1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to mapping data to requests 4 */ 5 #include <linux/kernel.h> 6 #include <linux/sched/task_stack.h> 7 #include <linux/module.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/uio.h> 11 12 #include "blk.h" 13 14 struct bio_map_data { 15 bool is_our_pages : 1; 16 bool is_null_mapped : 1; 17 struct iov_iter iter; 18 struct iovec iov[]; 19 }; 20 21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 22 gfp_t gfp_mask) 23 { 24 struct bio_map_data *bmd; 25 26 if (data->nr_segs > UIO_MAXIOV) 27 return NULL; 28 29 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 30 if (!bmd) 31 return NULL; 32 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 33 bmd->iter = *data; 34 bmd->iter.iov = bmd->iov; 35 return bmd; 36 } 37 38 /** 39 * bio_copy_from_iter - copy all pages from iov_iter to bio 40 * @bio: The &struct bio which describes the I/O as destination 41 * @iter: iov_iter as source 42 * 43 * Copy all pages from iov_iter to bio. 44 * Returns 0 on success, or error on failure. 45 */ 46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 47 { 48 struct bio_vec *bvec; 49 struct bvec_iter_all iter_all; 50 51 bio_for_each_segment_all(bvec, bio, iter_all) { 52 ssize_t ret; 53 54 ret = copy_page_from_iter(bvec->bv_page, 55 bvec->bv_offset, 56 bvec->bv_len, 57 iter); 58 59 if (!iov_iter_count(iter)) 60 break; 61 62 if (ret < bvec->bv_len) 63 return -EFAULT; 64 } 65 66 return 0; 67 } 68 69 /** 70 * bio_copy_to_iter - copy all pages from bio to iov_iter 71 * @bio: The &struct bio which describes the I/O as source 72 * @iter: iov_iter as destination 73 * 74 * Copy all pages from bio to iov_iter. 75 * Returns 0 on success, or error on failure. 76 */ 77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 78 { 79 struct bio_vec *bvec; 80 struct bvec_iter_all iter_all; 81 82 bio_for_each_segment_all(bvec, bio, iter_all) { 83 ssize_t ret; 84 85 ret = copy_page_to_iter(bvec->bv_page, 86 bvec->bv_offset, 87 bvec->bv_len, 88 &iter); 89 90 if (!iov_iter_count(&iter)) 91 break; 92 93 if (ret < bvec->bv_len) 94 return -EFAULT; 95 } 96 97 return 0; 98 } 99 100 /** 101 * bio_uncopy_user - finish previously mapped bio 102 * @bio: bio being terminated 103 * 104 * Free pages allocated from bio_copy_user_iov() and write back data 105 * to user space in case of a read. 106 */ 107 static int bio_uncopy_user(struct bio *bio) 108 { 109 struct bio_map_data *bmd = bio->bi_private; 110 int ret = 0; 111 112 if (!bmd->is_null_mapped) { 113 /* 114 * if we're in a workqueue, the request is orphaned, so 115 * don't copy into a random user address space, just free 116 * and return -EINTR so user space doesn't expect any data. 117 */ 118 if (!current->mm) 119 ret = -EINTR; 120 else if (bio_data_dir(bio) == READ) 121 ret = bio_copy_to_iter(bio, bmd->iter); 122 if (bmd->is_our_pages) 123 bio_free_pages(bio); 124 } 125 kfree(bmd); 126 return ret; 127 } 128 129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data, 130 struct iov_iter *iter, gfp_t gfp_mask) 131 { 132 struct bio_map_data *bmd; 133 struct page *page; 134 struct bio *bio; 135 int i = 0, ret; 136 int nr_pages; 137 unsigned int len = iter->count; 138 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 139 140 bmd = bio_alloc_map_data(iter, gfp_mask); 141 if (!bmd) 142 return -ENOMEM; 143 144 /* 145 * We need to do a deep copy of the iov_iter including the iovecs. 146 * The caller provided iov might point to an on-stack or otherwise 147 * shortlived one. 148 */ 149 bmd->is_our_pages = !map_data; 150 bmd->is_null_mapped = (map_data && map_data->null_mapped); 151 152 nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE)); 153 154 ret = -ENOMEM; 155 bio = bio_kmalloc(gfp_mask, nr_pages); 156 if (!bio) 157 goto out_bmd; 158 bio->bi_opf |= req_op(rq); 159 160 if (map_data) { 161 nr_pages = 1 << map_data->page_order; 162 i = map_data->offset / PAGE_SIZE; 163 } 164 while (len) { 165 unsigned int bytes = PAGE_SIZE; 166 167 bytes -= offset; 168 169 if (bytes > len) 170 bytes = len; 171 172 if (map_data) { 173 if (i == map_data->nr_entries * nr_pages) { 174 ret = -ENOMEM; 175 goto cleanup; 176 } 177 178 page = map_data->pages[i / nr_pages]; 179 page += (i % nr_pages); 180 181 i++; 182 } else { 183 page = alloc_page(GFP_NOIO | gfp_mask); 184 if (!page) { 185 ret = -ENOMEM; 186 goto cleanup; 187 } 188 } 189 190 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) { 191 if (!map_data) 192 __free_page(page); 193 break; 194 } 195 196 len -= bytes; 197 offset = 0; 198 } 199 200 if (map_data) 201 map_data->offset += bio->bi_iter.bi_size; 202 203 /* 204 * success 205 */ 206 if ((iov_iter_rw(iter) == WRITE && 207 (!map_data || !map_data->null_mapped)) || 208 (map_data && map_data->from_user)) { 209 ret = bio_copy_from_iter(bio, iter); 210 if (ret) 211 goto cleanup; 212 } else { 213 if (bmd->is_our_pages) 214 zero_fill_bio(bio); 215 iov_iter_advance(iter, bio->bi_iter.bi_size); 216 } 217 218 bio->bi_private = bmd; 219 220 ret = blk_rq_append_bio(rq, bio); 221 if (ret) 222 goto cleanup; 223 return 0; 224 cleanup: 225 if (!map_data) 226 bio_free_pages(bio); 227 bio_put(bio); 228 out_bmd: 229 kfree(bmd); 230 return ret; 231 } 232 233 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter, 234 gfp_t gfp_mask) 235 { 236 unsigned int max_sectors = queue_max_hw_sectors(rq->q); 237 struct bio *bio; 238 int ret; 239 int j; 240 241 if (!iov_iter_count(iter)) 242 return -EINVAL; 243 244 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_VECS)); 245 if (!bio) 246 return -ENOMEM; 247 bio->bi_opf |= req_op(rq); 248 249 while (iov_iter_count(iter)) { 250 struct page **pages; 251 ssize_t bytes; 252 size_t offs, added = 0; 253 int npages; 254 255 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 256 if (unlikely(bytes <= 0)) { 257 ret = bytes ? bytes : -EFAULT; 258 goto out_unmap; 259 } 260 261 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 262 263 if (unlikely(offs & queue_dma_alignment(rq->q))) { 264 ret = -EINVAL; 265 j = 0; 266 } else { 267 for (j = 0; j < npages; j++) { 268 struct page *page = pages[j]; 269 unsigned int n = PAGE_SIZE - offs; 270 bool same_page = false; 271 272 if (n > bytes) 273 n = bytes; 274 275 if (!bio_add_hw_page(rq->q, bio, page, n, offs, 276 max_sectors, &same_page)) { 277 if (same_page) 278 put_page(page); 279 break; 280 } 281 282 added += n; 283 bytes -= n; 284 offs = 0; 285 } 286 iov_iter_advance(iter, added); 287 } 288 /* 289 * release the pages we didn't map into the bio, if any 290 */ 291 while (j < npages) 292 put_page(pages[j++]); 293 kvfree(pages); 294 /* couldn't stuff something into bio? */ 295 if (bytes) 296 break; 297 } 298 299 ret = blk_rq_append_bio(rq, bio); 300 if (ret) 301 goto out_unmap; 302 return 0; 303 304 out_unmap: 305 bio_release_pages(bio, false); 306 bio_put(bio); 307 return ret; 308 } 309 310 static void bio_invalidate_vmalloc_pages(struct bio *bio) 311 { 312 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 313 if (bio->bi_private && !op_is_write(bio_op(bio))) { 314 unsigned long i, len = 0; 315 316 for (i = 0; i < bio->bi_vcnt; i++) 317 len += bio->bi_io_vec[i].bv_len; 318 invalidate_kernel_vmap_range(bio->bi_private, len); 319 } 320 #endif 321 } 322 323 static void bio_map_kern_endio(struct bio *bio) 324 { 325 bio_invalidate_vmalloc_pages(bio); 326 bio_put(bio); 327 } 328 329 /** 330 * bio_map_kern - map kernel address into bio 331 * @q: the struct request_queue for the bio 332 * @data: pointer to buffer to map 333 * @len: length in bytes 334 * @gfp_mask: allocation flags for bio allocation 335 * 336 * Map the kernel address into a bio suitable for io to a block 337 * device. Returns an error pointer in case of error. 338 */ 339 static struct bio *bio_map_kern(struct request_queue *q, void *data, 340 unsigned int len, gfp_t gfp_mask) 341 { 342 unsigned long kaddr = (unsigned long)data; 343 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 344 unsigned long start = kaddr >> PAGE_SHIFT; 345 const int nr_pages = end - start; 346 bool is_vmalloc = is_vmalloc_addr(data); 347 struct page *page; 348 int offset, i; 349 struct bio *bio; 350 351 bio = bio_kmalloc(gfp_mask, nr_pages); 352 if (!bio) 353 return ERR_PTR(-ENOMEM); 354 355 if (is_vmalloc) { 356 flush_kernel_vmap_range(data, len); 357 bio->bi_private = data; 358 } 359 360 offset = offset_in_page(kaddr); 361 for (i = 0; i < nr_pages; i++) { 362 unsigned int bytes = PAGE_SIZE - offset; 363 364 if (len <= 0) 365 break; 366 367 if (bytes > len) 368 bytes = len; 369 370 if (!is_vmalloc) 371 page = virt_to_page(data); 372 else 373 page = vmalloc_to_page(data); 374 if (bio_add_pc_page(q, bio, page, bytes, 375 offset) < bytes) { 376 /* we don't support partial mappings */ 377 bio_put(bio); 378 return ERR_PTR(-EINVAL); 379 } 380 381 data += bytes; 382 len -= bytes; 383 offset = 0; 384 } 385 386 bio->bi_end_io = bio_map_kern_endio; 387 return bio; 388 } 389 390 static void bio_copy_kern_endio(struct bio *bio) 391 { 392 bio_free_pages(bio); 393 bio_put(bio); 394 } 395 396 static void bio_copy_kern_endio_read(struct bio *bio) 397 { 398 char *p = bio->bi_private; 399 struct bio_vec *bvec; 400 struct bvec_iter_all iter_all; 401 402 bio_for_each_segment_all(bvec, bio, iter_all) { 403 memcpy_from_bvec(p, bvec); 404 p += bvec->bv_len; 405 } 406 407 bio_copy_kern_endio(bio); 408 } 409 410 /** 411 * bio_copy_kern - copy kernel address into bio 412 * @q: the struct request_queue for the bio 413 * @data: pointer to buffer to copy 414 * @len: length in bytes 415 * @gfp_mask: allocation flags for bio and page allocation 416 * @reading: data direction is READ 417 * 418 * copy the kernel address into a bio suitable for io to a block 419 * device. Returns an error pointer in case of error. 420 */ 421 static struct bio *bio_copy_kern(struct request_queue *q, void *data, 422 unsigned int len, gfp_t gfp_mask, int reading) 423 { 424 unsigned long kaddr = (unsigned long)data; 425 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 426 unsigned long start = kaddr >> PAGE_SHIFT; 427 struct bio *bio; 428 void *p = data; 429 int nr_pages = 0; 430 431 /* 432 * Overflow, abort 433 */ 434 if (end < start) 435 return ERR_PTR(-EINVAL); 436 437 nr_pages = end - start; 438 bio = bio_kmalloc(gfp_mask, nr_pages); 439 if (!bio) 440 return ERR_PTR(-ENOMEM); 441 442 while (len) { 443 struct page *page; 444 unsigned int bytes = PAGE_SIZE; 445 446 if (bytes > len) 447 bytes = len; 448 449 page = alloc_page(GFP_NOIO | gfp_mask); 450 if (!page) 451 goto cleanup; 452 453 if (!reading) 454 memcpy(page_address(page), p, bytes); 455 456 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 457 break; 458 459 len -= bytes; 460 p += bytes; 461 } 462 463 if (reading) { 464 bio->bi_end_io = bio_copy_kern_endio_read; 465 bio->bi_private = data; 466 } else { 467 bio->bi_end_io = bio_copy_kern_endio; 468 } 469 470 return bio; 471 472 cleanup: 473 bio_free_pages(bio); 474 bio_put(bio); 475 return ERR_PTR(-ENOMEM); 476 } 477 478 /* 479 * Append a bio to a passthrough request. Only works if the bio can be merged 480 * into the request based on the driver constraints. 481 */ 482 int blk_rq_append_bio(struct request *rq, struct bio *bio) 483 { 484 struct bvec_iter iter; 485 struct bio_vec bv; 486 unsigned int nr_segs = 0; 487 488 bio_for_each_bvec(bv, bio, iter) 489 nr_segs++; 490 491 if (!rq->bio) { 492 blk_rq_bio_prep(rq, bio, nr_segs); 493 } else { 494 if (!ll_back_merge_fn(rq, bio, nr_segs)) 495 return -EINVAL; 496 rq->biotail->bi_next = bio; 497 rq->biotail = bio; 498 rq->__data_len += (bio)->bi_iter.bi_size; 499 bio_crypt_free_ctx(bio); 500 } 501 502 return 0; 503 } 504 EXPORT_SYMBOL(blk_rq_append_bio); 505 506 /** 507 * blk_rq_map_user_iov - map user data to a request, for passthrough requests 508 * @q: request queue where request should be inserted 509 * @rq: request to map data to 510 * @map_data: pointer to the rq_map_data holding pages (if necessary) 511 * @iter: iovec iterator 512 * @gfp_mask: memory allocation flags 513 * 514 * Description: 515 * Data will be mapped directly for zero copy I/O, if possible. Otherwise 516 * a kernel bounce buffer is used. 517 * 518 * A matching blk_rq_unmap_user() must be issued at the end of I/O, while 519 * still in process context. 520 */ 521 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq, 522 struct rq_map_data *map_data, 523 const struct iov_iter *iter, gfp_t gfp_mask) 524 { 525 bool copy = false; 526 unsigned long align = q->dma_pad_mask | queue_dma_alignment(q); 527 struct bio *bio = NULL; 528 struct iov_iter i; 529 int ret = -EINVAL; 530 531 if (!iter_is_iovec(iter)) 532 goto fail; 533 534 if (map_data) 535 copy = true; 536 else if (blk_queue_may_bounce(q)) 537 copy = true; 538 else if (iov_iter_alignment(iter) & align) 539 copy = true; 540 else if (queue_virt_boundary(q)) 541 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter); 542 543 i = *iter; 544 do { 545 if (copy) 546 ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask); 547 else 548 ret = bio_map_user_iov(rq, &i, gfp_mask); 549 if (ret) 550 goto unmap_rq; 551 if (!bio) 552 bio = rq->bio; 553 } while (iov_iter_count(&i)); 554 555 return 0; 556 557 unmap_rq: 558 blk_rq_unmap_user(bio); 559 fail: 560 rq->bio = NULL; 561 return ret; 562 } 563 EXPORT_SYMBOL(blk_rq_map_user_iov); 564 565 int blk_rq_map_user(struct request_queue *q, struct request *rq, 566 struct rq_map_data *map_data, void __user *ubuf, 567 unsigned long len, gfp_t gfp_mask) 568 { 569 struct iovec iov; 570 struct iov_iter i; 571 int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i); 572 573 if (unlikely(ret < 0)) 574 return ret; 575 576 return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask); 577 } 578 EXPORT_SYMBOL(blk_rq_map_user); 579 580 /** 581 * blk_rq_unmap_user - unmap a request with user data 582 * @bio: start of bio list 583 * 584 * Description: 585 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must 586 * supply the original rq->bio from the blk_rq_map_user() return, since 587 * the I/O completion may have changed rq->bio. 588 */ 589 int blk_rq_unmap_user(struct bio *bio) 590 { 591 struct bio *next_bio; 592 int ret = 0, ret2; 593 594 while (bio) { 595 if (bio->bi_private) { 596 ret2 = bio_uncopy_user(bio); 597 if (ret2 && !ret) 598 ret = ret2; 599 } else { 600 bio_release_pages(bio, bio_data_dir(bio) == READ); 601 } 602 603 next_bio = bio; 604 bio = bio->bi_next; 605 bio_put(next_bio); 606 } 607 608 return ret; 609 } 610 EXPORT_SYMBOL(blk_rq_unmap_user); 611 612 /** 613 * blk_rq_map_kern - map kernel data to a request, for passthrough requests 614 * @q: request queue where request should be inserted 615 * @rq: request to fill 616 * @kbuf: the kernel buffer 617 * @len: length of user data 618 * @gfp_mask: memory allocation flags 619 * 620 * Description: 621 * Data will be mapped directly if possible. Otherwise a bounce 622 * buffer is used. Can be called multiple times to append multiple 623 * buffers. 624 */ 625 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf, 626 unsigned int len, gfp_t gfp_mask) 627 { 628 int reading = rq_data_dir(rq) == READ; 629 unsigned long addr = (unsigned long) kbuf; 630 struct bio *bio; 631 int ret; 632 633 if (len > (queue_max_hw_sectors(q) << 9)) 634 return -EINVAL; 635 if (!len || !kbuf) 636 return -EINVAL; 637 638 if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) || 639 blk_queue_may_bounce(q)) 640 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading); 641 else 642 bio = bio_map_kern(q, kbuf, len, gfp_mask); 643 644 if (IS_ERR(bio)) 645 return PTR_ERR(bio); 646 647 bio->bi_opf &= ~REQ_OP_MASK; 648 bio->bi_opf |= req_op(rq); 649 650 ret = blk_rq_append_bio(rq, bio); 651 if (unlikely(ret)) 652 bio_put(bio); 653 return ret; 654 } 655 EXPORT_SYMBOL(blk_rq_map_kern); 656