xref: /openbmc/linux/block/blk-map.c (revision 8938c48f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 	bmd->iter = *data;
34 	bmd->iter.iov = bmd->iov;
35 	return bmd;
36 }
37 
38 /**
39  * bio_copy_from_iter - copy all pages from iov_iter to bio
40  * @bio: The &struct bio which describes the I/O as destination
41  * @iter: iov_iter as source
42  *
43  * Copy all pages from iov_iter to bio.
44  * Returns 0 on success, or error on failure.
45  */
46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 	struct bio_vec *bvec;
49 	struct bvec_iter_all iter_all;
50 
51 	bio_for_each_segment_all(bvec, bio, iter_all) {
52 		ssize_t ret;
53 
54 		ret = copy_page_from_iter(bvec->bv_page,
55 					  bvec->bv_offset,
56 					  bvec->bv_len,
57 					  iter);
58 
59 		if (!iov_iter_count(iter))
60 			break;
61 
62 		if (ret < bvec->bv_len)
63 			return -EFAULT;
64 	}
65 
66 	return 0;
67 }
68 
69 /**
70  * bio_copy_to_iter - copy all pages from bio to iov_iter
71  * @bio: The &struct bio which describes the I/O as source
72  * @iter: iov_iter as destination
73  *
74  * Copy all pages from bio to iov_iter.
75  * Returns 0 on success, or error on failure.
76  */
77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 	struct bio_vec *bvec;
80 	struct bvec_iter_all iter_all;
81 
82 	bio_for_each_segment_all(bvec, bio, iter_all) {
83 		ssize_t ret;
84 
85 		ret = copy_page_to_iter(bvec->bv_page,
86 					bvec->bv_offset,
87 					bvec->bv_len,
88 					&iter);
89 
90 		if (!iov_iter_count(&iter))
91 			break;
92 
93 		if (ret < bvec->bv_len)
94 			return -EFAULT;
95 	}
96 
97 	return 0;
98 }
99 
100 /**
101  *	bio_uncopy_user	-	finish previously mapped bio
102  *	@bio: bio being terminated
103  *
104  *	Free pages allocated from bio_copy_user_iov() and write back data
105  *	to user space in case of a read.
106  */
107 static int bio_uncopy_user(struct bio *bio)
108 {
109 	struct bio_map_data *bmd = bio->bi_private;
110 	int ret = 0;
111 
112 	if (!bmd->is_null_mapped) {
113 		/*
114 		 * if we're in a workqueue, the request is orphaned, so
115 		 * don't copy into a random user address space, just free
116 		 * and return -EINTR so user space doesn't expect any data.
117 		 */
118 		if (!current->mm)
119 			ret = -EINTR;
120 		else if (bio_data_dir(bio) == READ)
121 			ret = bio_copy_to_iter(bio, bmd->iter);
122 		if (bmd->is_our_pages)
123 			bio_free_pages(bio);
124 	}
125 	kfree(bmd);
126 	bio_put(bio);
127 	return ret;
128 }
129 
130 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
131 		struct iov_iter *iter, gfp_t gfp_mask)
132 {
133 	struct bio_map_data *bmd;
134 	struct page *page;
135 	struct bio *bio, *bounce_bio;
136 	int i = 0, ret;
137 	int nr_pages;
138 	unsigned int len = iter->count;
139 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
140 
141 	bmd = bio_alloc_map_data(iter, gfp_mask);
142 	if (!bmd)
143 		return -ENOMEM;
144 
145 	/*
146 	 * We need to do a deep copy of the iov_iter including the iovecs.
147 	 * The caller provided iov might point to an on-stack or otherwise
148 	 * shortlived one.
149 	 */
150 	bmd->is_our_pages = !map_data;
151 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
152 
153 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
154 
155 	ret = -ENOMEM;
156 	bio = bio_kmalloc(gfp_mask, nr_pages);
157 	if (!bio)
158 		goto out_bmd;
159 	bio->bi_opf |= req_op(rq);
160 
161 	if (map_data) {
162 		nr_pages = 1 << map_data->page_order;
163 		i = map_data->offset / PAGE_SIZE;
164 	}
165 	while (len) {
166 		unsigned int bytes = PAGE_SIZE;
167 
168 		bytes -= offset;
169 
170 		if (bytes > len)
171 			bytes = len;
172 
173 		if (map_data) {
174 			if (i == map_data->nr_entries * nr_pages) {
175 				ret = -ENOMEM;
176 				goto cleanup;
177 			}
178 
179 			page = map_data->pages[i / nr_pages];
180 			page += (i % nr_pages);
181 
182 			i++;
183 		} else {
184 			page = alloc_page(rq->q->bounce_gfp | gfp_mask);
185 			if (!page) {
186 				ret = -ENOMEM;
187 				goto cleanup;
188 			}
189 		}
190 
191 		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
192 			if (!map_data)
193 				__free_page(page);
194 			break;
195 		}
196 
197 		len -= bytes;
198 		offset = 0;
199 	}
200 
201 	if (map_data)
202 		map_data->offset += bio->bi_iter.bi_size;
203 
204 	/*
205 	 * success
206 	 */
207 	if ((iov_iter_rw(iter) == WRITE &&
208 	     (!map_data || !map_data->null_mapped)) ||
209 	    (map_data && map_data->from_user)) {
210 		ret = bio_copy_from_iter(bio, iter);
211 		if (ret)
212 			goto cleanup;
213 	} else {
214 		if (bmd->is_our_pages)
215 			zero_fill_bio(bio);
216 		iov_iter_advance(iter, bio->bi_iter.bi_size);
217 	}
218 
219 	bio->bi_private = bmd;
220 
221 	bounce_bio = bio;
222 	ret = blk_rq_append_bio(rq, &bounce_bio);
223 	if (ret)
224 		goto cleanup;
225 
226 	/*
227 	 * We link the bounce buffer in and could have to traverse it later, so
228 	 * we have to get a ref to prevent it from being freed
229 	 */
230 	bio_get(bounce_bio);
231 	return 0;
232 cleanup:
233 	if (!map_data)
234 		bio_free_pages(bio);
235 	bio_put(bio);
236 out_bmd:
237 	kfree(bmd);
238 	return ret;
239 }
240 
241 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
242 		gfp_t gfp_mask)
243 {
244 	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
245 	struct bio *bio, *bounce_bio;
246 	int ret;
247 	int j;
248 
249 	if (!iov_iter_count(iter))
250 		return -EINVAL;
251 
252 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
253 	if (!bio)
254 		return -ENOMEM;
255 	bio->bi_opf |= req_op(rq);
256 
257 	while (iov_iter_count(iter)) {
258 		struct page **pages;
259 		ssize_t bytes;
260 		size_t offs, added = 0;
261 		int npages;
262 
263 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
264 		if (unlikely(bytes <= 0)) {
265 			ret = bytes ? bytes : -EFAULT;
266 			goto out_unmap;
267 		}
268 
269 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
270 
271 		if (unlikely(offs & queue_dma_alignment(rq->q))) {
272 			ret = -EINVAL;
273 			j = 0;
274 		} else {
275 			for (j = 0; j < npages; j++) {
276 				struct page *page = pages[j];
277 				unsigned int n = PAGE_SIZE - offs;
278 				bool same_page = false;
279 
280 				if (n > bytes)
281 					n = bytes;
282 
283 				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
284 						     max_sectors, &same_page)) {
285 					if (same_page)
286 						put_page(page);
287 					break;
288 				}
289 
290 				added += n;
291 				bytes -= n;
292 				offs = 0;
293 			}
294 			iov_iter_advance(iter, added);
295 		}
296 		/*
297 		 * release the pages we didn't map into the bio, if any
298 		 */
299 		while (j < npages)
300 			put_page(pages[j++]);
301 		kvfree(pages);
302 		/* couldn't stuff something into bio? */
303 		if (bytes)
304 			break;
305 	}
306 
307 	/*
308 	 * Subtle: if we end up needing to bounce a bio, it would normally
309 	 * disappear when its bi_end_io is run.  However, we need the original
310 	 * bio for the unmap, so grab an extra reference to it
311 	 */
312 	bio_get(bio);
313 
314 	bounce_bio = bio;
315 	ret = blk_rq_append_bio(rq, &bounce_bio);
316 	if (ret)
317 		goto out_put_orig;
318 
319 	/*
320 	 * We link the bounce buffer in and could have to traverse it
321 	 * later, so we have to get a ref to prevent it from being freed
322 	 */
323 	bio_get(bounce_bio);
324 	return 0;
325 
326  out_put_orig:
327 	bio_put(bio);
328  out_unmap:
329 	bio_release_pages(bio, false);
330 	bio_put(bio);
331 	return ret;
332 }
333 
334 /**
335  *	bio_unmap_user	-	unmap a bio
336  *	@bio:		the bio being unmapped
337  *
338  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
339  *	process context.
340  *
341  *	bio_unmap_user() may sleep.
342  */
343 static void bio_unmap_user(struct bio *bio)
344 {
345 	bio_release_pages(bio, bio_data_dir(bio) == READ);
346 	bio_put(bio);
347 	bio_put(bio);
348 }
349 
350 static void bio_invalidate_vmalloc_pages(struct bio *bio)
351 {
352 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
353 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
354 		unsigned long i, len = 0;
355 
356 		for (i = 0; i < bio->bi_vcnt; i++)
357 			len += bio->bi_io_vec[i].bv_len;
358 		invalidate_kernel_vmap_range(bio->bi_private, len);
359 	}
360 #endif
361 }
362 
363 static void bio_map_kern_endio(struct bio *bio)
364 {
365 	bio_invalidate_vmalloc_pages(bio);
366 	bio_put(bio);
367 }
368 
369 /**
370  *	bio_map_kern	-	map kernel address into bio
371  *	@q: the struct request_queue for the bio
372  *	@data: pointer to buffer to map
373  *	@len: length in bytes
374  *	@gfp_mask: allocation flags for bio allocation
375  *
376  *	Map the kernel address into a bio suitable for io to a block
377  *	device. Returns an error pointer in case of error.
378  */
379 static struct bio *bio_map_kern(struct request_queue *q, void *data,
380 		unsigned int len, gfp_t gfp_mask)
381 {
382 	unsigned long kaddr = (unsigned long)data;
383 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
384 	unsigned long start = kaddr >> PAGE_SHIFT;
385 	const int nr_pages = end - start;
386 	bool is_vmalloc = is_vmalloc_addr(data);
387 	struct page *page;
388 	int offset, i;
389 	struct bio *bio;
390 
391 	bio = bio_kmalloc(gfp_mask, nr_pages);
392 	if (!bio)
393 		return ERR_PTR(-ENOMEM);
394 
395 	if (is_vmalloc) {
396 		flush_kernel_vmap_range(data, len);
397 		bio->bi_private = data;
398 	}
399 
400 	offset = offset_in_page(kaddr);
401 	for (i = 0; i < nr_pages; i++) {
402 		unsigned int bytes = PAGE_SIZE - offset;
403 
404 		if (len <= 0)
405 			break;
406 
407 		if (bytes > len)
408 			bytes = len;
409 
410 		if (!is_vmalloc)
411 			page = virt_to_page(data);
412 		else
413 			page = vmalloc_to_page(data);
414 		if (bio_add_pc_page(q, bio, page, bytes,
415 				    offset) < bytes) {
416 			/* we don't support partial mappings */
417 			bio_put(bio);
418 			return ERR_PTR(-EINVAL);
419 		}
420 
421 		data += bytes;
422 		len -= bytes;
423 		offset = 0;
424 	}
425 
426 	bio->bi_end_io = bio_map_kern_endio;
427 	return bio;
428 }
429 
430 static void bio_copy_kern_endio(struct bio *bio)
431 {
432 	bio_free_pages(bio);
433 	bio_put(bio);
434 }
435 
436 static void bio_copy_kern_endio_read(struct bio *bio)
437 {
438 	char *p = bio->bi_private;
439 	struct bio_vec *bvec;
440 	struct bvec_iter_all iter_all;
441 
442 	bio_for_each_segment_all(bvec, bio, iter_all) {
443 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
444 		p += bvec->bv_len;
445 	}
446 
447 	bio_copy_kern_endio(bio);
448 }
449 
450 /**
451  *	bio_copy_kern	-	copy kernel address into bio
452  *	@q: the struct request_queue for the bio
453  *	@data: pointer to buffer to copy
454  *	@len: length in bytes
455  *	@gfp_mask: allocation flags for bio and page allocation
456  *	@reading: data direction is READ
457  *
458  *	copy the kernel address into a bio suitable for io to a block
459  *	device. Returns an error pointer in case of error.
460  */
461 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
462 		unsigned int len, gfp_t gfp_mask, int reading)
463 {
464 	unsigned long kaddr = (unsigned long)data;
465 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
466 	unsigned long start = kaddr >> PAGE_SHIFT;
467 	struct bio *bio;
468 	void *p = data;
469 	int nr_pages = 0;
470 
471 	/*
472 	 * Overflow, abort
473 	 */
474 	if (end < start)
475 		return ERR_PTR(-EINVAL);
476 
477 	nr_pages = end - start;
478 	bio = bio_kmalloc(gfp_mask, nr_pages);
479 	if (!bio)
480 		return ERR_PTR(-ENOMEM);
481 
482 	while (len) {
483 		struct page *page;
484 		unsigned int bytes = PAGE_SIZE;
485 
486 		if (bytes > len)
487 			bytes = len;
488 
489 		page = alloc_page(q->bounce_gfp | gfp_mask);
490 		if (!page)
491 			goto cleanup;
492 
493 		if (!reading)
494 			memcpy(page_address(page), p, bytes);
495 
496 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
497 			break;
498 
499 		len -= bytes;
500 		p += bytes;
501 	}
502 
503 	if (reading) {
504 		bio->bi_end_io = bio_copy_kern_endio_read;
505 		bio->bi_private = data;
506 	} else {
507 		bio->bi_end_io = bio_copy_kern_endio;
508 	}
509 
510 	return bio;
511 
512 cleanup:
513 	bio_free_pages(bio);
514 	bio_put(bio);
515 	return ERR_PTR(-ENOMEM);
516 }
517 
518 /*
519  * Append a bio to a passthrough request.  Only works if the bio can be merged
520  * into the request based on the driver constraints.
521  */
522 int blk_rq_append_bio(struct request *rq, struct bio **bio)
523 {
524 	struct bio *orig_bio = *bio;
525 	struct bvec_iter iter;
526 	struct bio_vec bv;
527 	unsigned int nr_segs = 0;
528 
529 	blk_queue_bounce(rq->q, bio);
530 
531 	bio_for_each_bvec(bv, *bio, iter)
532 		nr_segs++;
533 
534 	if (!rq->bio) {
535 		blk_rq_bio_prep(rq, *bio, nr_segs);
536 	} else {
537 		if (!ll_back_merge_fn(rq, *bio, nr_segs)) {
538 			if (orig_bio != *bio) {
539 				bio_put(*bio);
540 				*bio = orig_bio;
541 			}
542 			return -EINVAL;
543 		}
544 
545 		rq->biotail->bi_next = *bio;
546 		rq->biotail = *bio;
547 		rq->__data_len += (*bio)->bi_iter.bi_size;
548 		bio_crypt_free_ctx(*bio);
549 	}
550 
551 	return 0;
552 }
553 EXPORT_SYMBOL(blk_rq_append_bio);
554 
555 /**
556  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
557  * @q:		request queue where request should be inserted
558  * @rq:		request to map data to
559  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
560  * @iter:	iovec iterator
561  * @gfp_mask:	memory allocation flags
562  *
563  * Description:
564  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
565  *    a kernel bounce buffer is used.
566  *
567  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
568  *    still in process context.
569  *
570  *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
571  *    before being submitted to the device, as pages mapped may be out of
572  *    reach. It's the callers responsibility to make sure this happens. The
573  *    original bio must be passed back in to blk_rq_unmap_user() for proper
574  *    unmapping.
575  */
576 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
577 			struct rq_map_data *map_data,
578 			const struct iov_iter *iter, gfp_t gfp_mask)
579 {
580 	bool copy = false;
581 	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
582 	struct bio *bio = NULL;
583 	struct iov_iter i;
584 	int ret = -EINVAL;
585 
586 	if (!iter_is_iovec(iter))
587 		goto fail;
588 
589 	if (map_data)
590 		copy = true;
591 	else if (iov_iter_alignment(iter) & align)
592 		copy = true;
593 	else if (queue_virt_boundary(q))
594 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
595 
596 	i = *iter;
597 	do {
598 		if (copy)
599 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
600 		else
601 			ret = bio_map_user_iov(rq, &i, gfp_mask);
602 		if (ret)
603 			goto unmap_rq;
604 		if (!bio)
605 			bio = rq->bio;
606 	} while (iov_iter_count(&i));
607 
608 	return 0;
609 
610 unmap_rq:
611 	blk_rq_unmap_user(bio);
612 fail:
613 	rq->bio = NULL;
614 	return ret;
615 }
616 EXPORT_SYMBOL(blk_rq_map_user_iov);
617 
618 int blk_rq_map_user(struct request_queue *q, struct request *rq,
619 		    struct rq_map_data *map_data, void __user *ubuf,
620 		    unsigned long len, gfp_t gfp_mask)
621 {
622 	struct iovec iov;
623 	struct iov_iter i;
624 	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
625 
626 	if (unlikely(ret < 0))
627 		return ret;
628 
629 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
630 }
631 EXPORT_SYMBOL(blk_rq_map_user);
632 
633 /**
634  * blk_rq_unmap_user - unmap a request with user data
635  * @bio:	       start of bio list
636  *
637  * Description:
638  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
639  *    supply the original rq->bio from the blk_rq_map_user() return, since
640  *    the I/O completion may have changed rq->bio.
641  */
642 int blk_rq_unmap_user(struct bio *bio)
643 {
644 	struct bio *mapped_bio;
645 	int ret = 0, ret2;
646 
647 	while (bio) {
648 		mapped_bio = bio;
649 		if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
650 			mapped_bio = bio->bi_private;
651 
652 		if (bio->bi_private) {
653 			ret2 = bio_uncopy_user(mapped_bio);
654 			if (ret2 && !ret)
655 				ret = ret2;
656 		} else {
657 			bio_unmap_user(mapped_bio);
658 		}
659 
660 		mapped_bio = bio;
661 		bio = bio->bi_next;
662 		bio_put(mapped_bio);
663 	}
664 
665 	return ret;
666 }
667 EXPORT_SYMBOL(blk_rq_unmap_user);
668 
669 /**
670  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
671  * @q:		request queue where request should be inserted
672  * @rq:		request to fill
673  * @kbuf:	the kernel buffer
674  * @len:	length of user data
675  * @gfp_mask:	memory allocation flags
676  *
677  * Description:
678  *    Data will be mapped directly if possible. Otherwise a bounce
679  *    buffer is used. Can be called multiple times to append multiple
680  *    buffers.
681  */
682 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
683 		    unsigned int len, gfp_t gfp_mask)
684 {
685 	int reading = rq_data_dir(rq) == READ;
686 	unsigned long addr = (unsigned long) kbuf;
687 	struct bio *bio, *orig_bio;
688 	int ret;
689 
690 	if (len > (queue_max_hw_sectors(q) << 9))
691 		return -EINVAL;
692 	if (!len || !kbuf)
693 		return -EINVAL;
694 
695 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf))
696 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
697 	else
698 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
699 
700 	if (IS_ERR(bio))
701 		return PTR_ERR(bio);
702 
703 	bio->bi_opf &= ~REQ_OP_MASK;
704 	bio->bi_opf |= req_op(rq);
705 
706 	orig_bio = bio;
707 	ret = blk_rq_append_bio(rq, &bio);
708 	if (unlikely(ret)) {
709 		/* request is too big */
710 		bio_put(orig_bio);
711 		return ret;
712 	}
713 
714 	return 0;
715 }
716 EXPORT_SYMBOL(blk_rq_map_kern);
717