1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 15 static inline bool bio_will_gap(struct request_queue *q, 16 struct request *prev_rq, struct bio *prev, struct bio *next) 17 { 18 struct bio_vec pb, nb; 19 20 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 21 return false; 22 23 /* 24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 25 * is quite difficult to respect the sg gap limit. We work hard to 26 * merge a huge number of small single bios in case of mkfs. 27 */ 28 if (prev_rq) 29 bio_get_first_bvec(prev_rq->bio, &pb); 30 else 31 bio_get_first_bvec(prev, &pb); 32 if (pb.bv_offset & queue_virt_boundary(q)) 33 return true; 34 35 /* 36 * We don't need to worry about the situation that the merged segment 37 * ends in unaligned virt boundary: 38 * 39 * - if 'pb' ends aligned, the merged segment ends aligned 40 * - if 'pb' ends unaligned, the next bio must include 41 * one single bvec of 'nb', otherwise the 'nb' can't 42 * merge with 'pb' 43 */ 44 bio_get_last_bvec(prev, &pb); 45 bio_get_first_bvec(next, &nb); 46 if (biovec_phys_mergeable(q, &pb, &nb)) 47 return false; 48 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 49 } 50 51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 52 { 53 return bio_will_gap(req->q, req, req->biotail, bio); 54 } 55 56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 57 { 58 return bio_will_gap(req->q, NULL, bio, req->bio); 59 } 60 61 static struct bio *blk_bio_discard_split(struct request_queue *q, 62 struct bio *bio, 63 struct bio_set *bs, 64 unsigned *nsegs) 65 { 66 unsigned int max_discard_sectors, granularity; 67 int alignment; 68 sector_t tmp; 69 unsigned split_sectors; 70 71 *nsegs = 1; 72 73 /* Zero-sector (unknown) and one-sector granularities are the same. */ 74 granularity = max(q->limits.discard_granularity >> 9, 1U); 75 76 max_discard_sectors = min(q->limits.max_discard_sectors, 77 bio_allowed_max_sectors(q)); 78 max_discard_sectors -= max_discard_sectors % granularity; 79 80 if (unlikely(!max_discard_sectors)) { 81 /* XXX: warn */ 82 return NULL; 83 } 84 85 if (bio_sectors(bio) <= max_discard_sectors) 86 return NULL; 87 88 split_sectors = max_discard_sectors; 89 90 /* 91 * If the next starting sector would be misaligned, stop the discard at 92 * the previous aligned sector. 93 */ 94 alignment = (q->limits.discard_alignment >> 9) % granularity; 95 96 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 97 tmp = sector_div(tmp, granularity); 98 99 if (split_sectors > tmp) 100 split_sectors -= tmp; 101 102 return bio_split(bio, split_sectors, GFP_NOIO, bs); 103 } 104 105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 106 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 107 { 108 *nsegs = 1; 109 110 if (!q->limits.max_write_zeroes_sectors) 111 return NULL; 112 113 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 114 return NULL; 115 116 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 117 } 118 119 static struct bio *blk_bio_write_same_split(struct request_queue *q, 120 struct bio *bio, 121 struct bio_set *bs, 122 unsigned *nsegs) 123 { 124 *nsegs = 1; 125 126 if (!q->limits.max_write_same_sectors) 127 return NULL; 128 129 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 130 return NULL; 131 132 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 133 } 134 135 static inline unsigned get_max_io_size(struct request_queue *q, 136 struct bio *bio) 137 { 138 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 139 unsigned mask = queue_logical_block_size(q) - 1; 140 141 /* aligned to logical block size */ 142 sectors &= ~(mask >> 9); 143 144 return sectors; 145 } 146 147 static unsigned get_max_segment_size(struct request_queue *q, 148 unsigned offset) 149 { 150 unsigned long mask = queue_segment_boundary(q); 151 152 /* default segment boundary mask means no boundary limit */ 153 if (mask == BLK_SEG_BOUNDARY_MASK) 154 return queue_max_segment_size(q); 155 156 return min_t(unsigned long, mask - (mask & offset) + 1, 157 queue_max_segment_size(q)); 158 } 159 160 /* 161 * Split the bvec @bv into segments, and update all kinds of 162 * variables. 163 */ 164 static bool bvec_split_segs(struct request_queue *q, struct bio_vec *bv, 165 unsigned *nsegs, unsigned *sectors, unsigned max_segs) 166 { 167 unsigned len = bv->bv_len; 168 unsigned total_len = 0; 169 unsigned new_nsegs = 0, seg_size = 0; 170 171 /* 172 * Multi-page bvec may be too big to hold in one segment, so the 173 * current bvec has to be splitted as multiple segments. 174 */ 175 while (len && new_nsegs + *nsegs < max_segs) { 176 seg_size = get_max_segment_size(q, bv->bv_offset + total_len); 177 seg_size = min(seg_size, len); 178 179 new_nsegs++; 180 total_len += seg_size; 181 len -= seg_size; 182 183 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 184 break; 185 } 186 187 if (new_nsegs) { 188 *nsegs += new_nsegs; 189 if (sectors) 190 *sectors += total_len >> 9; 191 } 192 193 /* split in the middle of the bvec if len != 0 */ 194 return !!len; 195 } 196 197 static struct bio *blk_bio_segment_split(struct request_queue *q, 198 struct bio *bio, 199 struct bio_set *bs, 200 unsigned *segs) 201 { 202 struct bio_vec bv, bvprv, *bvprvp = NULL; 203 struct bvec_iter iter; 204 unsigned nsegs = 0, sectors = 0; 205 bool do_split = true; 206 struct bio *new = NULL; 207 const unsigned max_sectors = get_max_io_size(q, bio); 208 const unsigned max_segs = queue_max_segments(q); 209 210 bio_for_each_bvec(bv, bio, iter) { 211 /* 212 * If the queue doesn't support SG gaps and adding this 213 * offset would create a gap, disallow it. 214 */ 215 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 216 goto split; 217 218 if (sectors + (bv.bv_len >> 9) > max_sectors) { 219 /* 220 * Consider this a new segment if we're splitting in 221 * the middle of this vector. 222 */ 223 if (nsegs < max_segs && 224 sectors < max_sectors) { 225 /* split in the middle of bvec */ 226 bv.bv_len = (max_sectors - sectors) << 9; 227 bvec_split_segs(q, &bv, &nsegs, 228 §ors, max_segs); 229 } 230 goto split; 231 } 232 233 if (nsegs == max_segs) 234 goto split; 235 236 bvprv = bv; 237 bvprvp = &bvprv; 238 239 if (bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 240 nsegs++; 241 sectors += bv.bv_len >> 9; 242 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, 243 max_segs)) { 244 goto split; 245 } 246 } 247 248 do_split = false; 249 split: 250 *segs = nsegs; 251 252 if (do_split) { 253 new = bio_split(bio, sectors, GFP_NOIO, bs); 254 if (new) 255 bio = new; 256 } 257 258 return do_split ? new : NULL; 259 } 260 261 void blk_queue_split(struct request_queue *q, struct bio **bio) 262 { 263 struct bio *split, *res; 264 unsigned nsegs; 265 266 switch (bio_op(*bio)) { 267 case REQ_OP_DISCARD: 268 case REQ_OP_SECURE_ERASE: 269 split = blk_bio_discard_split(q, *bio, &q->bio_split, &nsegs); 270 break; 271 case REQ_OP_WRITE_ZEROES: 272 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, &nsegs); 273 break; 274 case REQ_OP_WRITE_SAME: 275 split = blk_bio_write_same_split(q, *bio, &q->bio_split, &nsegs); 276 break; 277 default: 278 split = blk_bio_segment_split(q, *bio, &q->bio_split, &nsegs); 279 break; 280 } 281 282 /* physical segments can be figured out during splitting */ 283 res = split ? split : *bio; 284 res->bi_phys_segments = nsegs; 285 bio_set_flag(res, BIO_SEG_VALID); 286 287 if (split) { 288 /* there isn't chance to merge the splitted bio */ 289 split->bi_opf |= REQ_NOMERGE; 290 291 /* 292 * Since we're recursing into make_request here, ensure 293 * that we mark this bio as already having entered the queue. 294 * If not, and the queue is going away, we can get stuck 295 * forever on waiting for the queue reference to drop. But 296 * that will never happen, as we're already holding a 297 * reference to it. 298 */ 299 bio_set_flag(*bio, BIO_QUEUE_ENTERED); 300 301 bio_chain(split, *bio); 302 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 303 generic_make_request(*bio); 304 *bio = split; 305 } 306 } 307 EXPORT_SYMBOL(blk_queue_split); 308 309 static unsigned int __blk_recalc_rq_segments(struct request_queue *q, 310 struct bio *bio) 311 { 312 unsigned int nr_phys_segs = 0; 313 struct bvec_iter iter; 314 struct bio_vec bv; 315 316 if (!bio) 317 return 0; 318 319 switch (bio_op(bio)) { 320 case REQ_OP_DISCARD: 321 case REQ_OP_SECURE_ERASE: 322 case REQ_OP_WRITE_ZEROES: 323 return 0; 324 case REQ_OP_WRITE_SAME: 325 return 1; 326 } 327 328 for_each_bio(bio) { 329 bio_for_each_bvec(bv, bio, iter) 330 bvec_split_segs(q, &bv, &nr_phys_segs, NULL, UINT_MAX); 331 } 332 333 return nr_phys_segs; 334 } 335 336 void blk_recalc_rq_segments(struct request *rq) 337 { 338 rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio); 339 } 340 341 void blk_recount_segments(struct request_queue *q, struct bio *bio) 342 { 343 struct bio *nxt = bio->bi_next; 344 345 bio->bi_next = NULL; 346 bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio); 347 bio->bi_next = nxt; 348 349 bio_set_flag(bio, BIO_SEG_VALID); 350 } 351 352 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 353 struct scatterlist *sglist) 354 { 355 if (!*sg) 356 return sglist; 357 358 /* 359 * If the driver previously mapped a shorter list, we could see a 360 * termination bit prematurely unless it fully inits the sg table 361 * on each mapping. We KNOW that there must be more entries here 362 * or the driver would be buggy, so force clear the termination bit 363 * to avoid doing a full sg_init_table() in drivers for each command. 364 */ 365 sg_unmark_end(*sg); 366 return sg_next(*sg); 367 } 368 369 static unsigned blk_bvec_map_sg(struct request_queue *q, 370 struct bio_vec *bvec, struct scatterlist *sglist, 371 struct scatterlist **sg) 372 { 373 unsigned nbytes = bvec->bv_len; 374 unsigned nsegs = 0, total = 0; 375 376 while (nbytes > 0) { 377 unsigned offset = bvec->bv_offset + total; 378 unsigned len = min(get_max_segment_size(q, offset), nbytes); 379 struct page *page = bvec->bv_page; 380 381 /* 382 * Unfortunately a fair number of drivers barf on scatterlists 383 * that have an offset larger than PAGE_SIZE, despite other 384 * subsystems dealing with that invariant just fine. For now 385 * stick to the legacy format where we never present those from 386 * the block layer, but the code below should be removed once 387 * these offenders (mostly MMC/SD drivers) are fixed. 388 */ 389 page += (offset >> PAGE_SHIFT); 390 offset &= ~PAGE_MASK; 391 392 *sg = blk_next_sg(sg, sglist); 393 sg_set_page(*sg, page, len, offset); 394 395 total += len; 396 nbytes -= len; 397 nsegs++; 398 } 399 400 return nsegs; 401 } 402 403 static inline int __blk_bvec_map_sg(struct bio_vec bv, 404 struct scatterlist *sglist, struct scatterlist **sg) 405 { 406 *sg = blk_next_sg(sg, sglist); 407 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 408 return 1; 409 } 410 411 /* only try to merge bvecs into one sg if they are from two bios */ 412 static inline bool 413 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 414 struct bio_vec *bvprv, struct scatterlist **sg) 415 { 416 417 int nbytes = bvec->bv_len; 418 419 if (!*sg) 420 return false; 421 422 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 423 return false; 424 425 if (!biovec_phys_mergeable(q, bvprv, bvec)) 426 return false; 427 428 (*sg)->length += nbytes; 429 430 return true; 431 } 432 433 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 434 struct scatterlist *sglist, 435 struct scatterlist **sg) 436 { 437 struct bio_vec uninitialized_var(bvec), bvprv = { NULL }; 438 struct bvec_iter iter; 439 int nsegs = 0; 440 bool new_bio = false; 441 442 for_each_bio(bio) { 443 bio_for_each_bvec(bvec, bio, iter) { 444 /* 445 * Only try to merge bvecs from two bios given we 446 * have done bio internal merge when adding pages 447 * to bio 448 */ 449 if (new_bio && 450 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 451 goto next_bvec; 452 453 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 454 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 455 else 456 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 457 next_bvec: 458 new_bio = false; 459 } 460 if (likely(bio->bi_iter.bi_size)) { 461 bvprv = bvec; 462 new_bio = true; 463 } 464 } 465 466 return nsegs; 467 } 468 469 /* 470 * map a request to scatterlist, return number of sg entries setup. Caller 471 * must make sure sg can hold rq->nr_phys_segments entries 472 */ 473 int blk_rq_map_sg(struct request_queue *q, struct request *rq, 474 struct scatterlist *sglist) 475 { 476 struct scatterlist *sg = NULL; 477 int nsegs = 0; 478 479 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 480 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg); 481 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 482 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg); 483 else if (rq->bio) 484 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg); 485 486 if (unlikely(rq->rq_flags & RQF_COPY_USER) && 487 (blk_rq_bytes(rq) & q->dma_pad_mask)) { 488 unsigned int pad_len = 489 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 490 491 sg->length += pad_len; 492 rq->extra_len += pad_len; 493 } 494 495 if (q->dma_drain_size && q->dma_drain_needed(rq)) { 496 if (op_is_write(req_op(rq))) 497 memset(q->dma_drain_buffer, 0, q->dma_drain_size); 498 499 sg_unmark_end(sg); 500 sg = sg_next(sg); 501 sg_set_page(sg, virt_to_page(q->dma_drain_buffer), 502 q->dma_drain_size, 503 ((unsigned long)q->dma_drain_buffer) & 504 (PAGE_SIZE - 1)); 505 nsegs++; 506 rq->extra_len += q->dma_drain_size; 507 } 508 509 if (sg) 510 sg_mark_end(sg); 511 512 /* 513 * Something must have been wrong if the figured number of 514 * segment is bigger than number of req's physical segments 515 */ 516 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 517 518 return nsegs; 519 } 520 EXPORT_SYMBOL(blk_rq_map_sg); 521 522 static inline int ll_new_hw_segment(struct request_queue *q, 523 struct request *req, 524 struct bio *bio) 525 { 526 int nr_phys_segs = bio_phys_segments(q, bio); 527 528 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q)) 529 goto no_merge; 530 531 if (blk_integrity_merge_bio(q, req, bio) == false) 532 goto no_merge; 533 534 /* 535 * This will form the start of a new hw segment. Bump both 536 * counters. 537 */ 538 req->nr_phys_segments += nr_phys_segs; 539 return 1; 540 541 no_merge: 542 req_set_nomerge(q, req); 543 return 0; 544 } 545 546 int ll_back_merge_fn(struct request_queue *q, struct request *req, 547 struct bio *bio) 548 { 549 if (req_gap_back_merge(req, bio)) 550 return 0; 551 if (blk_integrity_rq(req) && 552 integrity_req_gap_back_merge(req, bio)) 553 return 0; 554 if (blk_rq_sectors(req) + bio_sectors(bio) > 555 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 556 req_set_nomerge(q, req); 557 return 0; 558 } 559 if (!bio_flagged(req->biotail, BIO_SEG_VALID)) 560 blk_recount_segments(q, req->biotail); 561 if (!bio_flagged(bio, BIO_SEG_VALID)) 562 blk_recount_segments(q, bio); 563 564 return ll_new_hw_segment(q, req, bio); 565 } 566 567 int ll_front_merge_fn(struct request_queue *q, struct request *req, 568 struct bio *bio) 569 { 570 571 if (req_gap_front_merge(req, bio)) 572 return 0; 573 if (blk_integrity_rq(req) && 574 integrity_req_gap_front_merge(req, bio)) 575 return 0; 576 if (blk_rq_sectors(req) + bio_sectors(bio) > 577 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 578 req_set_nomerge(q, req); 579 return 0; 580 } 581 if (!bio_flagged(bio, BIO_SEG_VALID)) 582 blk_recount_segments(q, bio); 583 if (!bio_flagged(req->bio, BIO_SEG_VALID)) 584 blk_recount_segments(q, req->bio); 585 586 return ll_new_hw_segment(q, req, bio); 587 } 588 589 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 590 struct request *next) 591 { 592 unsigned short segments = blk_rq_nr_discard_segments(req); 593 594 if (segments >= queue_max_discard_segments(q)) 595 goto no_merge; 596 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 597 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 598 goto no_merge; 599 600 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 601 return true; 602 no_merge: 603 req_set_nomerge(q, req); 604 return false; 605 } 606 607 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 608 struct request *next) 609 { 610 int total_phys_segments; 611 612 if (req_gap_back_merge(req, next->bio)) 613 return 0; 614 615 /* 616 * Will it become too large? 617 */ 618 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 619 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 620 return 0; 621 622 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 623 if (total_phys_segments > queue_max_segments(q)) 624 return 0; 625 626 if (blk_integrity_merge_rq(q, req, next) == false) 627 return 0; 628 629 /* Merge is OK... */ 630 req->nr_phys_segments = total_phys_segments; 631 return 1; 632 } 633 634 /** 635 * blk_rq_set_mixed_merge - mark a request as mixed merge 636 * @rq: request to mark as mixed merge 637 * 638 * Description: 639 * @rq is about to be mixed merged. Make sure the attributes 640 * which can be mixed are set in each bio and mark @rq as mixed 641 * merged. 642 */ 643 void blk_rq_set_mixed_merge(struct request *rq) 644 { 645 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 646 struct bio *bio; 647 648 if (rq->rq_flags & RQF_MIXED_MERGE) 649 return; 650 651 /* 652 * @rq will no longer represent mixable attributes for all the 653 * contained bios. It will just track those of the first one. 654 * Distributes the attributs to each bio. 655 */ 656 for (bio = rq->bio; bio; bio = bio->bi_next) { 657 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 658 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 659 bio->bi_opf |= ff; 660 } 661 rq->rq_flags |= RQF_MIXED_MERGE; 662 } 663 664 static void blk_account_io_merge(struct request *req) 665 { 666 if (blk_do_io_stat(req)) { 667 struct hd_struct *part; 668 669 part_stat_lock(); 670 part = req->part; 671 672 part_dec_in_flight(req->q, part, rq_data_dir(req)); 673 674 hd_struct_put(part); 675 part_stat_unlock(); 676 } 677 } 678 /* 679 * Two cases of handling DISCARD merge: 680 * If max_discard_segments > 1, the driver takes every bio 681 * as a range and send them to controller together. The ranges 682 * needn't to be contiguous. 683 * Otherwise, the bios/requests will be handled as same as 684 * others which should be contiguous. 685 */ 686 static inline bool blk_discard_mergable(struct request *req) 687 { 688 if (req_op(req) == REQ_OP_DISCARD && 689 queue_max_discard_segments(req->q) > 1) 690 return true; 691 return false; 692 } 693 694 static enum elv_merge blk_try_req_merge(struct request *req, 695 struct request *next) 696 { 697 if (blk_discard_mergable(req)) 698 return ELEVATOR_DISCARD_MERGE; 699 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 700 return ELEVATOR_BACK_MERGE; 701 702 return ELEVATOR_NO_MERGE; 703 } 704 705 /* 706 * For non-mq, this has to be called with the request spinlock acquired. 707 * For mq with scheduling, the appropriate queue wide lock should be held. 708 */ 709 static struct request *attempt_merge(struct request_queue *q, 710 struct request *req, struct request *next) 711 { 712 if (!rq_mergeable(req) || !rq_mergeable(next)) 713 return NULL; 714 715 if (req_op(req) != req_op(next)) 716 return NULL; 717 718 if (rq_data_dir(req) != rq_data_dir(next) 719 || req->rq_disk != next->rq_disk) 720 return NULL; 721 722 if (req_op(req) == REQ_OP_WRITE_SAME && 723 !blk_write_same_mergeable(req->bio, next->bio)) 724 return NULL; 725 726 /* 727 * Don't allow merge of different write hints, or for a hint with 728 * non-hint IO. 729 */ 730 if (req->write_hint != next->write_hint) 731 return NULL; 732 733 if (req->ioprio != next->ioprio) 734 return NULL; 735 736 /* 737 * If we are allowed to merge, then append bio list 738 * from next to rq and release next. merge_requests_fn 739 * will have updated segment counts, update sector 740 * counts here. Handle DISCARDs separately, as they 741 * have separate settings. 742 */ 743 744 switch (blk_try_req_merge(req, next)) { 745 case ELEVATOR_DISCARD_MERGE: 746 if (!req_attempt_discard_merge(q, req, next)) 747 return NULL; 748 break; 749 case ELEVATOR_BACK_MERGE: 750 if (!ll_merge_requests_fn(q, req, next)) 751 return NULL; 752 break; 753 default: 754 return NULL; 755 } 756 757 /* 758 * If failfast settings disagree or any of the two is already 759 * a mixed merge, mark both as mixed before proceeding. This 760 * makes sure that all involved bios have mixable attributes 761 * set properly. 762 */ 763 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 764 (req->cmd_flags & REQ_FAILFAST_MASK) != 765 (next->cmd_flags & REQ_FAILFAST_MASK)) { 766 blk_rq_set_mixed_merge(req); 767 blk_rq_set_mixed_merge(next); 768 } 769 770 /* 771 * At this point we have either done a back merge or front merge. We 772 * need the smaller start_time_ns of the merged requests to be the 773 * current request for accounting purposes. 774 */ 775 if (next->start_time_ns < req->start_time_ns) 776 req->start_time_ns = next->start_time_ns; 777 778 req->biotail->bi_next = next->bio; 779 req->biotail = next->biotail; 780 781 req->__data_len += blk_rq_bytes(next); 782 783 if (!blk_discard_mergable(req)) 784 elv_merge_requests(q, req, next); 785 786 /* 787 * 'next' is going away, so update stats accordingly 788 */ 789 blk_account_io_merge(next); 790 791 /* 792 * ownership of bio passed from next to req, return 'next' for 793 * the caller to free 794 */ 795 next->bio = NULL; 796 return next; 797 } 798 799 struct request *attempt_back_merge(struct request_queue *q, struct request *rq) 800 { 801 struct request *next = elv_latter_request(q, rq); 802 803 if (next) 804 return attempt_merge(q, rq, next); 805 806 return NULL; 807 } 808 809 struct request *attempt_front_merge(struct request_queue *q, struct request *rq) 810 { 811 struct request *prev = elv_former_request(q, rq); 812 813 if (prev) 814 return attempt_merge(q, prev, rq); 815 816 return NULL; 817 } 818 819 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 820 struct request *next) 821 { 822 struct request *free; 823 824 free = attempt_merge(q, rq, next); 825 if (free) { 826 blk_put_request(free); 827 return 1; 828 } 829 830 return 0; 831 } 832 833 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 834 { 835 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 836 return false; 837 838 if (req_op(rq) != bio_op(bio)) 839 return false; 840 841 /* different data direction or already started, don't merge */ 842 if (bio_data_dir(bio) != rq_data_dir(rq)) 843 return false; 844 845 /* must be same device */ 846 if (rq->rq_disk != bio->bi_disk) 847 return false; 848 849 /* only merge integrity protected bio into ditto rq */ 850 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 851 return false; 852 853 /* must be using the same buffer */ 854 if (req_op(rq) == REQ_OP_WRITE_SAME && 855 !blk_write_same_mergeable(rq->bio, bio)) 856 return false; 857 858 /* 859 * Don't allow merge of different write hints, or for a hint with 860 * non-hint IO. 861 */ 862 if (rq->write_hint != bio->bi_write_hint) 863 return false; 864 865 if (rq->ioprio != bio_prio(bio)) 866 return false; 867 868 return true; 869 } 870 871 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 872 { 873 if (blk_discard_mergable(rq)) 874 return ELEVATOR_DISCARD_MERGE; 875 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 876 return ELEVATOR_BACK_MERGE; 877 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 878 return ELEVATOR_FRONT_MERGE; 879 return ELEVATOR_NO_MERGE; 880 } 881