q = rq->q;
574 	unsigned int max_sectors;
575 
576 	if (blk_rq_is_passthrough(rq))
577 		return q->limits.max_hw_sectors;
578 
579 	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
580 	if (!q->limits.chunk_sectors ||
581 	    req_op(rq) == REQ_OP_DISCARD ||
582 	    req_op(rq) == REQ_OP_SECURE_ERASE)
583 		return max_sectors;
584 	return min(max_sectors,
585 		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
586 }
587 
588 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
589 		unsigned int nr_phys_segs)
590 {
591 	if (!blk_cgroup_mergeable(req, bio))
592 		goto no_merge;
593 
594 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
595 		goto no_merge;
596 
597 	/* discard request merge won't add new segment */
598 	if (req_op(req) == REQ_OP_DISCARD)
599 		return 1;
600 
601 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
602 		goto no_merge;
603 
604 	/*
605 	 * This will form the start of a new hw segment.  Bump both
606 	 * counters.
607 	 */
608 	req->nr_phys_segments += nr_phys_segs;
609 	return 1;
610 
611 no_merge:
612 	req_set_nomerge(req->q, req);
613 	return 0;
614 }
615 
616 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
617 {
618 	if (req_gap_back_merge(req, bio))
619 		return 0;
620 	if (blk_integrity_rq(req) &&
621 	    integrity_req_gap_back_merge(req, bio))
622 		return 0;
623 	if (!bio_crypt_ctx_back_mergeable(req, bio))
624 		return 0;
625 	if (blk_rq_sectors(req) + bio_sectors(bio) >
626 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
627 		req_set_nomerge(req->q, req);
628 		return 0;
629 	}
630 
631 	return ll_new_hw_segment(req, bio, nr_segs);
632 }
633 
634 static int ll_front_merge_fn(struct request *req, struct bio *bio,
635 		unsigned int nr_segs)
636 {
637 	if (req_gap_front_merge(req, bio))
638 		return 0;
639 	if (blk_integrity_rq(req) &&
640 	    integrity_req_gap_front_merge(req, bio))
641 		return 0;
642 	if (!bio_crypt_ctx_front_mergeable(req, bio))
643 		return 0;
644 	if (blk_rq_sectors(req) + bio_sectors(bio) >
645 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
646 		req_set_nomerge(req->q, req);
647 		return 0;
648 	}
649 
650 	return ll_new_hw_segment(req, bio, nr_segs);
651 }
652 
653 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
654 		struct request *next)
655 {
656 	unsigned short segments = blk_rq_nr_discard_segments(req);
657 
658 	if (segments >= queue_max_discard_segments(q))
659 		goto no_merge;
660 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
661 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
662 		goto no_merge;
663 
664 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
665 	return true;
666 no_merge:
667 	req_set_nomerge(q, req);
668 	return false;
669 }
670 
671 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
672 				struct request *next)
673 {
674 	int total_phys_segments;
675 
676 	if (req_gap_back_merge(req, next->bio))
677 		return 0;
678 
679 	/*
680 	 * Will it become too large?
681 	 */
682 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
683 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
684 		return 0;
685 
686 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
687 	if (total_phys_segments > blk_rq_get_max_segments(req))
688 		return 0;
689 
690 	if (!blk_cgroup_mergeable(req, next->bio))
691 		return 0;
692 
693 	if (blk_integrity_merge_rq(q, req, next) == false)
694 		return 0;
695 
696 	if (!bio_crypt_ctx_merge_rq(req, next))
697 		return 0;
698 
699 	/* Merge is OK... */
700 	req->nr_phys_segments = total_phys_segments;
701 	return 1;
702 }
703 
704 /**
705  * blk_rq_set_mixed_merge - mark a request as mixed merge
706  * @rq: request to mark as mixed merge
707  *
708  * Description:
709  *     @rq is about to be mixed merged.  Make sure the attributes
710  *     which can be mixed are set in each bio and mark @rq as mixed
711  *     merged.
712  */
713 void blk_rq_set_mixed_merge(struct request *rq)
714 {
715 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
716 	struct bio *bio;
717 
718 	if (rq->rq_flags & RQF_MIXED_MERGE)
719 		return;
720 
721 	/*
722 	 * @rq will no longer represent mixable attributes for all the
723 	 * contained bios.  It will just track those of the first one.
724 	 * Distributes the attributs to each bio.
725 	 */
726 	for (bio = rq->bio; bio; bio = bio->bi_next) {
727 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
728 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
729 		bio->bi_opf |= ff;
730 	}
731 	rq->rq_flags |= RQF_MIXED_MERGE;
732 }
733 
734 static void blk_account_io_merge_request(struct request *req)
735 {
736 	if (blk_do_io_stat(req)) {
737 		part_stat_lock();
738 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
739 		part_stat_unlock();
740 	}
741 }
742 
743 static enum elv_merge blk_try_req_merge(struct request *req,
744 					struct request *next)
745 {
746 	if (blk_discard_mergable(req))
747 		return ELEVATOR_DISCARD_MERGE;
748 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
749 		return ELEVATOR_BACK_MERGE;
750 
751 	return ELEVATOR_NO_MERGE;
752 }
753 
754 /*
755  * For non-mq, this has to be called with the request spinlock acquired.
756  * For mq with scheduling, the appropriate queue wide lock should be held.
757  */
758 static struct request *attempt_merge(struct request_queue *q,
759 				     struct request *req, struct request *next)
760 {
761 	if (!rq_mergeable(req) || !rq_mergeable(next))
762 		return NULL;
763 
764 	if (req_op(req) != req_op(next))
765 		return NULL;
766 
767 	if (rq_data_dir(req) != rq_data_dir(next))
768 		return NULL;
769 
770 	if (req->ioprio != next->ioprio)
771 		return NULL;
772 
773 	/*
774 	 * If we are allowed to merge, then append bio list
775 	 * from next to rq and release next. merge_requests_fn
776 	 * will have updated segment counts, update sector
777 	 * counts here. Handle DISCARDs separately, as they
778 	 * have separate settings.
779 	 */
780 
781 	switch (blk_try_req_merge(req, next)) {
782 	case ELEVATOR_DISCARD_MERGE:
783 		if (!req_attempt_discard_merge(q, req, next))
784 			return NULL;
785 		break;
786 	case ELEVATOR_BACK_MERGE:
787 		if (!ll_merge_requests_fn(q, req, next))
788 			return NULL;
789 		break;
790 	default:
791 		return NULL;
792 	}
793 
794 	/*
795 	 * If failfast settings disagree or any of the two is already
796 	 * a mixed merge, mark both as mixed before proceeding.  This
797 	 * makes sure that all involved bios have mixable attributes
798 	 * set properly.
799 	 */
800 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
801 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
802 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
803 		blk_rq_set_mixed_merge(req);
804 		blk_rq_set_mixed_merge(next);
805 	}
806 
807 	/*
808 	 * At this point we have either done a back merge or front merge. We
809 	 * need the smaller start_time_ns of the merged requests to be the
810 	 * current request for accounting purposes.
811 	 */
812 	if (next->start_time_ns < req->start_time_ns)
813 		req->start_time_ns = next->start_time_ns;
814 
815 	req->biotail->bi_next = next->bio;
816 	req->biotail = next->biotail;
817 
818 	req->__data_len += blk_rq_bytes(next);
819 
820 	if (!blk_discard_mergable(req))
821 		elv_merge_requests(q, req, next);
822 
823 	/*
824 	 * 'next' is going away, so update stats accordingly
825 	 */
826 	blk_account_io_merge_request(next);
827 
828 	trace_block_rq_merge(next);
829 
830 	/*
831 	 * ownership of bio passed from next to req, return 'next' for
832 	 * the caller to free
833 	 */
834 	next->bio = NULL;
835 	return next;
836 }
837 
838 static struct request *attempt_back_merge(struct request_queue *q,
839 		struct request *rq)
840 {
841 	struct request *next = elv_latter_request(q, rq);
842 
843 	if (next)
844 		return attempt_merge(q, rq, next);
845 
846 	return NULL;
847 }
848 
849 static struct request *attempt_front_merge(struct request_queue *q,
850 		struct request *rq)
851 {
852 	struct request *prev = elv_former_request(q, rq);
853 
854 	if (prev)
855 		return attempt_merge(q, prev, rq);
856 
857 	return NULL;
858 }
859 
860 /*
861  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
862  * otherwise. The caller is responsible for freeing 'next' if the merge
863  * happened.
864  */
865 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
866 			   struct request *next)
867 {
868 	return attempt_merge(q, rq, next);
869 }
870 
871 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
872 {
873 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
874 		return false;
875 
876 	if (req_op(rq) != bio_op(bio))
877 		return false;
878 
879 	/* different data direction or already started, don't merge */
880 	if (bio_data_dir(bio) != rq_data_dir(rq))
881 		return false;
882 
883 	/* don't merge across cgroup boundaries */
884 	if (!blk_cgroup_mergeable(rq, bio))
885 		return false;
886 
887 	/* only merge integrity protected bio into ditto rq */
888 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
889 		return false;
890 
891 	/* Only merge if the crypt contexts are compatible */
892 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
893 		return false;
894 
895 	if (rq->ioprio != bio_prio(bio))
896 		return false;
897 
898 	return true;
899 }
900 
901 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
902 {
903 	if (blk_discard_mergable(rq))
904 		return ELEVATOR_DISCARD_MERGE;
905 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
906 		return ELEVATOR_BACK_MERGE;
907 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
908 		return ELEVATOR_FRONT_MERGE;
909 	return ELEVATOR_NO_MERGE;
910 }
911 
912 static void blk_account_io_merge_bio(struct request *req)
913 {
914 	if (!blk_do_io_stat(req))
915 		return;
916 
917 	part_stat_lock();
918 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
919 	part_stat_unlock();
920 }
921 
922 enum bio_merge_status {
923 	BIO_MERGE_OK,
924 	BIO_MERGE_NONE,
925 	BIO_MERGE_FAILED,
926 };
927 
928 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
929 		struct bio *bio, unsigned int nr_segs)
930 {
931 	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
932 
933 	if (!ll_back_merge_fn(req, bio, nr_segs))
934 		return BIO_MERGE_FAILED;
935 
936 	trace_block_bio_backmerge(bio);
937 	rq_qos_merge(req->q, req, bio);
938 
939 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
940 		blk_rq_set_mixed_merge(req);
941 
942 	req->biotail->bi_next = bio;
943 	req->biotail = bio;
944 	req->__data_len += bio->bi_iter.bi_size;
945 
946 	bio_crypt_free_ctx(bio);
947 
948 	blk_account_io_merge_bio(req);
949 	return BIO_MERGE_OK;
950 }
951 
952 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
953 		struct bio *bio, unsigned int nr_segs)
954 {
955 	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
956 
957 	if (!ll_front_merge_fn(req, bio, nr_segs))
958 		return BIO_MERGE_FAILED;
959 
960 	trace_block_bio_frontmerge(bio);
961 	rq_qos_merge(req->q, req, bio);
962 
963 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
964 		blk_rq_set_mixed_merge(req);
965 
966 	bio->bi_next = req->bio;
967 	req->bio = bio;
968 
969 	req->__sector = bio->bi_iter.bi_sector;
970 	req->__data_len += bio->bi_iter.bi_size;
971 
972 	bio_crypt_do_front_merge(req, bio);
973 
974 	blk_account_io_merge_bio(req);
975 	return BIO_MERGE_OK;
976 }
977 
978 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
979 		struct request *req, struct bio *bio)
980 {
981 	unsigned short segments = blk_rq_nr_discard_segments(req);
982 
983 	if (segments >= queue_max_discard_segments(q))
984 		goto no_merge;
985 	if (blk_rq_sectors(req) + bio_sectors(bio) >
986 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
987 		goto no_merge;
988 
989 	rq_qos_merge(q, req, bio);
990 
991 	req->biotail->bi_next = bio;
992 	req->biotail = bio;
993 	req->__data_len += bio->bi_iter.bi_size;
994 	req->nr_phys_segments = segments + 1;
995 
996 	blk_account_io_merge_bio(req);
997 	return BIO_MERGE_OK;
998 no_merge:
999 	req_set_nomerge(q, req);
1000 	return BIO_MERGE_FAILED;
1001 }
1002 
1003 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1004 						   struct request *rq,
1005 						   struct bio *bio,
1006 						   unsigned int nr_segs,
1007 						   bool sched_allow_merge)
1008 {
1009 	if (!blk_rq_merge_ok(rq, bio))
1010 		return BIO_MERGE_NONE;
1011 
1012 	switch (blk_try_merge(rq, bio)) {
1013 	case ELEVATOR_BACK_MERGE:
1014 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1015 			return bio_attempt_back_merge(rq, bio, nr_segs);
1016 		break;
1017 	case ELEVATOR_FRONT_MERGE:
1018 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1019 			return bio_attempt_front_merge(rq, bio, nr_segs);
1020 		break;
1021 	case ELEVATOR_DISCARD_MERGE:
1022 		return bio_attempt_discard_merge(q, rq, bio);
1023 	default:
1024 		return BIO_MERGE_NONE;
1025 	}
1026 
1027 	return BIO_MERGE_FAILED;
1028 }
1029 
1030 /**
1031  * blk_attempt_plug_merge - try to merge with %current's plugged list
1032  * @q: request_queue new bio is being queued at
1033  * @bio: new bio being queued
1034  * @nr_segs: number of segments in @bio
1035  * from the passed in @q already in the plug list
1036  *
1037  * Determine whether @bio being queued on @q can be merged with the previous
1038  * request on %current's plugged list.  Returns %true if merge was successful,
1039  * otherwise %false.
1040  *
1041  * Plugging coalesces IOs from the same issuer for the same purpose without
1042  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1043  * than scheduling, and the request, while may have elvpriv data, is not
1044  * added on the elevator at this point.  In addition, we don't have
1045  * reliable access to the elevator outside queue lock.  Only check basic
1046  * merging parameters without querying the elevator.
1047  *
1048  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1049  */
1050 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1051 		unsigned int nr_segs)
1052 {
1053 	struct blk_plug *plug;
1054 	struct request *rq;
1055 
1056 	plug = blk_mq_plug(bio);
1057 	if (!plug || rq_list_empty(plug->mq_list))
1058 		return false;
1059 
1060 	rq_list_for_each(&plug->mq_list, rq) {
1061 		if (rq->q == q) {
1062 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1063 			    BIO_MERGE_OK)
1064 				return true;
1065 			break;
1066 		}
1067 
1068 		/*
1069 		 * Only keep iterating plug list for merges if we have multiple
1070 		 * queues
1071 		 */
1072 		if (!plug->multiple_queues)
1073 			break;
1074 	}
1075 	return false;
1076 }
1077 
1078 /*
1079  * Iterate list of requests and see if we can merge this bio with any
1080  * of them.
1081  */
1082 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1083 			struct bio *bio, unsigned int nr_segs)
1084 {
1085 	struct request *rq;
1086 	int checked = 8;
1087 
1088 	list_for_each_entry_reverse(rq, list, queuelist) {
1089 		if (!checked--)
1090 			break;
1091 
1092 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1093 		case BIO_MERGE_NONE:
1094 			continue;
1095 		case BIO_MERGE_OK:
1096 			return true;
1097 		case BIO_MERGE_FAILED:
1098 			return false;
1099 		}
1100 
1101 	}
1102 
1103 	return false;
1104 }
1105 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1106 
1107 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1108 		unsigned int nr_segs, struct request **merged_request)
1109 {
1110 	struct request *rq;
1111 
1112 	switch (elv_merge(q, &rq, bio)) {
1113 	case ELEVATOR_BACK_MERGE:
1114 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1115 			return false;
1116 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1117 			return false;
1118 		*merged_request = attempt_back_merge(q, rq);
1119 		if (!*merged_request)
1120 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1121 		return true;
1122 	case ELEVATOR_FRONT_MERGE:
1123 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1124 			return false;
1125 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1126 			return false;
1127 		*merged_request = attempt_front_merge(q, rq);
1128 		if (!*merged_request)
1129 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1130 		return true;
1131 	case ELEVATOR_DISCARD_MERGE:
1132 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1133 	default:
1134 		return false;
1135 	}
1136 }
1137 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1138