xref: /openbmc/linux/block/blk-map.c (revision 7e2e355d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 	bmd->iter = *data;
34 	bmd->iter.iov = bmd->iov;
35 	return bmd;
36 }
37 
38 /**
39  * bio_copy_from_iter - copy all pages from iov_iter to bio
40  * @bio: The &struct bio which describes the I/O as destination
41  * @iter: iov_iter as source
42  *
43  * Copy all pages from iov_iter to bio.
44  * Returns 0 on success, or error on failure.
45  */
46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 	struct bio_vec *bvec;
49 	struct bvec_iter_all iter_all;
50 
51 	bio_for_each_segment_all(bvec, bio, iter_all) {
52 		ssize_t ret;
53 
54 		ret = copy_page_from_iter(bvec->bv_page,
55 					  bvec->bv_offset,
56 					  bvec->bv_len,
57 					  iter);
58 
59 		if (!iov_iter_count(iter))
60 			break;
61 
62 		if (ret < bvec->bv_len)
63 			return -EFAULT;
64 	}
65 
66 	return 0;
67 }
68 
69 /**
70  * bio_copy_to_iter - copy all pages from bio to iov_iter
71  * @bio: The &struct bio which describes the I/O as source
72  * @iter: iov_iter as destination
73  *
74  * Copy all pages from bio to iov_iter.
75  * Returns 0 on success, or error on failure.
76  */
77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 	struct bio_vec *bvec;
80 	struct bvec_iter_all iter_all;
81 
82 	bio_for_each_segment_all(bvec, bio, iter_all) {
83 		ssize_t ret;
84 
85 		ret = copy_page_to_iter(bvec->bv_page,
86 					bvec->bv_offset,
87 					bvec->bv_len,
88 					&iter);
89 
90 		if (!iov_iter_count(&iter))
91 			break;
92 
93 		if (ret < bvec->bv_len)
94 			return -EFAULT;
95 	}
96 
97 	return 0;
98 }
99 
100 /**
101  *	bio_uncopy_user	-	finish previously mapped bio
102  *	@bio: bio being terminated
103  *
104  *	Free pages allocated from bio_copy_user_iov() and write back data
105  *	to user space in case of a read.
106  */
107 static int bio_uncopy_user(struct bio *bio)
108 {
109 	struct bio_map_data *bmd = bio->bi_private;
110 	int ret = 0;
111 
112 	if (!bmd->is_null_mapped) {
113 		/*
114 		 * if we're in a workqueue, the request is orphaned, so
115 		 * don't copy into a random user address space, just free
116 		 * and return -EINTR so user space doesn't expect any data.
117 		 */
118 		if (!current->mm)
119 			ret = -EINTR;
120 		else if (bio_data_dir(bio) == READ)
121 			ret = bio_copy_to_iter(bio, bmd->iter);
122 		if (bmd->is_our_pages)
123 			bio_free_pages(bio);
124 	}
125 	kfree(bmd);
126 	return ret;
127 }
128 
129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
130 		struct iov_iter *iter, gfp_t gfp_mask)
131 {
132 	struct bio_map_data *bmd;
133 	struct page *page;
134 	struct bio *bio;
135 	int i = 0, ret;
136 	int nr_pages;
137 	unsigned int len = iter->count;
138 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
139 
140 	bmd = bio_alloc_map_data(iter, gfp_mask);
141 	if (!bmd)
142 		return -ENOMEM;
143 
144 	/*
145 	 * We need to do a deep copy of the iov_iter including the iovecs.
146 	 * The caller provided iov might point to an on-stack or otherwise
147 	 * shortlived one.
148 	 */
149 	bmd->is_our_pages = !map_data;
150 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
151 
152 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
153 
154 	ret = -ENOMEM;
155 	bio = bio_kmalloc(nr_pages, gfp_mask);
156 	if (!bio)
157 		goto out_bmd;
158 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
159 
160 	if (map_data) {
161 		nr_pages = 1U << map_data->page_order;
162 		i = map_data->offset / PAGE_SIZE;
163 	}
164 	while (len) {
165 		unsigned int bytes = PAGE_SIZE;
166 
167 		bytes -= offset;
168 
169 		if (bytes > len)
170 			bytes = len;
171 
172 		if (map_data) {
173 			if (i == map_data->nr_entries * nr_pages) {
174 				ret = -ENOMEM;
175 				goto cleanup;
176 			}
177 
178 			page = map_data->pages[i / nr_pages];
179 			page += (i % nr_pages);
180 
181 			i++;
182 		} else {
183 			page = alloc_page(GFP_NOIO | gfp_mask);
184 			if (!page) {
185 				ret = -ENOMEM;
186 				goto cleanup;
187 			}
188 		}
189 
190 		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
191 			if (!map_data)
192 				__free_page(page);
193 			break;
194 		}
195 
196 		len -= bytes;
197 		offset = 0;
198 	}
199 
200 	if (map_data)
201 		map_data->offset += bio->bi_iter.bi_size;
202 
203 	/*
204 	 * success
205 	 */
206 	if ((iov_iter_rw(iter) == WRITE &&
207 	     (!map_data || !map_data->null_mapped)) ||
208 	    (map_data && map_data->from_user)) {
209 		ret = bio_copy_from_iter(bio, iter);
210 		if (ret)
211 			goto cleanup;
212 	} else {
213 		if (bmd->is_our_pages)
214 			zero_fill_bio(bio);
215 		iov_iter_advance(iter, bio->bi_iter.bi_size);
216 	}
217 
218 	bio->bi_private = bmd;
219 
220 	ret = blk_rq_append_bio(rq, bio);
221 	if (ret)
222 		goto cleanup;
223 	return 0;
224 cleanup:
225 	if (!map_data)
226 		bio_free_pages(bio);
227 	bio_uninit(bio);
228 	kfree(bio);
229 out_bmd:
230 	kfree(bmd);
231 	return ret;
232 }
233 
234 static void blk_mq_map_bio_put(struct bio *bio)
235 {
236 	if (bio->bi_opf & REQ_ALLOC_CACHE) {
237 		bio_put(bio);
238 	} else {
239 		bio_uninit(bio);
240 		kfree(bio);
241 	}
242 }
243 
244 static struct bio *blk_rq_map_bio_alloc(struct request *rq,
245 		unsigned int nr_vecs, gfp_t gfp_mask)
246 {
247 	struct bio *bio;
248 
249 	if (rq->cmd_flags & REQ_ALLOC_CACHE) {
250 		bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask,
251 					&fs_bio_set);
252 		if (!bio)
253 			return NULL;
254 	} else {
255 		bio = bio_kmalloc(nr_vecs, gfp_mask);
256 		if (!bio)
257 			return NULL;
258 		bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
259 	}
260 	return bio;
261 }
262 
263 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
264 		gfp_t gfp_mask)
265 {
266 	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
267 	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
268 	unsigned int gup_flags = 0;
269 	struct bio *bio;
270 	int ret;
271 	int j;
272 
273 	if (!iov_iter_count(iter))
274 		return -EINVAL;
275 
276 	bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
277 	if (bio == NULL)
278 		return -ENOMEM;
279 
280 	if (blk_queue_pci_p2pdma(rq->q))
281 		gup_flags |= FOLL_PCI_P2PDMA;
282 
283 	while (iov_iter_count(iter)) {
284 		struct page **pages, *stack_pages[UIO_FASTIOV];
285 		ssize_t bytes;
286 		size_t offs;
287 		int npages;
288 
289 		if (nr_vecs <= ARRAY_SIZE(stack_pages)) {
290 			pages = stack_pages;
291 			bytes = iov_iter_get_pages(iter, pages, LONG_MAX,
292 						   nr_vecs, &offs, gup_flags);
293 		} else {
294 			bytes = iov_iter_get_pages_alloc(iter, &pages,
295 						LONG_MAX, &offs, gup_flags);
296 		}
297 		if (unlikely(bytes <= 0)) {
298 			ret = bytes ? bytes : -EFAULT;
299 			goto out_unmap;
300 		}
301 
302 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
303 
304 		if (unlikely(offs & queue_dma_alignment(rq->q)))
305 			j = 0;
306 		else {
307 			for (j = 0; j < npages; j++) {
308 				struct page *page = pages[j];
309 				unsigned int n = PAGE_SIZE - offs;
310 				bool same_page = false;
311 
312 				if (n > bytes)
313 					n = bytes;
314 
315 				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
316 						     max_sectors, &same_page)) {
317 					if (same_page)
318 						put_page(page);
319 					break;
320 				}
321 
322 				bytes -= n;
323 				offs = 0;
324 			}
325 		}
326 		/*
327 		 * release the pages we didn't map into the bio, if any
328 		 */
329 		while (j < npages)
330 			put_page(pages[j++]);
331 		if (pages != stack_pages)
332 			kvfree(pages);
333 		/* couldn't stuff something into bio? */
334 		if (bytes) {
335 			iov_iter_revert(iter, bytes);
336 			break;
337 		}
338 	}
339 
340 	ret = blk_rq_append_bio(rq, bio);
341 	if (ret)
342 		goto out_unmap;
343 	return 0;
344 
345  out_unmap:
346 	bio_release_pages(bio, false);
347 	blk_mq_map_bio_put(bio);
348 	return ret;
349 }
350 
351 static void bio_invalidate_vmalloc_pages(struct bio *bio)
352 {
353 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
354 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
355 		unsigned long i, len = 0;
356 
357 		for (i = 0; i < bio->bi_vcnt; i++)
358 			len += bio->bi_io_vec[i].bv_len;
359 		invalidate_kernel_vmap_range(bio->bi_private, len);
360 	}
361 #endif
362 }
363 
364 static void bio_map_kern_endio(struct bio *bio)
365 {
366 	bio_invalidate_vmalloc_pages(bio);
367 	bio_uninit(bio);
368 	kfree(bio);
369 }
370 
371 /**
372  *	bio_map_kern	-	map kernel address into bio
373  *	@q: the struct request_queue for the bio
374  *	@data: pointer to buffer to map
375  *	@len: length in bytes
376  *	@gfp_mask: allocation flags for bio allocation
377  *
378  *	Map the kernel address into a bio suitable for io to a block
379  *	device. Returns an error pointer in case of error.
380  */
381 static struct bio *bio_map_kern(struct request_queue *q, void *data,
382 		unsigned int len, gfp_t gfp_mask)
383 {
384 	unsigned long kaddr = (unsigned long)data;
385 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
386 	unsigned long start = kaddr >> PAGE_SHIFT;
387 	const int nr_pages = end - start;
388 	bool is_vmalloc = is_vmalloc_addr(data);
389 	struct page *page;
390 	int offset, i;
391 	struct bio *bio;
392 
393 	bio = bio_kmalloc(nr_pages, gfp_mask);
394 	if (!bio)
395 		return ERR_PTR(-ENOMEM);
396 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
397 
398 	if (is_vmalloc) {
399 		flush_kernel_vmap_range(data, len);
400 		bio->bi_private = data;
401 	}
402 
403 	offset = offset_in_page(kaddr);
404 	for (i = 0; i < nr_pages; i++) {
405 		unsigned int bytes = PAGE_SIZE - offset;
406 
407 		if (len <= 0)
408 			break;
409 
410 		if (bytes > len)
411 			bytes = len;
412 
413 		if (!is_vmalloc)
414 			page = virt_to_page(data);
415 		else
416 			page = vmalloc_to_page(data);
417 		if (bio_add_pc_page(q, bio, page, bytes,
418 				    offset) < bytes) {
419 			/* we don't support partial mappings */
420 			bio_uninit(bio);
421 			kfree(bio);
422 			return ERR_PTR(-EINVAL);
423 		}
424 
425 		data += bytes;
426 		len -= bytes;
427 		offset = 0;
428 	}
429 
430 	bio->bi_end_io = bio_map_kern_endio;
431 	return bio;
432 }
433 
434 static void bio_copy_kern_endio(struct bio *bio)
435 {
436 	bio_free_pages(bio);
437 	bio_uninit(bio);
438 	kfree(bio);
439 }
440 
441 static void bio_copy_kern_endio_read(struct bio *bio)
442 {
443 	char *p = bio->bi_private;
444 	struct bio_vec *bvec;
445 	struct bvec_iter_all iter_all;
446 
447 	bio_for_each_segment_all(bvec, bio, iter_all) {
448 		memcpy_from_bvec(p, bvec);
449 		p += bvec->bv_len;
450 	}
451 
452 	bio_copy_kern_endio(bio);
453 }
454 
455 /**
456  *	bio_copy_kern	-	copy kernel address into bio
457  *	@q: the struct request_queue for the bio
458  *	@data: pointer to buffer to copy
459  *	@len: length in bytes
460  *	@gfp_mask: allocation flags for bio and page allocation
461  *	@reading: data direction is READ
462  *
463  *	copy the kernel address into a bio suitable for io to a block
464  *	device. Returns an error pointer in case of error.
465  */
466 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
467 		unsigned int len, gfp_t gfp_mask, int reading)
468 {
469 	unsigned long kaddr = (unsigned long)data;
470 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
471 	unsigned long start = kaddr >> PAGE_SHIFT;
472 	struct bio *bio;
473 	void *p = data;
474 	int nr_pages = 0;
475 
476 	/*
477 	 * Overflow, abort
478 	 */
479 	if (end < start)
480 		return ERR_PTR(-EINVAL);
481 
482 	nr_pages = end - start;
483 	bio = bio_kmalloc(nr_pages, gfp_mask);
484 	if (!bio)
485 		return ERR_PTR(-ENOMEM);
486 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
487 
488 	while (len) {
489 		struct page *page;
490 		unsigned int bytes = PAGE_SIZE;
491 
492 		if (bytes > len)
493 			bytes = len;
494 
495 		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
496 		if (!page)
497 			goto cleanup;
498 
499 		if (!reading)
500 			memcpy(page_address(page), p, bytes);
501 
502 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
503 			break;
504 
505 		len -= bytes;
506 		p += bytes;
507 	}
508 
509 	if (reading) {
510 		bio->bi_end_io = bio_copy_kern_endio_read;
511 		bio->bi_private = data;
512 	} else {
513 		bio->bi_end_io = bio_copy_kern_endio;
514 	}
515 
516 	return bio;
517 
518 cleanup:
519 	bio_free_pages(bio);
520 	bio_uninit(bio);
521 	kfree(bio);
522 	return ERR_PTR(-ENOMEM);
523 }
524 
525 /*
526  * Append a bio to a passthrough request.  Only works if the bio can be merged
527  * into the request based on the driver constraints.
528  */
529 int blk_rq_append_bio(struct request *rq, struct bio *bio)
530 {
531 	struct bvec_iter iter;
532 	struct bio_vec bv;
533 	unsigned int nr_segs = 0;
534 
535 	bio_for_each_bvec(bv, bio, iter)
536 		nr_segs++;
537 
538 	if (!rq->bio) {
539 		blk_rq_bio_prep(rq, bio, nr_segs);
540 	} else {
541 		if (!ll_back_merge_fn(rq, bio, nr_segs))
542 			return -EINVAL;
543 		rq->biotail->bi_next = bio;
544 		rq->biotail = bio;
545 		rq->__data_len += (bio)->bi_iter.bi_size;
546 		bio_crypt_free_ctx(bio);
547 	}
548 
549 	return 0;
550 }
551 EXPORT_SYMBOL(blk_rq_append_bio);
552 
553 /* Prepare bio for passthrough IO given ITER_BVEC iter */
554 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
555 {
556 	struct request_queue *q = rq->q;
557 	size_t nr_iter = iov_iter_count(iter);
558 	size_t nr_segs = iter->nr_segs;
559 	struct bio_vec *bvecs, *bvprvp = NULL;
560 	const struct queue_limits *lim = &q->limits;
561 	unsigned int nsegs = 0, bytes = 0;
562 	struct bio *bio;
563 	size_t i;
564 
565 	if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q))
566 		return -EINVAL;
567 	if (nr_segs > queue_max_segments(q))
568 		return -EINVAL;
569 
570 	/* no iovecs to alloc, as we already have a BVEC iterator */
571 	bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
572 	if (bio == NULL)
573 		return -ENOMEM;
574 
575 	bio_iov_bvec_set(bio, (struct iov_iter *)iter);
576 	blk_rq_bio_prep(rq, bio, nr_segs);
577 
578 	/* loop to perform a bunch of sanity checks */
579 	bvecs = (struct bio_vec *)iter->bvec;
580 	for (i = 0; i < nr_segs; i++) {
581 		struct bio_vec *bv = &bvecs[i];
582 
583 		/*
584 		 * If the queue doesn't support SG gaps and adding this
585 		 * offset would create a gap, fallback to copy.
586 		 */
587 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) {
588 			blk_mq_map_bio_put(bio);
589 			return -EREMOTEIO;
590 		}
591 		/* check full condition */
592 		if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
593 			goto put_bio;
594 		if (bytes + bv->bv_len > nr_iter)
595 			goto put_bio;
596 		if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
597 			goto put_bio;
598 
599 		nsegs++;
600 		bytes += bv->bv_len;
601 		bvprvp = bv;
602 	}
603 	return 0;
604 put_bio:
605 	blk_mq_map_bio_put(bio);
606 	return -EINVAL;
607 }
608 
609 /**
610  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
611  * @q:		request queue where request should be inserted
612  * @rq:		request to map data to
613  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
614  * @iter:	iovec iterator
615  * @gfp_mask:	memory allocation flags
616  *
617  * Description:
618  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
619  *    a kernel bounce buffer is used.
620  *
621  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
622  *    still in process context.
623  */
624 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
625 			struct rq_map_data *map_data,
626 			const struct iov_iter *iter, gfp_t gfp_mask)
627 {
628 	bool copy = false, map_bvec = false;
629 	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
630 	struct bio *bio = NULL;
631 	struct iov_iter i;
632 	int ret = -EINVAL;
633 
634 	if (map_data)
635 		copy = true;
636 	else if (blk_queue_may_bounce(q))
637 		copy = true;
638 	else if (iov_iter_alignment(iter) & align)
639 		copy = true;
640 	else if (iov_iter_is_bvec(iter))
641 		map_bvec = true;
642 	else if (!iter_is_iovec(iter))
643 		copy = true;
644 	else if (queue_virt_boundary(q))
645 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
646 
647 	if (map_bvec) {
648 		ret = blk_rq_map_user_bvec(rq, iter);
649 		if (!ret)
650 			return 0;
651 		if (ret != -EREMOTEIO)
652 			goto fail;
653 		/* fall back to copying the data on limits mismatches */
654 		copy = true;
655 	}
656 
657 	i = *iter;
658 	do {
659 		if (copy)
660 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
661 		else
662 			ret = bio_map_user_iov(rq, &i, gfp_mask);
663 		if (ret)
664 			goto unmap_rq;
665 		if (!bio)
666 			bio = rq->bio;
667 	} while (iov_iter_count(&i));
668 
669 	return 0;
670 
671 unmap_rq:
672 	blk_rq_unmap_user(bio);
673 fail:
674 	rq->bio = NULL;
675 	return ret;
676 }
677 EXPORT_SYMBOL(blk_rq_map_user_iov);
678 
679 int blk_rq_map_user(struct request_queue *q, struct request *rq,
680 		    struct rq_map_data *map_data, void __user *ubuf,
681 		    unsigned long len, gfp_t gfp_mask)
682 {
683 	struct iovec iov;
684 	struct iov_iter i;
685 	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
686 
687 	if (unlikely(ret < 0))
688 		return ret;
689 
690 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
691 }
692 EXPORT_SYMBOL(blk_rq_map_user);
693 
694 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
695 		void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
696 		bool vec, int iov_count, bool check_iter_count, int rw)
697 {
698 	int ret = 0;
699 
700 	if (vec) {
701 		struct iovec fast_iov[UIO_FASTIOV];
702 		struct iovec *iov = fast_iov;
703 		struct iov_iter iter;
704 
705 		ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
706 				UIO_FASTIOV, &iov, &iter);
707 		if (ret < 0)
708 			return ret;
709 
710 		if (iov_count) {
711 			/* SG_IO howto says that the shorter of the two wins */
712 			iov_iter_truncate(&iter, buf_len);
713 			if (check_iter_count && !iov_iter_count(&iter)) {
714 				kfree(iov);
715 				return -EINVAL;
716 			}
717 		}
718 
719 		ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
720 				gfp_mask);
721 		kfree(iov);
722 	} else if (buf_len) {
723 		ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
724 				gfp_mask);
725 	}
726 	return ret;
727 }
728 EXPORT_SYMBOL(blk_rq_map_user_io);
729 
730 /**
731  * blk_rq_unmap_user - unmap a request with user data
732  * @bio:	       start of bio list
733  *
734  * Description:
735  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
736  *    supply the original rq->bio from the blk_rq_map_user() return, since
737  *    the I/O completion may have changed rq->bio.
738  */
739 int blk_rq_unmap_user(struct bio *bio)
740 {
741 	struct bio *next_bio;
742 	int ret = 0, ret2;
743 
744 	while (bio) {
745 		if (bio->bi_private) {
746 			ret2 = bio_uncopy_user(bio);
747 			if (ret2 && !ret)
748 				ret = ret2;
749 		} else {
750 			bio_release_pages(bio, bio_data_dir(bio) == READ);
751 		}
752 
753 		next_bio = bio;
754 		bio = bio->bi_next;
755 		blk_mq_map_bio_put(next_bio);
756 	}
757 
758 	return ret;
759 }
760 EXPORT_SYMBOL(blk_rq_unmap_user);
761 
762 /**
763  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
764  * @q:		request queue where request should be inserted
765  * @rq:		request to fill
766  * @kbuf:	the kernel buffer
767  * @len:	length of user data
768  * @gfp_mask:	memory allocation flags
769  *
770  * Description:
771  *    Data will be mapped directly if possible. Otherwise a bounce
772  *    buffer is used. Can be called multiple times to append multiple
773  *    buffers.
774  */
775 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
776 		    unsigned int len, gfp_t gfp_mask)
777 {
778 	int reading = rq_data_dir(rq) == READ;
779 	unsigned long addr = (unsigned long) kbuf;
780 	struct bio *bio;
781 	int ret;
782 
783 	if (len > (queue_max_hw_sectors(q) << 9))
784 		return -EINVAL;
785 	if (!len || !kbuf)
786 		return -EINVAL;
787 
788 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
789 	    blk_queue_may_bounce(q))
790 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
791 	else
792 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
793 
794 	if (IS_ERR(bio))
795 		return PTR_ERR(bio);
796 
797 	bio->bi_opf &= ~REQ_OP_MASK;
798 	bio->bi_opf |= req_op(rq);
799 
800 	ret = blk_rq_append_bio(rq, bio);
801 	if (unlikely(ret)) {
802 		bio_uninit(bio);
803 		kfree(bio);
804 	}
805 	return ret;
806 }
807 EXPORT_SYMBOL(blk_rq_map_kern);
808