xref: /openbmc/linux/block/blk-map.c (revision 75cff725)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 	bmd->iter = *data;
34 	if (iter_is_iovec(data))
35 		bmd->iter.iov = bmd->iov;
36 	return bmd;
37 }
38 
39 /**
40  * bio_copy_from_iter - copy all pages from iov_iter to bio
41  * @bio: The &struct bio which describes the I/O as destination
42  * @iter: iov_iter as source
43  *
44  * Copy all pages from iov_iter to bio.
45  * Returns 0 on success, or error on failure.
46  */
47 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
48 {
49 	struct bio_vec *bvec;
50 	struct bvec_iter_all iter_all;
51 
52 	bio_for_each_segment_all(bvec, bio, iter_all) {
53 		ssize_t ret;
54 
55 		ret = copy_page_from_iter(bvec->bv_page,
56 					  bvec->bv_offset,
57 					  bvec->bv_len,
58 					  iter);
59 
60 		if (!iov_iter_count(iter))
61 			break;
62 
63 		if (ret < bvec->bv_len)
64 			return -EFAULT;
65 	}
66 
67 	return 0;
68 }
69 
70 /**
71  * bio_copy_to_iter - copy all pages from bio to iov_iter
72  * @bio: The &struct bio which describes the I/O as source
73  * @iter: iov_iter as destination
74  *
75  * Copy all pages from bio to iov_iter.
76  * Returns 0 on success, or error on failure.
77  */
78 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
79 {
80 	struct bio_vec *bvec;
81 	struct bvec_iter_all iter_all;
82 
83 	bio_for_each_segment_all(bvec, bio, iter_all) {
84 		ssize_t ret;
85 
86 		ret = copy_page_to_iter(bvec->bv_page,
87 					bvec->bv_offset,
88 					bvec->bv_len,
89 					&iter);
90 
91 		if (!iov_iter_count(&iter))
92 			break;
93 
94 		if (ret < bvec->bv_len)
95 			return -EFAULT;
96 	}
97 
98 	return 0;
99 }
100 
101 /**
102  *	bio_uncopy_user	-	finish previously mapped bio
103  *	@bio: bio being terminated
104  *
105  *	Free pages allocated from bio_copy_user_iov() and write back data
106  *	to user space in case of a read.
107  */
108 static int bio_uncopy_user(struct bio *bio)
109 {
110 	struct bio_map_data *bmd = bio->bi_private;
111 	int ret = 0;
112 
113 	if (!bmd->is_null_mapped) {
114 		/*
115 		 * if we're in a workqueue, the request is orphaned, so
116 		 * don't copy into a random user address space, just free
117 		 * and return -EINTR so user space doesn't expect any data.
118 		 */
119 		if (!current->mm)
120 			ret = -EINTR;
121 		else if (bio_data_dir(bio) == READ)
122 			ret = bio_copy_to_iter(bio, bmd->iter);
123 		if (bmd->is_our_pages)
124 			bio_free_pages(bio);
125 	}
126 	kfree(bmd);
127 	return ret;
128 }
129 
130 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
131 		struct iov_iter *iter, gfp_t gfp_mask)
132 {
133 	struct bio_map_data *bmd;
134 	struct page *page;
135 	struct bio *bio;
136 	int i = 0, ret;
137 	int nr_pages;
138 	unsigned int len = iter->count;
139 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
140 
141 	bmd = bio_alloc_map_data(iter, gfp_mask);
142 	if (!bmd)
143 		return -ENOMEM;
144 
145 	/*
146 	 * We need to do a deep copy of the iov_iter including the iovecs.
147 	 * The caller provided iov might point to an on-stack or otherwise
148 	 * shortlived one.
149 	 */
150 	bmd->is_our_pages = !map_data;
151 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
152 
153 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
154 
155 	ret = -ENOMEM;
156 	bio = bio_kmalloc(nr_pages, gfp_mask);
157 	if (!bio)
158 		goto out_bmd;
159 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
160 
161 	if (map_data) {
162 		nr_pages = 1U << map_data->page_order;
163 		i = map_data->offset / PAGE_SIZE;
164 	}
165 	while (len) {
166 		unsigned int bytes = PAGE_SIZE;
167 
168 		bytes -= offset;
169 
170 		if (bytes > len)
171 			bytes = len;
172 
173 		if (map_data) {
174 			if (i == map_data->nr_entries * nr_pages) {
175 				ret = -ENOMEM;
176 				goto cleanup;
177 			}
178 
179 			page = map_data->pages[i / nr_pages];
180 			page += (i % nr_pages);
181 
182 			i++;
183 		} else {
184 			page = alloc_page(GFP_NOIO | gfp_mask);
185 			if (!page) {
186 				ret = -ENOMEM;
187 				goto cleanup;
188 			}
189 		}
190 
191 		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
192 			if (!map_data)
193 				__free_page(page);
194 			break;
195 		}
196 
197 		len -= bytes;
198 		offset = 0;
199 	}
200 
201 	if (map_data)
202 		map_data->offset += bio->bi_iter.bi_size;
203 
204 	/*
205 	 * success
206 	 */
207 	if ((iov_iter_rw(iter) == WRITE &&
208 	     (!map_data || !map_data->null_mapped)) ||
209 	    (map_data && map_data->from_user)) {
210 		ret = bio_copy_from_iter(bio, iter);
211 		if (ret)
212 			goto cleanup;
213 	} else {
214 		if (bmd->is_our_pages)
215 			zero_fill_bio(bio);
216 		iov_iter_advance(iter, bio->bi_iter.bi_size);
217 	}
218 
219 	bio->bi_private = bmd;
220 
221 	ret = blk_rq_append_bio(rq, bio);
222 	if (ret)
223 		goto cleanup;
224 	return 0;
225 cleanup:
226 	if (!map_data)
227 		bio_free_pages(bio);
228 	bio_uninit(bio);
229 	kfree(bio);
230 out_bmd:
231 	kfree(bmd);
232 	return ret;
233 }
234 
235 static void blk_mq_map_bio_put(struct bio *bio)
236 {
237 	if (bio->bi_opf & REQ_ALLOC_CACHE) {
238 		bio_put(bio);
239 	} else {
240 		bio_uninit(bio);
241 		kfree(bio);
242 	}
243 }
244 
245 static struct bio *blk_rq_map_bio_alloc(struct request *rq,
246 		unsigned int nr_vecs, gfp_t gfp_mask)
247 {
248 	struct bio *bio;
249 
250 	if (rq->cmd_flags & REQ_ALLOC_CACHE) {
251 		bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask,
252 					&fs_bio_set);
253 		if (!bio)
254 			return NULL;
255 	} else {
256 		bio = bio_kmalloc(nr_vecs, gfp_mask);
257 		if (!bio)
258 			return NULL;
259 		bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
260 	}
261 	return bio;
262 }
263 
264 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
265 		gfp_t gfp_mask)
266 {
267 	iov_iter_extraction_t extraction_flags = 0;
268 	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
269 	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
270 	struct bio *bio;
271 	int ret;
272 	int j;
273 
274 	if (!iov_iter_count(iter))
275 		return -EINVAL;
276 
277 	bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
278 	if (bio == NULL)
279 		return -ENOMEM;
280 
281 	if (blk_queue_pci_p2pdma(rq->q))
282 		extraction_flags |= ITER_ALLOW_P2PDMA;
283 
284 	while (iov_iter_count(iter)) {
285 		struct page **pages, *stack_pages[UIO_FASTIOV];
286 		ssize_t bytes;
287 		size_t offs;
288 		int npages;
289 
290 		if (nr_vecs <= ARRAY_SIZE(stack_pages)) {
291 			pages = stack_pages;
292 			bytes = iov_iter_get_pages(iter, pages, LONG_MAX,
293 						   nr_vecs, &offs, extraction_flags);
294 		} else {
295 			bytes = iov_iter_get_pages_alloc(iter, &pages,
296 						LONG_MAX, &offs, extraction_flags);
297 		}
298 		if (unlikely(bytes <= 0)) {
299 			ret = bytes ? bytes : -EFAULT;
300 			goto out_unmap;
301 		}
302 
303 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
304 
305 		if (unlikely(offs & queue_dma_alignment(rq->q)))
306 			j = 0;
307 		else {
308 			for (j = 0; j < npages; j++) {
309 				struct page *page = pages[j];
310 				unsigned int n = PAGE_SIZE - offs;
311 				bool same_page = false;
312 
313 				if (n > bytes)
314 					n = bytes;
315 
316 				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
317 						     max_sectors, &same_page)) {
318 					if (same_page)
319 						put_page(page);
320 					break;
321 				}
322 
323 				bytes -= n;
324 				offs = 0;
325 			}
326 		}
327 		/*
328 		 * release the pages we didn't map into the bio, if any
329 		 */
330 		while (j < npages)
331 			put_page(pages[j++]);
332 		if (pages != stack_pages)
333 			kvfree(pages);
334 		/* couldn't stuff something into bio? */
335 		if (bytes) {
336 			iov_iter_revert(iter, bytes);
337 			break;
338 		}
339 	}
340 
341 	ret = blk_rq_append_bio(rq, bio);
342 	if (ret)
343 		goto out_unmap;
344 	return 0;
345 
346  out_unmap:
347 	bio_release_pages(bio, false);
348 	blk_mq_map_bio_put(bio);
349 	return ret;
350 }
351 
352 static void bio_invalidate_vmalloc_pages(struct bio *bio)
353 {
354 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
355 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
356 		unsigned long i, len = 0;
357 
358 		for (i = 0; i < bio->bi_vcnt; i++)
359 			len += bio->bi_io_vec[i].bv_len;
360 		invalidate_kernel_vmap_range(bio->bi_private, len);
361 	}
362 #endif
363 }
364 
365 static void bio_map_kern_endio(struct bio *bio)
366 {
367 	bio_invalidate_vmalloc_pages(bio);
368 	bio_uninit(bio);
369 	kfree(bio);
370 }
371 
372 /**
373  *	bio_map_kern	-	map kernel address into bio
374  *	@q: the struct request_queue for the bio
375  *	@data: pointer to buffer to map
376  *	@len: length in bytes
377  *	@gfp_mask: allocation flags for bio allocation
378  *
379  *	Map the kernel address into a bio suitable for io to a block
380  *	device. Returns an error pointer in case of error.
381  */
382 static struct bio *bio_map_kern(struct request_queue *q, void *data,
383 		unsigned int len, gfp_t gfp_mask)
384 {
385 	unsigned long kaddr = (unsigned long)data;
386 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
387 	unsigned long start = kaddr >> PAGE_SHIFT;
388 	const int nr_pages = end - start;
389 	bool is_vmalloc = is_vmalloc_addr(data);
390 	struct page *page;
391 	int offset, i;
392 	struct bio *bio;
393 
394 	bio = bio_kmalloc(nr_pages, gfp_mask);
395 	if (!bio)
396 		return ERR_PTR(-ENOMEM);
397 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
398 
399 	if (is_vmalloc) {
400 		flush_kernel_vmap_range(data, len);
401 		bio->bi_private = data;
402 	}
403 
404 	offset = offset_in_page(kaddr);
405 	for (i = 0; i < nr_pages; i++) {
406 		unsigned int bytes = PAGE_SIZE - offset;
407 
408 		if (len <= 0)
409 			break;
410 
411 		if (bytes > len)
412 			bytes = len;
413 
414 		if (!is_vmalloc)
415 			page = virt_to_page(data);
416 		else
417 			page = vmalloc_to_page(data);
418 		if (bio_add_pc_page(q, bio, page, bytes,
419 				    offset) < bytes) {
420 			/* we don't support partial mappings */
421 			bio_uninit(bio);
422 			kfree(bio);
423 			return ERR_PTR(-EINVAL);
424 		}
425 
426 		data += bytes;
427 		len -= bytes;
428 		offset = 0;
429 	}
430 
431 	bio->bi_end_io = bio_map_kern_endio;
432 	return bio;
433 }
434 
435 static void bio_copy_kern_endio(struct bio *bio)
436 {
437 	bio_free_pages(bio);
438 	bio_uninit(bio);
439 	kfree(bio);
440 }
441 
442 static void bio_copy_kern_endio_read(struct bio *bio)
443 {
444 	char *p = bio->bi_private;
445 	struct bio_vec *bvec;
446 	struct bvec_iter_all iter_all;
447 
448 	bio_for_each_segment_all(bvec, bio, iter_all) {
449 		memcpy_from_bvec(p, bvec);
450 		p += bvec->bv_len;
451 	}
452 
453 	bio_copy_kern_endio(bio);
454 }
455 
456 /**
457  *	bio_copy_kern	-	copy kernel address into bio
458  *	@q: the struct request_queue for the bio
459  *	@data: pointer to buffer to copy
460  *	@len: length in bytes
461  *	@gfp_mask: allocation flags for bio and page allocation
462  *	@reading: data direction is READ
463  *
464  *	copy the kernel address into a bio suitable for io to a block
465  *	device. Returns an error pointer in case of error.
466  */
467 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
468 		unsigned int len, gfp_t gfp_mask, int reading)
469 {
470 	unsigned long kaddr = (unsigned long)data;
471 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
472 	unsigned long start = kaddr >> PAGE_SHIFT;
473 	struct bio *bio;
474 	void *p = data;
475 	int nr_pages = 0;
476 
477 	/*
478 	 * Overflow, abort
479 	 */
480 	if (end < start)
481 		return ERR_PTR(-EINVAL);
482 
483 	nr_pages = end - start;
484 	bio = bio_kmalloc(nr_pages, gfp_mask);
485 	if (!bio)
486 		return ERR_PTR(-ENOMEM);
487 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
488 
489 	while (len) {
490 		struct page *page;
491 		unsigned int bytes = PAGE_SIZE;
492 
493 		if (bytes > len)
494 			bytes = len;
495 
496 		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
497 		if (!page)
498 			goto cleanup;
499 
500 		if (!reading)
501 			memcpy(page_address(page), p, bytes);
502 
503 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
504 			break;
505 
506 		len -= bytes;
507 		p += bytes;
508 	}
509 
510 	if (reading) {
511 		bio->bi_end_io = bio_copy_kern_endio_read;
512 		bio->bi_private = data;
513 	} else {
514 		bio->bi_end_io = bio_copy_kern_endio;
515 	}
516 
517 	return bio;
518 
519 cleanup:
520 	bio_free_pages(bio);
521 	bio_uninit(bio);
522 	kfree(bio);
523 	return ERR_PTR(-ENOMEM);
524 }
525 
526 /*
527  * Append a bio to a passthrough request.  Only works if the bio can be merged
528  * into the request based on the driver constraints.
529  */
530 int blk_rq_append_bio(struct request *rq, struct bio *bio)
531 {
532 	struct bvec_iter iter;
533 	struct bio_vec bv;
534 	unsigned int nr_segs = 0;
535 
536 	bio_for_each_bvec(bv, bio, iter)
537 		nr_segs++;
538 
539 	if (!rq->bio) {
540 		blk_rq_bio_prep(rq, bio, nr_segs);
541 	} else {
542 		if (!ll_back_merge_fn(rq, bio, nr_segs))
543 			return -EINVAL;
544 		rq->biotail->bi_next = bio;
545 		rq->biotail = bio;
546 		rq->__data_len += (bio)->bi_iter.bi_size;
547 		bio_crypt_free_ctx(bio);
548 	}
549 
550 	return 0;
551 }
552 EXPORT_SYMBOL(blk_rq_append_bio);
553 
554 /* Prepare bio for passthrough IO given ITER_BVEC iter */
555 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
556 {
557 	struct request_queue *q = rq->q;
558 	size_t nr_iter = iov_iter_count(iter);
559 	size_t nr_segs = iter->nr_segs;
560 	struct bio_vec *bvecs, *bvprvp = NULL;
561 	const struct queue_limits *lim = &q->limits;
562 	unsigned int nsegs = 0, bytes = 0;
563 	struct bio *bio;
564 	size_t i;
565 
566 	if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q))
567 		return -EINVAL;
568 	if (nr_segs > queue_max_segments(q))
569 		return -EINVAL;
570 
571 	/* no iovecs to alloc, as we already have a BVEC iterator */
572 	bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
573 	if (bio == NULL)
574 		return -ENOMEM;
575 
576 	bio_iov_bvec_set(bio, (struct iov_iter *)iter);
577 	blk_rq_bio_prep(rq, bio, nr_segs);
578 
579 	/* loop to perform a bunch of sanity checks */
580 	bvecs = (struct bio_vec *)iter->bvec;
581 	for (i = 0; i < nr_segs; i++) {
582 		struct bio_vec *bv = &bvecs[i];
583 
584 		/*
585 		 * If the queue doesn't support SG gaps and adding this
586 		 * offset would create a gap, fallback to copy.
587 		 */
588 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) {
589 			blk_mq_map_bio_put(bio);
590 			return -EREMOTEIO;
591 		}
592 		/* check full condition */
593 		if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
594 			goto put_bio;
595 		if (bytes + bv->bv_len > nr_iter)
596 			goto put_bio;
597 		if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
598 			goto put_bio;
599 
600 		nsegs++;
601 		bytes += bv->bv_len;
602 		bvprvp = bv;
603 	}
604 	return 0;
605 put_bio:
606 	blk_mq_map_bio_put(bio);
607 	return -EINVAL;
608 }
609 
610 /**
611  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
612  * @q:		request queue where request should be inserted
613  * @rq:		request to map data to
614  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
615  * @iter:	iovec iterator
616  * @gfp_mask:	memory allocation flags
617  *
618  * Description:
619  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
620  *    a kernel bounce buffer is used.
621  *
622  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
623  *    still in process context.
624  */
625 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
626 			struct rq_map_data *map_data,
627 			const struct iov_iter *iter, gfp_t gfp_mask)
628 {
629 	bool copy = false, map_bvec = false;
630 	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
631 	struct bio *bio = NULL;
632 	struct iov_iter i;
633 	int ret = -EINVAL;
634 
635 	if (map_data)
636 		copy = true;
637 	else if (blk_queue_may_bounce(q))
638 		copy = true;
639 	else if (iov_iter_alignment(iter) & align)
640 		copy = true;
641 	else if (iov_iter_is_bvec(iter))
642 		map_bvec = true;
643 	else if (!user_backed_iter(iter))
644 		copy = true;
645 	else if (queue_virt_boundary(q))
646 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
647 
648 	if (map_bvec) {
649 		ret = blk_rq_map_user_bvec(rq, iter);
650 		if (!ret)
651 			return 0;
652 		if (ret != -EREMOTEIO)
653 			goto fail;
654 		/* fall back to copying the data on limits mismatches */
655 		copy = true;
656 	}
657 
658 	i = *iter;
659 	do {
660 		if (copy)
661 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
662 		else
663 			ret = bio_map_user_iov(rq, &i, gfp_mask);
664 		if (ret)
665 			goto unmap_rq;
666 		if (!bio)
667 			bio = rq->bio;
668 	} while (iov_iter_count(&i));
669 
670 	return 0;
671 
672 unmap_rq:
673 	blk_rq_unmap_user(bio);
674 fail:
675 	rq->bio = NULL;
676 	return ret;
677 }
678 EXPORT_SYMBOL(blk_rq_map_user_iov);
679 
680 int blk_rq_map_user(struct request_queue *q, struct request *rq,
681 		    struct rq_map_data *map_data, void __user *ubuf,
682 		    unsigned long len, gfp_t gfp_mask)
683 {
684 	struct iov_iter i;
685 	int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i);
686 
687 	if (unlikely(ret < 0))
688 		return ret;
689 
690 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
691 }
692 EXPORT_SYMBOL(blk_rq_map_user);
693 
694 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
695 		void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
696 		bool vec, int iov_count, bool check_iter_count, int rw)
697 {
698 	int ret = 0;
699 
700 	if (vec) {
701 		struct iovec fast_iov[UIO_FASTIOV];
702 		struct iovec *iov = fast_iov;
703 		struct iov_iter iter;
704 
705 		ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
706 				UIO_FASTIOV, &iov, &iter);
707 		if (ret < 0)
708 			return ret;
709 
710 		if (iov_count) {
711 			/* SG_IO howto says that the shorter of the two wins */
712 			iov_iter_truncate(&iter, buf_len);
713 			if (check_iter_count && !iov_iter_count(&iter)) {
714 				kfree(iov);
715 				return -EINVAL;
716 			}
717 		}
718 
719 		ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
720 				gfp_mask);
721 		kfree(iov);
722 	} else if (buf_len) {
723 		ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
724 				gfp_mask);
725 	}
726 	return ret;
727 }
728 EXPORT_SYMBOL(blk_rq_map_user_io);
729 
730 /**
731  * blk_rq_unmap_user - unmap a request with user data
732  * @bio:	       start of bio list
733  *
734  * Description:
735  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
736  *    supply the original rq->bio from the blk_rq_map_user() return, since
737  *    the I/O completion may have changed rq->bio.
738  */
739 int blk_rq_unmap_user(struct bio *bio)
740 {
741 	struct bio *next_bio;
742 	int ret = 0, ret2;
743 
744 	while (bio) {
745 		if (bio->bi_private) {
746 			ret2 = bio_uncopy_user(bio);
747 			if (ret2 && !ret)
748 				ret = ret2;
749 		} else {
750 			bio_release_pages(bio, bio_data_dir(bio) == READ);
751 		}
752 
753 		next_bio = bio;
754 		bio = bio->bi_next;
755 		blk_mq_map_bio_put(next_bio);
756 	}
757 
758 	return ret;
759 }
760 EXPORT_SYMBOL(blk_rq_unmap_user);
761 
762 /**
763  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
764  * @q:		request queue where request should be inserted
765  * @rq:		request to fill
766  * @kbuf:	the kernel buffer
767  * @len:	length of user data
768  * @gfp_mask:	memory allocation flags
769  *
770  * Description:
771  *    Data will be mapped directly if possible. Otherwise a bounce
772  *    buffer is used. Can be called multiple times to append multiple
773  *    buffers.
774  */
775 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
776 		    unsigned int len, gfp_t gfp_mask)
777 {
778 	int reading = rq_data_dir(rq) == READ;
779 	unsigned long addr = (unsigned long) kbuf;
780 	struct bio *bio;
781 	int ret;
782 
783 	if (len > (queue_max_hw_sectors(q) << 9))
784 		return -EINVAL;
785 	if (!len || !kbuf)
786 		return -EINVAL;
787 
788 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
789 	    blk_queue_may_bounce(q))
790 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
791 	else
792 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
793 
794 	if (IS_ERR(bio))
795 		return PTR_ERR(bio);
796 
797 	bio->bi_opf &= ~REQ_OP_MASK;
798 	bio->bi_opf |= req_op(rq);
799 
800 	ret = blk_rq_append_bio(rq, bio);
801 	if (unlikely(ret)) {
802 		bio_uninit(bio);
803 		kfree(bio);
804 	}
805 	return ret;
806 }
807 EXPORT_SYMBOL(blk_rq_map_kern);
808