xref: /openbmc/linux/block/blk-map.c (revision e88811bc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 	bmd->iter = *data;
34 	bmd->iter.iov = bmd->iov;
35 	return bmd;
36 }
37 
38 /**
39  * bio_copy_from_iter - copy all pages from iov_iter to bio
40  * @bio: The &struct bio which describes the I/O as destination
41  * @iter: iov_iter as source
42  *
43  * Copy all pages from iov_iter to bio.
44  * Returns 0 on success, or error on failure.
45  */
46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 	struct bio_vec *bvec;
49 	struct bvec_iter_all iter_all;
50 
51 	bio_for_each_segment_all(bvec, bio, iter_all) {
52 		ssize_t ret;
53 
54 		ret = copy_page_from_iter(bvec->bv_page,
55 					  bvec->bv_offset,
56 					  bvec->bv_len,
57 					  iter);
58 
59 		if (!iov_iter_count(iter))
60 			break;
61 
62 		if (ret < bvec->bv_len)
63 			return -EFAULT;
64 	}
65 
66 	return 0;
67 }
68 
69 /**
70  * bio_copy_to_iter - copy all pages from bio to iov_iter
71  * @bio: The &struct bio which describes the I/O as source
72  * @iter: iov_iter as destination
73  *
74  * Copy all pages from bio to iov_iter.
75  * Returns 0 on success, or error on failure.
76  */
77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 	struct bio_vec *bvec;
80 	struct bvec_iter_all iter_all;
81 
82 	bio_for_each_segment_all(bvec, bio, iter_all) {
83 		ssize_t ret;
84 
85 		ret = copy_page_to_iter(bvec->bv_page,
86 					bvec->bv_offset,
87 					bvec->bv_len,
88 					&iter);
89 
90 		if (!iov_iter_count(&iter))
91 			break;
92 
93 		if (ret < bvec->bv_len)
94 			return -EFAULT;
95 	}
96 
97 	return 0;
98 }
99 
100 /**
101  *	bio_uncopy_user	-	finish previously mapped bio
102  *	@bio: bio being terminated
103  *
104  *	Free pages allocated from bio_copy_user_iov() and write back data
105  *	to user space in case of a read.
106  */
107 static int bio_uncopy_user(struct bio *bio)
108 {
109 	struct bio_map_data *bmd = bio->bi_private;
110 	int ret = 0;
111 
112 	if (!bmd->is_null_mapped) {
113 		/*
114 		 * if we're in a workqueue, the request is orphaned, so
115 		 * don't copy into a random user address space, just free
116 		 * and return -EINTR so user space doesn't expect any data.
117 		 */
118 		if (!current->mm)
119 			ret = -EINTR;
120 		else if (bio_data_dir(bio) == READ)
121 			ret = bio_copy_to_iter(bio, bmd->iter);
122 		if (bmd->is_our_pages)
123 			bio_free_pages(bio);
124 	}
125 	kfree(bmd);
126 	return ret;
127 }
128 
129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
130 		struct iov_iter *iter, gfp_t gfp_mask)
131 {
132 	struct bio_map_data *bmd;
133 	struct page *page;
134 	struct bio *bio;
135 	int i = 0, ret;
136 	int nr_pages;
137 	unsigned int len = iter->count;
138 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
139 
140 	bmd = bio_alloc_map_data(iter, gfp_mask);
141 	if (!bmd)
142 		return -ENOMEM;
143 
144 	/*
145 	 * We need to do a deep copy of the iov_iter including the iovecs.
146 	 * The caller provided iov might point to an on-stack or otherwise
147 	 * shortlived one.
148 	 */
149 	bmd->is_our_pages = !map_data;
150 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
151 
152 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
153 
154 	ret = -ENOMEM;
155 	bio = bio_kmalloc(nr_pages, gfp_mask);
156 	if (!bio)
157 		goto out_bmd;
158 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
159 
160 	if (map_data) {
161 		nr_pages = 1U << map_data->page_order;
162 		i = map_data->offset / PAGE_SIZE;
163 	}
164 	while (len) {
165 		unsigned int bytes = PAGE_SIZE;
166 
167 		bytes -= offset;
168 
169 		if (bytes > len)
170 			bytes = len;
171 
172 		if (map_data) {
173 			if (i == map_data->nr_entries * nr_pages) {
174 				ret = -ENOMEM;
175 				goto cleanup;
176 			}
177 
178 			page = map_data->pages[i / nr_pages];
179 			page += (i % nr_pages);
180 
181 			i++;
182 		} else {
183 			page = alloc_page(GFP_NOIO | gfp_mask);
184 			if (!page) {
185 				ret = -ENOMEM;
186 				goto cleanup;
187 			}
188 		}
189 
190 		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
191 			if (!map_data)
192 				__free_page(page);
193 			break;
194 		}
195 
196 		len -= bytes;
197 		offset = 0;
198 	}
199 
200 	if (map_data)
201 		map_data->offset += bio->bi_iter.bi_size;
202 
203 	/*
204 	 * success
205 	 */
206 	if ((iov_iter_rw(iter) == WRITE &&
207 	     (!map_data || !map_data->null_mapped)) ||
208 	    (map_data && map_data->from_user)) {
209 		ret = bio_copy_from_iter(bio, iter);
210 		if (ret)
211 			goto cleanup;
212 	} else {
213 		if (bmd->is_our_pages)
214 			zero_fill_bio(bio);
215 		iov_iter_advance(iter, bio->bi_iter.bi_size);
216 	}
217 
218 	bio->bi_private = bmd;
219 
220 	ret = blk_rq_append_bio(rq, bio);
221 	if (ret)
222 		goto cleanup;
223 	return 0;
224 cleanup:
225 	if (!map_data)
226 		bio_free_pages(bio);
227 	bio_uninit(bio);
228 	kfree(bio);
229 out_bmd:
230 	kfree(bmd);
231 	return ret;
232 }
233 
234 static void bio_map_put(struct bio *bio)
235 {
236 	if (bio->bi_opf & REQ_ALLOC_CACHE) {
237 		bio_put(bio);
238 	} else {
239 		bio_uninit(bio);
240 		kfree(bio);
241 	}
242 }
243 
244 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
245 		gfp_t gfp_mask)
246 {
247 	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
248 	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
249 	struct bio *bio;
250 	int ret;
251 	int j;
252 
253 	if (!iov_iter_count(iter))
254 		return -EINVAL;
255 
256 	if (rq->cmd_flags & REQ_POLLED) {
257 		blk_opf_t opf = rq->cmd_flags | REQ_ALLOC_CACHE;
258 
259 		bio = bio_alloc_bioset(NULL, nr_vecs, opf, gfp_mask,
260 					&fs_bio_set);
261 		if (!bio)
262 			return -ENOMEM;
263 	} else {
264 		bio = bio_kmalloc(nr_vecs, gfp_mask);
265 		if (!bio)
266 			return -ENOMEM;
267 		bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
268 	}
269 
270 	while (iov_iter_count(iter)) {
271 		struct page **pages, *stack_pages[UIO_FASTIOV];
272 		ssize_t bytes;
273 		size_t offs, added = 0;
274 		int npages;
275 
276 		if (nr_vecs <= ARRAY_SIZE(stack_pages)) {
277 			pages = stack_pages;
278 			bytes = iov_iter_get_pages2(iter, pages, LONG_MAX,
279 							nr_vecs, &offs);
280 		} else {
281 			bytes = iov_iter_get_pages_alloc2(iter, &pages,
282 							LONG_MAX, &offs);
283 		}
284 		if (unlikely(bytes <= 0)) {
285 			ret = bytes ? bytes : -EFAULT;
286 			goto out_unmap;
287 		}
288 
289 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
290 
291 		if (unlikely(offs & queue_dma_alignment(rq->q)))
292 			j = 0;
293 		else {
294 			for (j = 0; j < npages; j++) {
295 				struct page *page = pages[j];
296 				unsigned int n = PAGE_SIZE - offs;
297 				bool same_page = false;
298 
299 				if (n > bytes)
300 					n = bytes;
301 
302 				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
303 						     max_sectors, &same_page)) {
304 					if (same_page)
305 						put_page(page);
306 					break;
307 				}
308 
309 				added += n;
310 				bytes -= n;
311 				offs = 0;
312 			}
313 		}
314 		/*
315 		 * release the pages we didn't map into the bio, if any
316 		 */
317 		while (j < npages)
318 			put_page(pages[j++]);
319 		if (pages != stack_pages)
320 			kvfree(pages);
321 		/* couldn't stuff something into bio? */
322 		if (bytes) {
323 			iov_iter_revert(iter, bytes);
324 			break;
325 		}
326 	}
327 
328 	ret = blk_rq_append_bio(rq, bio);
329 	if (ret)
330 		goto out_unmap;
331 	return 0;
332 
333  out_unmap:
334 	bio_release_pages(bio, false);
335 	bio_map_put(bio);
336 	return ret;
337 }
338 
339 static void bio_invalidate_vmalloc_pages(struct bio *bio)
340 {
341 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
342 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
343 		unsigned long i, len = 0;
344 
345 		for (i = 0; i < bio->bi_vcnt; i++)
346 			len += bio->bi_io_vec[i].bv_len;
347 		invalidate_kernel_vmap_range(bio->bi_private, len);
348 	}
349 #endif
350 }
351 
352 static void bio_map_kern_endio(struct bio *bio)
353 {
354 	bio_invalidate_vmalloc_pages(bio);
355 	bio_uninit(bio);
356 	kfree(bio);
357 }
358 
359 /**
360  *	bio_map_kern	-	map kernel address into bio
361  *	@q: the struct request_queue for the bio
362  *	@data: pointer to buffer to map
363  *	@len: length in bytes
364  *	@gfp_mask: allocation flags for bio allocation
365  *
366  *	Map the kernel address into a bio suitable for io to a block
367  *	device. Returns an error pointer in case of error.
368  */
369 static struct bio *bio_map_kern(struct request_queue *q, void *data,
370 		unsigned int len, gfp_t gfp_mask)
371 {
372 	unsigned long kaddr = (unsigned long)data;
373 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
374 	unsigned long start = kaddr >> PAGE_SHIFT;
375 	const int nr_pages = end - start;
376 	bool is_vmalloc = is_vmalloc_addr(data);
377 	struct page *page;
378 	int offset, i;
379 	struct bio *bio;
380 
381 	bio = bio_kmalloc(nr_pages, gfp_mask);
382 	if (!bio)
383 		return ERR_PTR(-ENOMEM);
384 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
385 
386 	if (is_vmalloc) {
387 		flush_kernel_vmap_range(data, len);
388 		bio->bi_private = data;
389 	}
390 
391 	offset = offset_in_page(kaddr);
392 	for (i = 0; i < nr_pages; i++) {
393 		unsigned int bytes = PAGE_SIZE - offset;
394 
395 		if (len <= 0)
396 			break;
397 
398 		if (bytes > len)
399 			bytes = len;
400 
401 		if (!is_vmalloc)
402 			page = virt_to_page(data);
403 		else
404 			page = vmalloc_to_page(data);
405 		if (bio_add_pc_page(q, bio, page, bytes,
406 				    offset) < bytes) {
407 			/* we don't support partial mappings */
408 			bio_uninit(bio);
409 			kfree(bio);
410 			return ERR_PTR(-EINVAL);
411 		}
412 
413 		data += bytes;
414 		len -= bytes;
415 		offset = 0;
416 	}
417 
418 	bio->bi_end_io = bio_map_kern_endio;
419 	return bio;
420 }
421 
422 static void bio_copy_kern_endio(struct bio *bio)
423 {
424 	bio_free_pages(bio);
425 	bio_uninit(bio);
426 	kfree(bio);
427 }
428 
429 static void bio_copy_kern_endio_read(struct bio *bio)
430 {
431 	char *p = bio->bi_private;
432 	struct bio_vec *bvec;
433 	struct bvec_iter_all iter_all;
434 
435 	bio_for_each_segment_all(bvec, bio, iter_all) {
436 		memcpy_from_bvec(p, bvec);
437 		p += bvec->bv_len;
438 	}
439 
440 	bio_copy_kern_endio(bio);
441 }
442 
443 /**
444  *	bio_copy_kern	-	copy kernel address into bio
445  *	@q: the struct request_queue for the bio
446  *	@data: pointer to buffer to copy
447  *	@len: length in bytes
448  *	@gfp_mask: allocation flags for bio and page allocation
449  *	@reading: data direction is READ
450  *
451  *	copy the kernel address into a bio suitable for io to a block
452  *	device. Returns an error pointer in case of error.
453  */
454 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
455 		unsigned int len, gfp_t gfp_mask, int reading)
456 {
457 	unsigned long kaddr = (unsigned long)data;
458 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
459 	unsigned long start = kaddr >> PAGE_SHIFT;
460 	struct bio *bio;
461 	void *p = data;
462 	int nr_pages = 0;
463 
464 	/*
465 	 * Overflow, abort
466 	 */
467 	if (end < start)
468 		return ERR_PTR(-EINVAL);
469 
470 	nr_pages = end - start;
471 	bio = bio_kmalloc(nr_pages, gfp_mask);
472 	if (!bio)
473 		return ERR_PTR(-ENOMEM);
474 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
475 
476 	while (len) {
477 		struct page *page;
478 		unsigned int bytes = PAGE_SIZE;
479 
480 		if (bytes > len)
481 			bytes = len;
482 
483 		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
484 		if (!page)
485 			goto cleanup;
486 
487 		if (!reading)
488 			memcpy(page_address(page), p, bytes);
489 
490 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
491 			break;
492 
493 		len -= bytes;
494 		p += bytes;
495 	}
496 
497 	if (reading) {
498 		bio->bi_end_io = bio_copy_kern_endio_read;
499 		bio->bi_private = data;
500 	} else {
501 		bio->bi_end_io = bio_copy_kern_endio;
502 	}
503 
504 	return bio;
505 
506 cleanup:
507 	bio_free_pages(bio);
508 	bio_uninit(bio);
509 	kfree(bio);
510 	return ERR_PTR(-ENOMEM);
511 }
512 
513 /*
514  * Append a bio to a passthrough request.  Only works if the bio can be merged
515  * into the request based on the driver constraints.
516  */
517 int blk_rq_append_bio(struct request *rq, struct bio *bio)
518 {
519 	struct bvec_iter iter;
520 	struct bio_vec bv;
521 	unsigned int nr_segs = 0;
522 
523 	bio_for_each_bvec(bv, bio, iter)
524 		nr_segs++;
525 
526 	if (!rq->bio) {
527 		blk_rq_bio_prep(rq, bio, nr_segs);
528 	} else {
529 		if (!ll_back_merge_fn(rq, bio, nr_segs))
530 			return -EINVAL;
531 		rq->biotail->bi_next = bio;
532 		rq->biotail = bio;
533 		rq->__data_len += (bio)->bi_iter.bi_size;
534 		bio_crypt_free_ctx(bio);
535 	}
536 
537 	return 0;
538 }
539 EXPORT_SYMBOL(blk_rq_append_bio);
540 
541 /**
542  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
543  * @q:		request queue where request should be inserted
544  * @rq:		request to map data to
545  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
546  * @iter:	iovec iterator
547  * @gfp_mask:	memory allocation flags
548  *
549  * Description:
550  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
551  *    a kernel bounce buffer is used.
552  *
553  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
554  *    still in process context.
555  */
556 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
557 			struct rq_map_data *map_data,
558 			const struct iov_iter *iter, gfp_t gfp_mask)
559 {
560 	bool copy = false;
561 	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
562 	struct bio *bio = NULL;
563 	struct iov_iter i;
564 	int ret = -EINVAL;
565 
566 	if (!iter_is_iovec(iter))
567 		goto fail;
568 
569 	if (map_data)
570 		copy = true;
571 	else if (blk_queue_may_bounce(q))
572 		copy = true;
573 	else if (iov_iter_alignment(iter) & align)
574 		copy = true;
575 	else if (queue_virt_boundary(q))
576 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
577 
578 	i = *iter;
579 	do {
580 		if (copy)
581 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
582 		else
583 			ret = bio_map_user_iov(rq, &i, gfp_mask);
584 		if (ret)
585 			goto unmap_rq;
586 		if (!bio)
587 			bio = rq->bio;
588 	} while (iov_iter_count(&i));
589 
590 	return 0;
591 
592 unmap_rq:
593 	blk_rq_unmap_user(bio);
594 fail:
595 	rq->bio = NULL;
596 	return ret;
597 }
598 EXPORT_SYMBOL(blk_rq_map_user_iov);
599 
600 int blk_rq_map_user(struct request_queue *q, struct request *rq,
601 		    struct rq_map_data *map_data, void __user *ubuf,
602 		    unsigned long len, gfp_t gfp_mask)
603 {
604 	struct iovec iov;
605 	struct iov_iter i;
606 	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
607 
608 	if (unlikely(ret < 0))
609 		return ret;
610 
611 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
612 }
613 EXPORT_SYMBOL(blk_rq_map_user);
614 
615 /**
616  * blk_rq_unmap_user - unmap a request with user data
617  * @bio:	       start of bio list
618  *
619  * Description:
620  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
621  *    supply the original rq->bio from the blk_rq_map_user() return, since
622  *    the I/O completion may have changed rq->bio.
623  */
624 int blk_rq_unmap_user(struct bio *bio)
625 {
626 	struct bio *next_bio;
627 	int ret = 0, ret2;
628 
629 	while (bio) {
630 		if (bio->bi_private) {
631 			ret2 = bio_uncopy_user(bio);
632 			if (ret2 && !ret)
633 				ret = ret2;
634 		} else {
635 			bio_release_pages(bio, bio_data_dir(bio) == READ);
636 		}
637 
638 		next_bio = bio;
639 		bio = bio->bi_next;
640 		bio_map_put(next_bio);
641 	}
642 
643 	return ret;
644 }
645 EXPORT_SYMBOL(blk_rq_unmap_user);
646 
647 /**
648  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
649  * @q:		request queue where request should be inserted
650  * @rq:		request to fill
651  * @kbuf:	the kernel buffer
652  * @len:	length of user data
653  * @gfp_mask:	memory allocation flags
654  *
655  * Description:
656  *    Data will be mapped directly if possible. Otherwise a bounce
657  *    buffer is used. Can be called multiple times to append multiple
658  *    buffers.
659  */
660 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
661 		    unsigned int len, gfp_t gfp_mask)
662 {
663 	int reading = rq_data_dir(rq) == READ;
664 	unsigned long addr = (unsigned long) kbuf;
665 	struct bio *bio;
666 	int ret;
667 
668 	if (len > (queue_max_hw_sectors(q) << 9))
669 		return -EINVAL;
670 	if (!len || !kbuf)
671 		return -EINVAL;
672 
673 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
674 	    blk_queue_may_bounce(q))
675 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
676 	else
677 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
678 
679 	if (IS_ERR(bio))
680 		return PTR_ERR(bio);
681 
682 	bio->bi_opf &= ~REQ_OP_MASK;
683 	bio->bi_opf |= req_op(rq);
684 
685 	ret = blk_rq_append_bio(rq, bio);
686 	if (unlikely(ret)) {
687 		bio_uninit(bio);
688 		kfree(bio);
689 	}
690 	return ret;
691 }
692 EXPORT_SYMBOL(blk_rq_map_kern);
693