xref: /openbmc/linux/block/blk-map.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 	bmd->iter = *data;
34 	bmd->iter.iov = bmd->iov;
35 	return bmd;
36 }
37 
38 /**
39  * bio_copy_from_iter - copy all pages from iov_iter to bio
40  * @bio: The &struct bio which describes the I/O as destination
41  * @iter: iov_iter as source
42  *
43  * Copy all pages from iov_iter to bio.
44  * Returns 0 on success, or error on failure.
45  */
46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 	struct bio_vec *bvec;
49 	struct bvec_iter_all iter_all;
50 
51 	bio_for_each_segment_all(bvec, bio, iter_all) {
52 		ssize_t ret;
53 
54 		ret = copy_page_from_iter(bvec->bv_page,
55 					  bvec->bv_offset,
56 					  bvec->bv_len,
57 					  iter);
58 
59 		if (!iov_iter_count(iter))
60 			break;
61 
62 		if (ret < bvec->bv_len)
63 			return -EFAULT;
64 	}
65 
66 	return 0;
67 }
68 
69 /**
70  * bio_copy_to_iter - copy all pages from bio to iov_iter
71  * @bio: The &struct bio which describes the I/O as source
72  * @iter: iov_iter as destination
73  *
74  * Copy all pages from bio to iov_iter.
75  * Returns 0 on success, or error on failure.
76  */
77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 	struct bio_vec *bvec;
80 	struct bvec_iter_all iter_all;
81 
82 	bio_for_each_segment_all(bvec, bio, iter_all) {
83 		ssize_t ret;
84 
85 		ret = copy_page_to_iter(bvec->bv_page,
86 					bvec->bv_offset,
87 					bvec->bv_len,
88 					&iter);
89 
90 		if (!iov_iter_count(&iter))
91 			break;
92 
93 		if (ret < bvec->bv_len)
94 			return -EFAULT;
95 	}
96 
97 	return 0;
98 }
99 
100 /**
101  *	bio_uncopy_user	-	finish previously mapped bio
102  *	@bio: bio being terminated
103  *
104  *	Free pages allocated from bio_copy_user_iov() and write back data
105  *	to user space in case of a read.
106  */
107 static int bio_uncopy_user(struct bio *bio)
108 {
109 	struct bio_map_data *bmd = bio->bi_private;
110 	int ret = 0;
111 
112 	if (!bmd->is_null_mapped) {
113 		/*
114 		 * if we're in a workqueue, the request is orphaned, so
115 		 * don't copy into a random user address space, just free
116 		 * and return -EINTR so user space doesn't expect any data.
117 		 */
118 		if (!current->mm)
119 			ret = -EINTR;
120 		else if (bio_data_dir(bio) == READ)
121 			ret = bio_copy_to_iter(bio, bmd->iter);
122 		if (bmd->is_our_pages)
123 			bio_free_pages(bio);
124 	}
125 	kfree(bmd);
126 	return ret;
127 }
128 
129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
130 		struct iov_iter *iter, gfp_t gfp_mask)
131 {
132 	struct bio_map_data *bmd;
133 	struct page *page;
134 	struct bio *bio;
135 	int i = 0, ret;
136 	int nr_pages;
137 	unsigned int len = iter->count;
138 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
139 
140 	bmd = bio_alloc_map_data(iter, gfp_mask);
141 	if (!bmd)
142 		return -ENOMEM;
143 
144 	/*
145 	 * We need to do a deep copy of the iov_iter including the iovecs.
146 	 * The caller provided iov might point to an on-stack or otherwise
147 	 * shortlived one.
148 	 */
149 	bmd->is_our_pages = !map_data;
150 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
151 
152 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
153 
154 	ret = -ENOMEM;
155 	bio = bio_kmalloc(nr_pages, gfp_mask);
156 	if (!bio)
157 		goto out_bmd;
158 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
159 
160 	if (map_data) {
161 		nr_pages = 1U << map_data->page_order;
162 		i = map_data->offset / PAGE_SIZE;
163 	}
164 	while (len) {
165 		unsigned int bytes = PAGE_SIZE;
166 
167 		bytes -= offset;
168 
169 		if (bytes > len)
170 			bytes = len;
171 
172 		if (map_data) {
173 			if (i == map_data->nr_entries * nr_pages) {
174 				ret = -ENOMEM;
175 				goto cleanup;
176 			}
177 
178 			page = map_data->pages[i / nr_pages];
179 			page += (i % nr_pages);
180 
181 			i++;
182 		} else {
183 			page = alloc_page(GFP_NOIO | gfp_mask);
184 			if (!page) {
185 				ret = -ENOMEM;
186 				goto cleanup;
187 			}
188 		}
189 
190 		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
191 			if (!map_data)
192 				__free_page(page);
193 			break;
194 		}
195 
196 		len -= bytes;
197 		offset = 0;
198 	}
199 
200 	if (map_data)
201 		map_data->offset += bio->bi_iter.bi_size;
202 
203 	/*
204 	 * success
205 	 */
206 	if ((iov_iter_rw(iter) == WRITE &&
207 	     (!map_data || !map_data->null_mapped)) ||
208 	    (map_data && map_data->from_user)) {
209 		ret = bio_copy_from_iter(bio, iter);
210 		if (ret)
211 			goto cleanup;
212 	} else {
213 		if (bmd->is_our_pages)
214 			zero_fill_bio(bio);
215 		iov_iter_advance(iter, bio->bi_iter.bi_size);
216 	}
217 
218 	bio->bi_private = bmd;
219 
220 	ret = blk_rq_append_bio(rq, bio);
221 	if (ret)
222 		goto cleanup;
223 	return 0;
224 cleanup:
225 	if (!map_data)
226 		bio_free_pages(bio);
227 	bio_uninit(bio);
228 	kfree(bio);
229 out_bmd:
230 	kfree(bmd);
231 	return ret;
232 }
233 
234 static void blk_mq_map_bio_put(struct bio *bio)
235 {
236 	if (bio->bi_opf & REQ_ALLOC_CACHE) {
237 		bio_put(bio);
238 	} else {
239 		bio_uninit(bio);
240 		kfree(bio);
241 	}
242 }
243 
244 static struct bio *blk_rq_map_bio_alloc(struct request *rq,
245 		unsigned int nr_vecs, gfp_t gfp_mask)
246 {
247 	struct bio *bio;
248 
249 	if (rq->cmd_flags & REQ_POLLED) {
250 		blk_opf_t opf = rq->cmd_flags | REQ_ALLOC_CACHE;
251 
252 		bio = bio_alloc_bioset(NULL, nr_vecs, opf, gfp_mask,
253 					&fs_bio_set);
254 		if (!bio)
255 			return NULL;
256 	} else {
257 		bio = bio_kmalloc(nr_vecs, gfp_mask);
258 		if (!bio)
259 			return NULL;
260 		bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
261 	}
262 	return bio;
263 }
264 
265 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
266 		gfp_t gfp_mask)
267 {
268 	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
269 	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
270 	unsigned int gup_flags = 0;
271 	struct bio *bio;
272 	int ret;
273 	int j;
274 
275 	if (!iov_iter_count(iter))
276 		return -EINVAL;
277 
278 	bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
279 	if (bio == NULL)
280 		return -ENOMEM;
281 
282 	if (blk_queue_pci_p2pdma(rq->q))
283 		gup_flags |= FOLL_PCI_P2PDMA;
284 
285 	while (iov_iter_count(iter)) {
286 		struct page **pages, *stack_pages[UIO_FASTIOV];
287 		ssize_t bytes;
288 		size_t offs;
289 		int npages;
290 
291 		if (nr_vecs <= ARRAY_SIZE(stack_pages)) {
292 			pages = stack_pages;
293 			bytes = iov_iter_get_pages(iter, pages, LONG_MAX,
294 						   nr_vecs, &offs, gup_flags);
295 		} else {
296 			bytes = iov_iter_get_pages_alloc(iter, &pages,
297 						LONG_MAX, &offs, gup_flags);
298 		}
299 		if (unlikely(bytes <= 0)) {
300 			ret = bytes ? bytes : -EFAULT;
301 			goto out_unmap;
302 		}
303 
304 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
305 
306 		if (unlikely(offs & queue_dma_alignment(rq->q)))
307 			j = 0;
308 		else {
309 			for (j = 0; j < npages; j++) {
310 				struct page *page = pages[j];
311 				unsigned int n = PAGE_SIZE - offs;
312 				bool same_page = false;
313 
314 				if (n > bytes)
315 					n = bytes;
316 
317 				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
318 						     max_sectors, &same_page)) {
319 					if (same_page)
320 						put_page(page);
321 					break;
322 				}
323 
324 				bytes -= n;
325 				offs = 0;
326 			}
327 		}
328 		/*
329 		 * release the pages we didn't map into the bio, if any
330 		 */
331 		while (j < npages)
332 			put_page(pages[j++]);
333 		if (pages != stack_pages)
334 			kvfree(pages);
335 		/* couldn't stuff something into bio? */
336 		if (bytes) {
337 			iov_iter_revert(iter, bytes);
338 			break;
339 		}
340 	}
341 
342 	ret = blk_rq_append_bio(rq, bio);
343 	if (ret)
344 		goto out_unmap;
345 	return 0;
346 
347  out_unmap:
348 	bio_release_pages(bio, false);
349 	blk_mq_map_bio_put(bio);
350 	return ret;
351 }
352 
353 static void bio_invalidate_vmalloc_pages(struct bio *bio)
354 {
355 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
356 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
357 		unsigned long i, len = 0;
358 
359 		for (i = 0; i < bio->bi_vcnt; i++)
360 			len += bio->bi_io_vec[i].bv_len;
361 		invalidate_kernel_vmap_range(bio->bi_private, len);
362 	}
363 #endif
364 }
365 
366 static void bio_map_kern_endio(struct bio *bio)
367 {
368 	bio_invalidate_vmalloc_pages(bio);
369 	bio_uninit(bio);
370 	kfree(bio);
371 }
372 
373 /**
374  *	bio_map_kern	-	map kernel address into bio
375  *	@q: the struct request_queue for the bio
376  *	@data: pointer to buffer to map
377  *	@len: length in bytes
378  *	@gfp_mask: allocation flags for bio allocation
379  *
380  *	Map the kernel address into a bio suitable for io to a block
381  *	device. Returns an error pointer in case of error.
382  */
383 static struct bio *bio_map_kern(struct request_queue *q, void *data,
384 		unsigned int len, gfp_t gfp_mask)
385 {
386 	unsigned long kaddr = (unsigned long)data;
387 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
388 	unsigned long start = kaddr >> PAGE_SHIFT;
389 	const int nr_pages = end - start;
390 	bool is_vmalloc = is_vmalloc_addr(data);
391 	struct page *page;
392 	int offset, i;
393 	struct bio *bio;
394 
395 	bio = bio_kmalloc(nr_pages, gfp_mask);
396 	if (!bio)
397 		return ERR_PTR(-ENOMEM);
398 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
399 
400 	if (is_vmalloc) {
401 		flush_kernel_vmap_range(data, len);
402 		bio->bi_private = data;
403 	}
404 
405 	offset = offset_in_page(kaddr);
406 	for (i = 0; i < nr_pages; i++) {
407 		unsigned int bytes = PAGE_SIZE - offset;
408 
409 		if (len <= 0)
410 			break;
411 
412 		if (bytes > len)
413 			bytes = len;
414 
415 		if (!is_vmalloc)
416 			page = virt_to_page(data);
417 		else
418 			page = vmalloc_to_page(data);
419 		if (bio_add_pc_page(q, bio, page, bytes,
420 				    offset) < bytes) {
421 			/* we don't support partial mappings */
422 			bio_uninit(bio);
423 			kfree(bio);
424 			return ERR_PTR(-EINVAL);
425 		}
426 
427 		data += bytes;
428 		len -= bytes;
429 		offset = 0;
430 	}
431 
432 	bio->bi_end_io = bio_map_kern_endio;
433 	return bio;
434 }
435 
436 static void bio_copy_kern_endio(struct bio *bio)
437 {
438 	bio_free_pages(bio);
439 	bio_uninit(bio);
440 	kfree(bio);
441 }
442 
443 static void bio_copy_kern_endio_read(struct bio *bio)
444 {
445 	char *p = bio->bi_private;
446 	struct bio_vec *bvec;
447 	struct bvec_iter_all iter_all;
448 
449 	bio_for_each_segment_all(bvec, bio, iter_all) {
450 		memcpy_from_bvec(p, bvec);
451 		p += bvec->bv_len;
452 	}
453 
454 	bio_copy_kern_endio(bio);
455 }
456 
457 /**
458  *	bio_copy_kern	-	copy kernel address into bio
459  *	@q: the struct request_queue for the bio
460  *	@data: pointer to buffer to copy
461  *	@len: length in bytes
462  *	@gfp_mask: allocation flags for bio and page allocation
463  *	@reading: data direction is READ
464  *
465  *	copy the kernel address into a bio suitable for io to a block
466  *	device. Returns an error pointer in case of error.
467  */
468 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
469 		unsigned int len, gfp_t gfp_mask, int reading)
470 {
471 	unsigned long kaddr = (unsigned long)data;
472 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
473 	unsigned long start = kaddr >> PAGE_SHIFT;
474 	struct bio *bio;
475 	void *p = data;
476 	int nr_pages = 0;
477 
478 	/*
479 	 * Overflow, abort
480 	 */
481 	if (end < start)
482 		return ERR_PTR(-EINVAL);
483 
484 	nr_pages = end - start;
485 	bio = bio_kmalloc(nr_pages, gfp_mask);
486 	if (!bio)
487 		return ERR_PTR(-ENOMEM);
488 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
489 
490 	while (len) {
491 		struct page *page;
492 		unsigned int bytes = PAGE_SIZE;
493 
494 		if (bytes > len)
495 			bytes = len;
496 
497 		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
498 		if (!page)
499 			goto cleanup;
500 
501 		if (!reading)
502 			memcpy(page_address(page), p, bytes);
503 
504 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
505 			break;
506 
507 		len -= bytes;
508 		p += bytes;
509 	}
510 
511 	if (reading) {
512 		bio->bi_end_io = bio_copy_kern_endio_read;
513 		bio->bi_private = data;
514 	} else {
515 		bio->bi_end_io = bio_copy_kern_endio;
516 	}
517 
518 	return bio;
519 
520 cleanup:
521 	bio_free_pages(bio);
522 	bio_uninit(bio);
523 	kfree(bio);
524 	return ERR_PTR(-ENOMEM);
525 }
526 
527 /*
528  * Append a bio to a passthrough request.  Only works if the bio can be merged
529  * into the request based on the driver constraints.
530  */
531 int blk_rq_append_bio(struct request *rq, struct bio *bio)
532 {
533 	struct bvec_iter iter;
534 	struct bio_vec bv;
535 	unsigned int nr_segs = 0;
536 
537 	bio_for_each_bvec(bv, bio, iter)
538 		nr_segs++;
539 
540 	if (!rq->bio) {
541 		blk_rq_bio_prep(rq, bio, nr_segs);
542 	} else {
543 		if (!ll_back_merge_fn(rq, bio, nr_segs))
544 			return -EINVAL;
545 		rq->biotail->bi_next = bio;
546 		rq->biotail = bio;
547 		rq->__data_len += (bio)->bi_iter.bi_size;
548 		bio_crypt_free_ctx(bio);
549 	}
550 
551 	return 0;
552 }
553 EXPORT_SYMBOL(blk_rq_append_bio);
554 
555 /* Prepare bio for passthrough IO given ITER_BVEC iter */
556 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
557 {
558 	struct request_queue *q = rq->q;
559 	size_t nr_iter = iov_iter_count(iter);
560 	size_t nr_segs = iter->nr_segs;
561 	struct bio_vec *bvecs, *bvprvp = NULL;
562 	const struct queue_limits *lim = &q->limits;
563 	unsigned int nsegs = 0, bytes = 0;
564 	struct bio *bio;
565 	size_t i;
566 
567 	if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q))
568 		return -EINVAL;
569 	if (nr_segs > queue_max_segments(q))
570 		return -EINVAL;
571 
572 	/* no iovecs to alloc, as we already have a BVEC iterator */
573 	bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
574 	if (bio == NULL)
575 		return -ENOMEM;
576 
577 	bio_iov_bvec_set(bio, (struct iov_iter *)iter);
578 	blk_rq_bio_prep(rq, bio, nr_segs);
579 
580 	/* loop to perform a bunch of sanity checks */
581 	bvecs = (struct bio_vec *)iter->bvec;
582 	for (i = 0; i < nr_segs; i++) {
583 		struct bio_vec *bv = &bvecs[i];
584 
585 		/*
586 		 * If the queue doesn't support SG gaps and adding this
587 		 * offset would create a gap, fallback to copy.
588 		 */
589 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) {
590 			blk_mq_map_bio_put(bio);
591 			return -EREMOTEIO;
592 		}
593 		/* check full condition */
594 		if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
595 			goto put_bio;
596 		if (bytes + bv->bv_len > nr_iter)
597 			goto put_bio;
598 		if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
599 			goto put_bio;
600 
601 		nsegs++;
602 		bytes += bv->bv_len;
603 		bvprvp = bv;
604 	}
605 	return 0;
606 put_bio:
607 	blk_mq_map_bio_put(bio);
608 	return -EINVAL;
609 }
610 
611 /**
612  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
613  * @q:		request queue where request should be inserted
614  * @rq:		request to map data to
615  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
616  * @iter:	iovec iterator
617  * @gfp_mask:	memory allocation flags
618  *
619  * Description:
620  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
621  *    a kernel bounce buffer is used.
622  *
623  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
624  *    still in process context.
625  */
626 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
627 			struct rq_map_data *map_data,
628 			const struct iov_iter *iter, gfp_t gfp_mask)
629 {
630 	bool copy = false, map_bvec = false;
631 	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
632 	struct bio *bio = NULL;
633 	struct iov_iter i;
634 	int ret = -EINVAL;
635 
636 	if (map_data)
637 		copy = true;
638 	else if (blk_queue_may_bounce(q))
639 		copy = true;
640 	else if (iov_iter_alignment(iter) & align)
641 		copy = true;
642 	else if (iov_iter_is_bvec(iter))
643 		map_bvec = true;
644 	else if (!iter_is_iovec(iter))
645 		copy = true;
646 	else if (queue_virt_boundary(q))
647 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
648 
649 	if (map_bvec) {
650 		ret = blk_rq_map_user_bvec(rq, iter);
651 		if (!ret)
652 			return 0;
653 		if (ret != -EREMOTEIO)
654 			goto fail;
655 		/* fall back to copying the data on limits mismatches */
656 		copy = true;
657 	}
658 
659 	i = *iter;
660 	do {
661 		if (copy)
662 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
663 		else
664 			ret = bio_map_user_iov(rq, &i, gfp_mask);
665 		if (ret)
666 			goto unmap_rq;
667 		if (!bio)
668 			bio = rq->bio;
669 	} while (iov_iter_count(&i));
670 
671 	return 0;
672 
673 unmap_rq:
674 	blk_rq_unmap_user(bio);
675 fail:
676 	rq->bio = NULL;
677 	return ret;
678 }
679 EXPORT_SYMBOL(blk_rq_map_user_iov);
680 
681 int blk_rq_map_user(struct request_queue *q, struct request *rq,
682 		    struct rq_map_data *map_data, void __user *ubuf,
683 		    unsigned long len, gfp_t gfp_mask)
684 {
685 	struct iovec iov;
686 	struct iov_iter i;
687 	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
688 
689 	if (unlikely(ret < 0))
690 		return ret;
691 
692 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
693 }
694 EXPORT_SYMBOL(blk_rq_map_user);
695 
696 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
697 		void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
698 		bool vec, int iov_count, bool check_iter_count, int rw)
699 {
700 	int ret = 0;
701 
702 	if (vec) {
703 		struct iovec fast_iov[UIO_FASTIOV];
704 		struct iovec *iov = fast_iov;
705 		struct iov_iter iter;
706 
707 		ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
708 				UIO_FASTIOV, &iov, &iter);
709 		if (ret < 0)
710 			return ret;
711 
712 		if (iov_count) {
713 			/* SG_IO howto says that the shorter of the two wins */
714 			iov_iter_truncate(&iter, buf_len);
715 			if (check_iter_count && !iov_iter_count(&iter)) {
716 				kfree(iov);
717 				return -EINVAL;
718 			}
719 		}
720 
721 		ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
722 				gfp_mask);
723 		kfree(iov);
724 	} else if (buf_len) {
725 		ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
726 				gfp_mask);
727 	}
728 	return ret;
729 }
730 EXPORT_SYMBOL(blk_rq_map_user_io);
731 
732 /**
733  * blk_rq_unmap_user - unmap a request with user data
734  * @bio:	       start of bio list
735  *
736  * Description:
737  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
738  *    supply the original rq->bio from the blk_rq_map_user() return, since
739  *    the I/O completion may have changed rq->bio.
740  */
741 int blk_rq_unmap_user(struct bio *bio)
742 {
743 	struct bio *next_bio;
744 	int ret = 0, ret2;
745 
746 	while (bio) {
747 		if (bio->bi_private) {
748 			ret2 = bio_uncopy_user(bio);
749 			if (ret2 && !ret)
750 				ret = ret2;
751 		} else {
752 			bio_release_pages(bio, bio_data_dir(bio) == READ);
753 		}
754 
755 		next_bio = bio;
756 		bio = bio->bi_next;
757 		blk_mq_map_bio_put(next_bio);
758 	}
759 
760 	return ret;
761 }
762 EXPORT_SYMBOL(blk_rq_unmap_user);
763 
764 /**
765  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
766  * @q:		request queue where request should be inserted
767  * @rq:		request to fill
768  * @kbuf:	the kernel buffer
769  * @len:	length of user data
770  * @gfp_mask:	memory allocation flags
771  *
772  * Description:
773  *    Data will be mapped directly if possible. Otherwise a bounce
774  *    buffer is used. Can be called multiple times to append multiple
775  *    buffers.
776  */
777 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
778 		    unsigned int len, gfp_t gfp_mask)
779 {
780 	int reading = rq_data_dir(rq) == READ;
781 	unsigned long addr = (unsigned long) kbuf;
782 	struct bio *bio;
783 	int ret;
784 
785 	if (len > (queue_max_hw_sectors(q) << 9))
786 		return -EINVAL;
787 	if (!len || !kbuf)
788 		return -EINVAL;
789 
790 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
791 	    blk_queue_may_bounce(q))
792 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
793 	else
794 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
795 
796 	if (IS_ERR(bio))
797 		return PTR_ERR(bio);
798 
799 	bio->bi_opf &= ~REQ_OP_MASK;
800 	bio->bi_opf |= req_op(rq);
801 
802 	ret = blk_rq_append_bio(rq, bio);
803 	if (unlikely(ret)) {
804 		bio_uninit(bio);
805 		kfree(bio);
806 	}
807 	return ret;
808 }
809 EXPORT_SYMBOL(blk_rq_map_kern);
810