1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to mapping data to requests 4 */ 5 #include <linux/kernel.h> 6 #include <linux/sched/task_stack.h> 7 #include <linux/module.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/uio.h> 11 12 #include "blk.h" 13 14 struct bio_map_data { 15 bool is_our_pages : 1; 16 bool is_null_mapped : 1; 17 struct iov_iter iter; 18 struct iovec iov[]; 19 }; 20 21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 22 gfp_t gfp_mask) 23 { 24 struct bio_map_data *bmd; 25 26 if (data->nr_segs > UIO_MAXIOV) 27 return NULL; 28 29 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 30 if (!bmd) 31 return NULL; 32 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 33 bmd->iter = *data; 34 bmd->iter.iov = bmd->iov; 35 return bmd; 36 } 37 38 /** 39 * bio_copy_from_iter - copy all pages from iov_iter to bio 40 * @bio: The &struct bio which describes the I/O as destination 41 * @iter: iov_iter as source 42 * 43 * Copy all pages from iov_iter to bio. 44 * Returns 0 on success, or error on failure. 45 */ 46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 47 { 48 struct bio_vec *bvec; 49 struct bvec_iter_all iter_all; 50 51 bio_for_each_segment_all(bvec, bio, iter_all) { 52 ssize_t ret; 53 54 ret = copy_page_from_iter(bvec->bv_page, 55 bvec->bv_offset, 56 bvec->bv_len, 57 iter); 58 59 if (!iov_iter_count(iter)) 60 break; 61 62 if (ret < bvec->bv_len) 63 return -EFAULT; 64 } 65 66 return 0; 67 } 68 69 /** 70 * bio_copy_to_iter - copy all pages from bio to iov_iter 71 * @bio: The &struct bio which describes the I/O as source 72 * @iter: iov_iter as destination 73 * 74 * Copy all pages from bio to iov_iter. 75 * Returns 0 on success, or error on failure. 76 */ 77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 78 { 79 struct bio_vec *bvec; 80 struct bvec_iter_all iter_all; 81 82 bio_for_each_segment_all(bvec, bio, iter_all) { 83 ssize_t ret; 84 85 ret = copy_page_to_iter(bvec->bv_page, 86 bvec->bv_offset, 87 bvec->bv_len, 88 &iter); 89 90 if (!iov_iter_count(&iter)) 91 break; 92 93 if (ret < bvec->bv_len) 94 return -EFAULT; 95 } 96 97 return 0; 98 } 99 100 /** 101 * bio_uncopy_user - finish previously mapped bio 102 * @bio: bio being terminated 103 * 104 * Free pages allocated from bio_copy_user_iov() and write back data 105 * to user space in case of a read. 106 */ 107 static int bio_uncopy_user(struct bio *bio) 108 { 109 struct bio_map_data *bmd = bio->bi_private; 110 int ret = 0; 111 112 if (!bmd->is_null_mapped) { 113 /* 114 * if we're in a workqueue, the request is orphaned, so 115 * don't copy into a random user address space, just free 116 * and return -EINTR so user space doesn't expect any data. 117 */ 118 if (!current->mm) 119 ret = -EINTR; 120 else if (bio_data_dir(bio) == READ) 121 ret = bio_copy_to_iter(bio, bmd->iter); 122 if (bmd->is_our_pages) 123 bio_free_pages(bio); 124 } 125 kfree(bmd); 126 return ret; 127 } 128 129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data, 130 struct iov_iter *iter, gfp_t gfp_mask) 131 { 132 struct bio_map_data *bmd; 133 struct page *page; 134 struct bio *bio; 135 int i = 0, ret; 136 int nr_pages; 137 unsigned int len = iter->count; 138 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 139 140 bmd = bio_alloc_map_data(iter, gfp_mask); 141 if (!bmd) 142 return -ENOMEM; 143 144 /* 145 * We need to do a deep copy of the iov_iter including the iovecs. 146 * The caller provided iov might point to an on-stack or otherwise 147 * shortlived one. 148 */ 149 bmd->is_our_pages = !map_data; 150 bmd->is_null_mapped = (map_data && map_data->null_mapped); 151 152 nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE)); 153 154 ret = -ENOMEM; 155 bio = bio_kmalloc(nr_pages, gfp_mask); 156 if (!bio) 157 goto out_bmd; 158 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq)); 159 160 if (map_data) { 161 nr_pages = 1 << map_data->page_order; 162 i = map_data->offset / PAGE_SIZE; 163 } 164 while (len) { 165 unsigned int bytes = PAGE_SIZE; 166 167 bytes -= offset; 168 169 if (bytes > len) 170 bytes = len; 171 172 if (map_data) { 173 if (i == map_data->nr_entries * nr_pages) { 174 ret = -ENOMEM; 175 goto cleanup; 176 } 177 178 page = map_data->pages[i / nr_pages]; 179 page += (i % nr_pages); 180 181 i++; 182 } else { 183 page = alloc_page(GFP_NOIO | gfp_mask); 184 if (!page) { 185 ret = -ENOMEM; 186 goto cleanup; 187 } 188 } 189 190 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) { 191 if (!map_data) 192 __free_page(page); 193 break; 194 } 195 196 len -= bytes; 197 offset = 0; 198 } 199 200 if (map_data) 201 map_data->offset += bio->bi_iter.bi_size; 202 203 /* 204 * success 205 */ 206 if ((iov_iter_rw(iter) == WRITE && 207 (!map_data || !map_data->null_mapped)) || 208 (map_data && map_data->from_user)) { 209 ret = bio_copy_from_iter(bio, iter); 210 if (ret) 211 goto cleanup; 212 } else { 213 if (bmd->is_our_pages) 214 zero_fill_bio(bio); 215 iov_iter_advance(iter, bio->bi_iter.bi_size); 216 } 217 218 bio->bi_private = bmd; 219 220 ret = blk_rq_append_bio(rq, bio); 221 if (ret) 222 goto cleanup; 223 return 0; 224 cleanup: 225 if (!map_data) 226 bio_free_pages(bio); 227 bio_uninit(bio); 228 kfree(bio); 229 out_bmd: 230 kfree(bmd); 231 return ret; 232 } 233 234 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter, 235 gfp_t gfp_mask) 236 { 237 unsigned int max_sectors = queue_max_hw_sectors(rq->q); 238 unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS); 239 struct bio *bio; 240 int ret; 241 int j; 242 243 if (!iov_iter_count(iter)) 244 return -EINVAL; 245 246 bio = bio_kmalloc(nr_vecs, gfp_mask); 247 if (!bio) 248 return -ENOMEM; 249 bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq)); 250 251 while (iov_iter_count(iter)) { 252 struct page **pages; 253 ssize_t bytes; 254 size_t offs, added = 0; 255 int npages; 256 257 bytes = iov_iter_get_pages_alloc2(iter, &pages, LONG_MAX, &offs); 258 if (unlikely(bytes <= 0)) { 259 ret = bytes ? bytes : -EFAULT; 260 goto out_unmap; 261 } 262 263 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 264 265 if (unlikely(offs & queue_dma_alignment(rq->q))) 266 j = 0; 267 else { 268 for (j = 0; j < npages; j++) { 269 struct page *page = pages[j]; 270 unsigned int n = PAGE_SIZE - offs; 271 bool same_page = false; 272 273 if (n > bytes) 274 n = bytes; 275 276 if (!bio_add_hw_page(rq->q, bio, page, n, offs, 277 max_sectors, &same_page)) { 278 if (same_page) 279 put_page(page); 280 break; 281 } 282 283 added += n; 284 bytes -= n; 285 offs = 0; 286 } 287 } 288 /* 289 * release the pages we didn't map into the bio, if any 290 */ 291 while (j < npages) 292 put_page(pages[j++]); 293 kvfree(pages); 294 /* couldn't stuff something into bio? */ 295 if (bytes) { 296 iov_iter_revert(iter, bytes); 297 break; 298 } 299 } 300 301 ret = blk_rq_append_bio(rq, bio); 302 if (ret) 303 goto out_unmap; 304 return 0; 305 306 out_unmap: 307 bio_release_pages(bio, false); 308 bio_uninit(bio); 309 kfree(bio); 310 return ret; 311 } 312 313 static void bio_invalidate_vmalloc_pages(struct bio *bio) 314 { 315 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 316 if (bio->bi_private && !op_is_write(bio_op(bio))) { 317 unsigned long i, len = 0; 318 319 for (i = 0; i < bio->bi_vcnt; i++) 320 len += bio->bi_io_vec[i].bv_len; 321 invalidate_kernel_vmap_range(bio->bi_private, len); 322 } 323 #endif 324 } 325 326 static void bio_map_kern_endio(struct bio *bio) 327 { 328 bio_invalidate_vmalloc_pages(bio); 329 bio_uninit(bio); 330 kfree(bio); 331 } 332 333 /** 334 * bio_map_kern - map kernel address into bio 335 * @q: the struct request_queue for the bio 336 * @data: pointer to buffer to map 337 * @len: length in bytes 338 * @gfp_mask: allocation flags for bio allocation 339 * 340 * Map the kernel address into a bio suitable for io to a block 341 * device. Returns an error pointer in case of error. 342 */ 343 static struct bio *bio_map_kern(struct request_queue *q, void *data, 344 unsigned int len, gfp_t gfp_mask) 345 { 346 unsigned long kaddr = (unsigned long)data; 347 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 348 unsigned long start = kaddr >> PAGE_SHIFT; 349 const int nr_pages = end - start; 350 bool is_vmalloc = is_vmalloc_addr(data); 351 struct page *page; 352 int offset, i; 353 struct bio *bio; 354 355 bio = bio_kmalloc(nr_pages, gfp_mask); 356 if (!bio) 357 return ERR_PTR(-ENOMEM); 358 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); 359 360 if (is_vmalloc) { 361 flush_kernel_vmap_range(data, len); 362 bio->bi_private = data; 363 } 364 365 offset = offset_in_page(kaddr); 366 for (i = 0; i < nr_pages; i++) { 367 unsigned int bytes = PAGE_SIZE - offset; 368 369 if (len <= 0) 370 break; 371 372 if (bytes > len) 373 bytes = len; 374 375 if (!is_vmalloc) 376 page = virt_to_page(data); 377 else 378 page = vmalloc_to_page(data); 379 if (bio_add_pc_page(q, bio, page, bytes, 380 offset) < bytes) { 381 /* we don't support partial mappings */ 382 bio_uninit(bio); 383 kfree(bio); 384 return ERR_PTR(-EINVAL); 385 } 386 387 data += bytes; 388 len -= bytes; 389 offset = 0; 390 } 391 392 bio->bi_end_io = bio_map_kern_endio; 393 return bio; 394 } 395 396 static void bio_copy_kern_endio(struct bio *bio) 397 { 398 bio_free_pages(bio); 399 bio_uninit(bio); 400 kfree(bio); 401 } 402 403 static void bio_copy_kern_endio_read(struct bio *bio) 404 { 405 char *p = bio->bi_private; 406 struct bio_vec *bvec; 407 struct bvec_iter_all iter_all; 408 409 bio_for_each_segment_all(bvec, bio, iter_all) { 410 memcpy_from_bvec(p, bvec); 411 p += bvec->bv_len; 412 } 413 414 bio_copy_kern_endio(bio); 415 } 416 417 /** 418 * bio_copy_kern - copy kernel address into bio 419 * @q: the struct request_queue for the bio 420 * @data: pointer to buffer to copy 421 * @len: length in bytes 422 * @gfp_mask: allocation flags for bio and page allocation 423 * @reading: data direction is READ 424 * 425 * copy the kernel address into a bio suitable for io to a block 426 * device. Returns an error pointer in case of error. 427 */ 428 static struct bio *bio_copy_kern(struct request_queue *q, void *data, 429 unsigned int len, gfp_t gfp_mask, int reading) 430 { 431 unsigned long kaddr = (unsigned long)data; 432 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 433 unsigned long start = kaddr >> PAGE_SHIFT; 434 struct bio *bio; 435 void *p = data; 436 int nr_pages = 0; 437 438 /* 439 * Overflow, abort 440 */ 441 if (end < start) 442 return ERR_PTR(-EINVAL); 443 444 nr_pages = end - start; 445 bio = bio_kmalloc(nr_pages, gfp_mask); 446 if (!bio) 447 return ERR_PTR(-ENOMEM); 448 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); 449 450 while (len) { 451 struct page *page; 452 unsigned int bytes = PAGE_SIZE; 453 454 if (bytes > len) 455 bytes = len; 456 457 page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask); 458 if (!page) 459 goto cleanup; 460 461 if (!reading) 462 memcpy(page_address(page), p, bytes); 463 464 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 465 break; 466 467 len -= bytes; 468 p += bytes; 469 } 470 471 if (reading) { 472 bio->bi_end_io = bio_copy_kern_endio_read; 473 bio->bi_private = data; 474 } else { 475 bio->bi_end_io = bio_copy_kern_endio; 476 } 477 478 return bio; 479 480 cleanup: 481 bio_free_pages(bio); 482 bio_uninit(bio); 483 kfree(bio); 484 return ERR_PTR(-ENOMEM); 485 } 486 487 /* 488 * Append a bio to a passthrough request. Only works if the bio can be merged 489 * into the request based on the driver constraints. 490 */ 491 int blk_rq_append_bio(struct request *rq, struct bio *bio) 492 { 493 struct bvec_iter iter; 494 struct bio_vec bv; 495 unsigned int nr_segs = 0; 496 497 bio_for_each_bvec(bv, bio, iter) 498 nr_segs++; 499 500 if (!rq->bio) { 501 blk_rq_bio_prep(rq, bio, nr_segs); 502 } else { 503 if (!ll_back_merge_fn(rq, bio, nr_segs)) 504 return -EINVAL; 505 rq->biotail->bi_next = bio; 506 rq->biotail = bio; 507 rq->__data_len += (bio)->bi_iter.bi_size; 508 bio_crypt_free_ctx(bio); 509 } 510 511 return 0; 512 } 513 EXPORT_SYMBOL(blk_rq_append_bio); 514 515 /** 516 * blk_rq_map_user_iov - map user data to a request, for passthrough requests 517 * @q: request queue where request should be inserted 518 * @rq: request to map data to 519 * @map_data: pointer to the rq_map_data holding pages (if necessary) 520 * @iter: iovec iterator 521 * @gfp_mask: memory allocation flags 522 * 523 * Description: 524 * Data will be mapped directly for zero copy I/O, if possible. Otherwise 525 * a kernel bounce buffer is used. 526 * 527 * A matching blk_rq_unmap_user() must be issued at the end of I/O, while 528 * still in process context. 529 */ 530 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq, 531 struct rq_map_data *map_data, 532 const struct iov_iter *iter, gfp_t gfp_mask) 533 { 534 bool copy = false; 535 unsigned long align = q->dma_pad_mask | queue_dma_alignment(q); 536 struct bio *bio = NULL; 537 struct iov_iter i; 538 int ret = -EINVAL; 539 540 if (!iter_is_iovec(iter)) 541 goto fail; 542 543 if (map_data) 544 copy = true; 545 else if (blk_queue_may_bounce(q)) 546 copy = true; 547 else if (iov_iter_alignment(iter) & align) 548 copy = true; 549 else if (queue_virt_boundary(q)) 550 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter); 551 552 i = *iter; 553 do { 554 if (copy) 555 ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask); 556 else 557 ret = bio_map_user_iov(rq, &i, gfp_mask); 558 if (ret) 559 goto unmap_rq; 560 if (!bio) 561 bio = rq->bio; 562 } while (iov_iter_count(&i)); 563 564 return 0; 565 566 unmap_rq: 567 blk_rq_unmap_user(bio); 568 fail: 569 rq->bio = NULL; 570 return ret; 571 } 572 EXPORT_SYMBOL(blk_rq_map_user_iov); 573 574 int blk_rq_map_user(struct request_queue *q, struct request *rq, 575 struct rq_map_data *map_data, void __user *ubuf, 576 unsigned long len, gfp_t gfp_mask) 577 { 578 struct iovec iov; 579 struct iov_iter i; 580 int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i); 581 582 if (unlikely(ret < 0)) 583 return ret; 584 585 return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask); 586 } 587 EXPORT_SYMBOL(blk_rq_map_user); 588 589 /** 590 * blk_rq_unmap_user - unmap a request with user data 591 * @bio: start of bio list 592 * 593 * Description: 594 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must 595 * supply the original rq->bio from the blk_rq_map_user() return, since 596 * the I/O completion may have changed rq->bio. 597 */ 598 int blk_rq_unmap_user(struct bio *bio) 599 { 600 struct bio *next_bio; 601 int ret = 0, ret2; 602 603 while (bio) { 604 if (bio->bi_private) { 605 ret2 = bio_uncopy_user(bio); 606 if (ret2 && !ret) 607 ret = ret2; 608 } else { 609 bio_release_pages(bio, bio_data_dir(bio) == READ); 610 } 611 612 next_bio = bio; 613 bio = bio->bi_next; 614 bio_uninit(next_bio); 615 kfree(next_bio); 616 } 617 618 return ret; 619 } 620 EXPORT_SYMBOL(blk_rq_unmap_user); 621 622 /** 623 * blk_rq_map_kern - map kernel data to a request, for passthrough requests 624 * @q: request queue where request should be inserted 625 * @rq: request to fill 626 * @kbuf: the kernel buffer 627 * @len: length of user data 628 * @gfp_mask: memory allocation flags 629 * 630 * Description: 631 * Data will be mapped directly if possible. Otherwise a bounce 632 * buffer is used. Can be called multiple times to append multiple 633 * buffers. 634 */ 635 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf, 636 unsigned int len, gfp_t gfp_mask) 637 { 638 int reading = rq_data_dir(rq) == READ; 639 unsigned long addr = (unsigned long) kbuf; 640 struct bio *bio; 641 int ret; 642 643 if (len > (queue_max_hw_sectors(q) << 9)) 644 return -EINVAL; 645 if (!len || !kbuf) 646 return -EINVAL; 647 648 if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) || 649 blk_queue_may_bounce(q)) 650 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading); 651 else 652 bio = bio_map_kern(q, kbuf, len, gfp_mask); 653 654 if (IS_ERR(bio)) 655 return PTR_ERR(bio); 656 657 bio->bi_opf &= ~REQ_OP_MASK; 658 bio->bi_opf |= req_op(rq); 659 660 ret = blk_rq_append_bio(rq, bio); 661 if (unlikely(ret)) { 662 bio_uninit(bio); 663 kfree(bio); 664 } 665 return ret; 666 } 667 EXPORT_SYMBOL(blk_rq_map_kern); 668