xref: /openbmc/linux/block/blk-map.c (revision 8af870aa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 	bmd->iter = *data;
34 	bmd->iter.iov = bmd->iov;
35 	return bmd;
36 }
37 
38 /**
39  * bio_copy_from_iter - copy all pages from iov_iter to bio
40  * @bio: The &struct bio which describes the I/O as destination
41  * @iter: iov_iter as source
42  *
43  * Copy all pages from iov_iter to bio.
44  * Returns 0 on success, or error on failure.
45  */
46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 	struct bio_vec *bvec;
49 	struct bvec_iter_all iter_all;
50 
51 	bio_for_each_segment_all(bvec, bio, iter_all) {
52 		ssize_t ret;
53 
54 		ret = copy_page_from_iter(bvec->bv_page,
55 					  bvec->bv_offset,
56 					  bvec->bv_len,
57 					  iter);
58 
59 		if (!iov_iter_count(iter))
60 			break;
61 
62 		if (ret < bvec->bv_len)
63 			return -EFAULT;
64 	}
65 
66 	return 0;
67 }
68 
69 /**
70  * bio_copy_to_iter - copy all pages from bio to iov_iter
71  * @bio: The &struct bio which describes the I/O as source
72  * @iter: iov_iter as destination
73  *
74  * Copy all pages from bio to iov_iter.
75  * Returns 0 on success, or error on failure.
76  */
77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 	struct bio_vec *bvec;
80 	struct bvec_iter_all iter_all;
81 
82 	bio_for_each_segment_all(bvec, bio, iter_all) {
83 		ssize_t ret;
84 
85 		ret = copy_page_to_iter(bvec->bv_page,
86 					bvec->bv_offset,
87 					bvec->bv_len,
88 					&iter);
89 
90 		if (!iov_iter_count(&iter))
91 			break;
92 
93 		if (ret < bvec->bv_len)
94 			return -EFAULT;
95 	}
96 
97 	return 0;
98 }
99 
100 /**
101  *	bio_uncopy_user	-	finish previously mapped bio
102  *	@bio: bio being terminated
103  *
104  *	Free pages allocated from bio_copy_user_iov() and write back data
105  *	to user space in case of a read.
106  */
107 static int bio_uncopy_user(struct bio *bio)
108 {
109 	struct bio_map_data *bmd = bio->bi_private;
110 	int ret = 0;
111 
112 	if (!bmd->is_null_mapped) {
113 		/*
114 		 * if we're in a workqueue, the request is orphaned, so
115 		 * don't copy into a random user address space, just free
116 		 * and return -EINTR so user space doesn't expect any data.
117 		 */
118 		if (!current->mm)
119 			ret = -EINTR;
120 		else if (bio_data_dir(bio) == READ)
121 			ret = bio_copy_to_iter(bio, bmd->iter);
122 		if (bmd->is_our_pages)
123 			bio_free_pages(bio);
124 	}
125 	kfree(bmd);
126 	return ret;
127 }
128 
129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
130 		struct iov_iter *iter, gfp_t gfp_mask)
131 {
132 	struct bio_map_data *bmd;
133 	struct page *page;
134 	struct bio *bio;
135 	int i = 0, ret;
136 	int nr_pages;
137 	unsigned int len = iter->count;
138 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
139 
140 	bmd = bio_alloc_map_data(iter, gfp_mask);
141 	if (!bmd)
142 		return -ENOMEM;
143 
144 	/*
145 	 * We need to do a deep copy of the iov_iter including the iovecs.
146 	 * The caller provided iov might point to an on-stack or otherwise
147 	 * shortlived one.
148 	 */
149 	bmd->is_our_pages = !map_data;
150 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
151 
152 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
153 
154 	ret = -ENOMEM;
155 	bio = bio_kmalloc(nr_pages, gfp_mask);
156 	if (!bio)
157 		goto out_bmd;
158 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
159 
160 	if (map_data) {
161 		nr_pages = 1U << map_data->page_order;
162 		i = map_data->offset / PAGE_SIZE;
163 	}
164 	while (len) {
165 		unsigned int bytes = PAGE_SIZE;
166 
167 		bytes -= offset;
168 
169 		if (bytes > len)
170 			bytes = len;
171 
172 		if (map_data) {
173 			if (i == map_data->nr_entries * nr_pages) {
174 				ret = -ENOMEM;
175 				goto cleanup;
176 			}
177 
178 			page = map_data->pages[i / nr_pages];
179 			page += (i % nr_pages);
180 
181 			i++;
182 		} else {
183 			page = alloc_page(GFP_NOIO | gfp_mask);
184 			if (!page) {
185 				ret = -ENOMEM;
186 				goto cleanup;
187 			}
188 		}
189 
190 		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
191 			if (!map_data)
192 				__free_page(page);
193 			break;
194 		}
195 
196 		len -= bytes;
197 		offset = 0;
198 	}
199 
200 	if (map_data)
201 		map_data->offset += bio->bi_iter.bi_size;
202 
203 	/*
204 	 * success
205 	 */
206 	if ((iov_iter_rw(iter) == WRITE &&
207 	     (!map_data || !map_data->null_mapped)) ||
208 	    (map_data && map_data->from_user)) {
209 		ret = bio_copy_from_iter(bio, iter);
210 		if (ret)
211 			goto cleanup;
212 	} else {
213 		if (bmd->is_our_pages)
214 			zero_fill_bio(bio);
215 		iov_iter_advance(iter, bio->bi_iter.bi_size);
216 	}
217 
218 	bio->bi_private = bmd;
219 
220 	ret = blk_rq_append_bio(rq, bio);
221 	if (ret)
222 		goto cleanup;
223 	return 0;
224 cleanup:
225 	if (!map_data)
226 		bio_free_pages(bio);
227 	bio_uninit(bio);
228 	kfree(bio);
229 out_bmd:
230 	kfree(bmd);
231 	return ret;
232 }
233 
234 static void bio_map_put(struct bio *bio)
235 {
236 	if (bio->bi_opf & REQ_ALLOC_CACHE) {
237 		bio_put(bio);
238 	} else {
239 		bio_uninit(bio);
240 		kfree(bio);
241 	}
242 }
243 
244 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
245 		gfp_t gfp_mask)
246 {
247 	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
248 	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
249 	struct bio *bio;
250 	int ret;
251 	int j;
252 
253 	if (!iov_iter_count(iter))
254 		return -EINVAL;
255 
256 	if (rq->cmd_flags & REQ_POLLED) {
257 		blk_opf_t opf = rq->cmd_flags | REQ_ALLOC_CACHE;
258 
259 		bio = bio_alloc_bioset(NULL, nr_vecs, opf, gfp_mask,
260 					&fs_bio_set);
261 		if (!bio)
262 			return -ENOMEM;
263 	} else {
264 		bio = bio_kmalloc(nr_vecs, gfp_mask);
265 		if (!bio)
266 			return -ENOMEM;
267 		bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
268 	}
269 
270 	while (iov_iter_count(iter)) {
271 		struct page **pages;
272 		ssize_t bytes;
273 		size_t offs, added = 0;
274 		int npages;
275 
276 		bytes = iov_iter_get_pages_alloc2(iter, &pages, LONG_MAX, &offs);
277 		if (unlikely(bytes <= 0)) {
278 			ret = bytes ? bytes : -EFAULT;
279 			goto out_unmap;
280 		}
281 
282 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
283 
284 		if (unlikely(offs & queue_dma_alignment(rq->q)))
285 			j = 0;
286 		else {
287 			for (j = 0; j < npages; j++) {
288 				struct page *page = pages[j];
289 				unsigned int n = PAGE_SIZE - offs;
290 				bool same_page = false;
291 
292 				if (n > bytes)
293 					n = bytes;
294 
295 				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
296 						     max_sectors, &same_page)) {
297 					if (same_page)
298 						put_page(page);
299 					break;
300 				}
301 
302 				added += n;
303 				bytes -= n;
304 				offs = 0;
305 			}
306 		}
307 		/*
308 		 * release the pages we didn't map into the bio, if any
309 		 */
310 		while (j < npages)
311 			put_page(pages[j++]);
312 		kvfree(pages);
313 		/* couldn't stuff something into bio? */
314 		if (bytes) {
315 			iov_iter_revert(iter, bytes);
316 			break;
317 		}
318 	}
319 
320 	ret = blk_rq_append_bio(rq, bio);
321 	if (ret)
322 		goto out_unmap;
323 	return 0;
324 
325  out_unmap:
326 	bio_release_pages(bio, false);
327 	bio_map_put(bio);
328 	return ret;
329 }
330 
331 static void bio_invalidate_vmalloc_pages(struct bio *bio)
332 {
333 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
334 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
335 		unsigned long i, len = 0;
336 
337 		for (i = 0; i < bio->bi_vcnt; i++)
338 			len += bio->bi_io_vec[i].bv_len;
339 		invalidate_kernel_vmap_range(bio->bi_private, len);
340 	}
341 #endif
342 }
343 
344 static void bio_map_kern_endio(struct bio *bio)
345 {
346 	bio_invalidate_vmalloc_pages(bio);
347 	bio_uninit(bio);
348 	kfree(bio);
349 }
350 
351 /**
352  *	bio_map_kern	-	map kernel address into bio
353  *	@q: the struct request_queue for the bio
354  *	@data: pointer to buffer to map
355  *	@len: length in bytes
356  *	@gfp_mask: allocation flags for bio allocation
357  *
358  *	Map the kernel address into a bio suitable for io to a block
359  *	device. Returns an error pointer in case of error.
360  */
361 static struct bio *bio_map_kern(struct request_queue *q, void *data,
362 		unsigned int len, gfp_t gfp_mask)
363 {
364 	unsigned long kaddr = (unsigned long)data;
365 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
366 	unsigned long start = kaddr >> PAGE_SHIFT;
367 	const int nr_pages = end - start;
368 	bool is_vmalloc = is_vmalloc_addr(data);
369 	struct page *page;
370 	int offset, i;
371 	struct bio *bio;
372 
373 	bio = bio_kmalloc(nr_pages, gfp_mask);
374 	if (!bio)
375 		return ERR_PTR(-ENOMEM);
376 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
377 
378 	if (is_vmalloc) {
379 		flush_kernel_vmap_range(data, len);
380 		bio->bi_private = data;
381 	}
382 
383 	offset = offset_in_page(kaddr);
384 	for (i = 0; i < nr_pages; i++) {
385 		unsigned int bytes = PAGE_SIZE - offset;
386 
387 		if (len <= 0)
388 			break;
389 
390 		if (bytes > len)
391 			bytes = len;
392 
393 		if (!is_vmalloc)
394 			page = virt_to_page(data);
395 		else
396 			page = vmalloc_to_page(data);
397 		if (bio_add_pc_page(q, bio, page, bytes,
398 				    offset) < bytes) {
399 			/* we don't support partial mappings */
400 			bio_uninit(bio);
401 			kfree(bio);
402 			return ERR_PTR(-EINVAL);
403 		}
404 
405 		data += bytes;
406 		len -= bytes;
407 		offset = 0;
408 	}
409 
410 	bio->bi_end_io = bio_map_kern_endio;
411 	return bio;
412 }
413 
414 static void bio_copy_kern_endio(struct bio *bio)
415 {
416 	bio_free_pages(bio);
417 	bio_uninit(bio);
418 	kfree(bio);
419 }
420 
421 static void bio_copy_kern_endio_read(struct bio *bio)
422 {
423 	char *p = bio->bi_private;
424 	struct bio_vec *bvec;
425 	struct bvec_iter_all iter_all;
426 
427 	bio_for_each_segment_all(bvec, bio, iter_all) {
428 		memcpy_from_bvec(p, bvec);
429 		p += bvec->bv_len;
430 	}
431 
432 	bio_copy_kern_endio(bio);
433 }
434 
435 /**
436  *	bio_copy_kern	-	copy kernel address into bio
437  *	@q: the struct request_queue for the bio
438  *	@data: pointer to buffer to copy
439  *	@len: length in bytes
440  *	@gfp_mask: allocation flags for bio and page allocation
441  *	@reading: data direction is READ
442  *
443  *	copy the kernel address into a bio suitable for io to a block
444  *	device. Returns an error pointer in case of error.
445  */
446 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
447 		unsigned int len, gfp_t gfp_mask, int reading)
448 {
449 	unsigned long kaddr = (unsigned long)data;
450 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
451 	unsigned long start = kaddr >> PAGE_SHIFT;
452 	struct bio *bio;
453 	void *p = data;
454 	int nr_pages = 0;
455 
456 	/*
457 	 * Overflow, abort
458 	 */
459 	if (end < start)
460 		return ERR_PTR(-EINVAL);
461 
462 	nr_pages = end - start;
463 	bio = bio_kmalloc(nr_pages, gfp_mask);
464 	if (!bio)
465 		return ERR_PTR(-ENOMEM);
466 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
467 
468 	while (len) {
469 		struct page *page;
470 		unsigned int bytes = PAGE_SIZE;
471 
472 		if (bytes > len)
473 			bytes = len;
474 
475 		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
476 		if (!page)
477 			goto cleanup;
478 
479 		if (!reading)
480 			memcpy(page_address(page), p, bytes);
481 
482 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
483 			break;
484 
485 		len -= bytes;
486 		p += bytes;
487 	}
488 
489 	if (reading) {
490 		bio->bi_end_io = bio_copy_kern_endio_read;
491 		bio->bi_private = data;
492 	} else {
493 		bio->bi_end_io = bio_copy_kern_endio;
494 	}
495 
496 	return bio;
497 
498 cleanup:
499 	bio_free_pages(bio);
500 	bio_uninit(bio);
501 	kfree(bio);
502 	return ERR_PTR(-ENOMEM);
503 }
504 
505 /*
506  * Append a bio to a passthrough request.  Only works if the bio can be merged
507  * into the request based on the driver constraints.
508  */
509 int blk_rq_append_bio(struct request *rq, struct bio *bio)
510 {
511 	struct bvec_iter iter;
512 	struct bio_vec bv;
513 	unsigned int nr_segs = 0;
514 
515 	bio_for_each_bvec(bv, bio, iter)
516 		nr_segs++;
517 
518 	if (!rq->bio) {
519 		blk_rq_bio_prep(rq, bio, nr_segs);
520 	} else {
521 		if (!ll_back_merge_fn(rq, bio, nr_segs))
522 			return -EINVAL;
523 		rq->biotail->bi_next = bio;
524 		rq->biotail = bio;
525 		rq->__data_len += (bio)->bi_iter.bi_size;
526 		bio_crypt_free_ctx(bio);
527 	}
528 
529 	return 0;
530 }
531 EXPORT_SYMBOL(blk_rq_append_bio);
532 
533 /**
534  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
535  * @q:		request queue where request should be inserted
536  * @rq:		request to map data to
537  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
538  * @iter:	iovec iterator
539  * @gfp_mask:	memory allocation flags
540  *
541  * Description:
542  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
543  *    a kernel bounce buffer is used.
544  *
545  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
546  *    still in process context.
547  */
548 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
549 			struct rq_map_data *map_data,
550 			const struct iov_iter *iter, gfp_t gfp_mask)
551 {
552 	bool copy = false;
553 	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
554 	struct bio *bio = NULL;
555 	struct iov_iter i;
556 	int ret = -EINVAL;
557 
558 	if (!iter_is_iovec(iter))
559 		goto fail;
560 
561 	if (map_data)
562 		copy = true;
563 	else if (blk_queue_may_bounce(q))
564 		copy = true;
565 	else if (iov_iter_alignment(iter) & align)
566 		copy = true;
567 	else if (queue_virt_boundary(q))
568 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
569 
570 	i = *iter;
571 	do {
572 		if (copy)
573 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
574 		else
575 			ret = bio_map_user_iov(rq, &i, gfp_mask);
576 		if (ret)
577 			goto unmap_rq;
578 		if (!bio)
579 			bio = rq->bio;
580 	} while (iov_iter_count(&i));
581 
582 	return 0;
583 
584 unmap_rq:
585 	blk_rq_unmap_user(bio);
586 fail:
587 	rq->bio = NULL;
588 	return ret;
589 }
590 EXPORT_SYMBOL(blk_rq_map_user_iov);
591 
592 int blk_rq_map_user(struct request_queue *q, struct request *rq,
593 		    struct rq_map_data *map_data, void __user *ubuf,
594 		    unsigned long len, gfp_t gfp_mask)
595 {
596 	struct iovec iov;
597 	struct iov_iter i;
598 	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
599 
600 	if (unlikely(ret < 0))
601 		return ret;
602 
603 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
604 }
605 EXPORT_SYMBOL(blk_rq_map_user);
606 
607 /**
608  * blk_rq_unmap_user - unmap a request with user data
609  * @bio:	       start of bio list
610  *
611  * Description:
612  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
613  *    supply the original rq->bio from the blk_rq_map_user() return, since
614  *    the I/O completion may have changed rq->bio.
615  */
616 int blk_rq_unmap_user(struct bio *bio)
617 {
618 	struct bio *next_bio;
619 	int ret = 0, ret2;
620 
621 	while (bio) {
622 		if (bio->bi_private) {
623 			ret2 = bio_uncopy_user(bio);
624 			if (ret2 && !ret)
625 				ret = ret2;
626 		} else {
627 			bio_release_pages(bio, bio_data_dir(bio) == READ);
628 		}
629 
630 		next_bio = bio;
631 		bio = bio->bi_next;
632 		bio_map_put(next_bio);
633 	}
634 
635 	return ret;
636 }
637 EXPORT_SYMBOL(blk_rq_unmap_user);
638 
639 /**
640  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
641  * @q:		request queue where request should be inserted
642  * @rq:		request to fill
643  * @kbuf:	the kernel buffer
644  * @len:	length of user data
645  * @gfp_mask:	memory allocation flags
646  *
647  * Description:
648  *    Data will be mapped directly if possible. Otherwise a bounce
649  *    buffer is used. Can be called multiple times to append multiple
650  *    buffers.
651  */
652 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
653 		    unsigned int len, gfp_t gfp_mask)
654 {
655 	int reading = rq_data_dir(rq) == READ;
656 	unsigned long addr = (unsigned long) kbuf;
657 	struct bio *bio;
658 	int ret;
659 
660 	if (len > (queue_max_hw_sectors(q) << 9))
661 		return -EINVAL;
662 	if (!len || !kbuf)
663 		return -EINVAL;
664 
665 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
666 	    blk_queue_may_bounce(q))
667 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
668 	else
669 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
670 
671 	if (IS_ERR(bio))
672 		return PTR_ERR(bio);
673 
674 	bio->bi_opf &= ~REQ_OP_MASK;
675 	bio->bi_opf |= req_op(rq);
676 
677 	ret = blk_rq_append_bio(rq, bio);
678 	if (unlikely(ret)) {
679 		bio_uninit(bio);
680 		kfree(bio);
681 	}
682 	return ret;
683 }
684 EXPORT_SYMBOL(blk_rq_map_kern);
685