xref: /openbmc/linux/block/blk-map.c (revision 18afb028)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	bmd->iter = *data;
33 	if (iter_is_iovec(data)) {
34 		memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs);
35 		bmd->iter.__iov = bmd->iov;
36 	}
37 	return bmd;
38 }
39 
40 /**
41  * bio_copy_from_iter - copy all pages from iov_iter to bio
42  * @bio: The &struct bio which describes the I/O as destination
43  * @iter: iov_iter as source
44  *
45  * Copy all pages from iov_iter to bio.
46  * Returns 0 on success, or error on failure.
47  */
48 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
49 {
50 	struct bio_vec *bvec;
51 	struct bvec_iter_all iter_all;
52 
53 	bio_for_each_segment_all(bvec, bio, iter_all) {
54 		ssize_t ret;
55 
56 		ret = copy_page_from_iter(bvec->bv_page,
57 					  bvec->bv_offset,
58 					  bvec->bv_len,
59 					  iter);
60 
61 		if (!iov_iter_count(iter))
62 			break;
63 
64 		if (ret < bvec->bv_len)
65 			return -EFAULT;
66 	}
67 
68 	return 0;
69 }
70 
71 /**
72  * bio_copy_to_iter - copy all pages from bio to iov_iter
73  * @bio: The &struct bio which describes the I/O as source
74  * @iter: iov_iter as destination
75  *
76  * Copy all pages from bio to iov_iter.
77  * Returns 0 on success, or error on failure.
78  */
79 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
80 {
81 	struct bio_vec *bvec;
82 	struct bvec_iter_all iter_all;
83 
84 	bio_for_each_segment_all(bvec, bio, iter_all) {
85 		ssize_t ret;
86 
87 		ret = copy_page_to_iter(bvec->bv_page,
88 					bvec->bv_offset,
89 					bvec->bv_len,
90 					&iter);
91 
92 		if (!iov_iter_count(&iter))
93 			break;
94 
95 		if (ret < bvec->bv_len)
96 			return -EFAULT;
97 	}
98 
99 	return 0;
100 }
101 
102 /**
103  *	bio_uncopy_user	-	finish previously mapped bio
104  *	@bio: bio being terminated
105  *
106  *	Free pages allocated from bio_copy_user_iov() and write back data
107  *	to user space in case of a read.
108  */
109 static int bio_uncopy_user(struct bio *bio)
110 {
111 	struct bio_map_data *bmd = bio->bi_private;
112 	int ret = 0;
113 
114 	if (!bmd->is_null_mapped) {
115 		/*
116 		 * if we're in a workqueue, the request is orphaned, so
117 		 * don't copy into a random user address space, just free
118 		 * and return -EINTR so user space doesn't expect any data.
119 		 */
120 		if (!current->mm)
121 			ret = -EINTR;
122 		else if (bio_data_dir(bio) == READ)
123 			ret = bio_copy_to_iter(bio, bmd->iter);
124 		if (bmd->is_our_pages)
125 			bio_free_pages(bio);
126 	}
127 	kfree(bmd);
128 	return ret;
129 }
130 
131 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
132 		struct iov_iter *iter, gfp_t gfp_mask)
133 {
134 	struct bio_map_data *bmd;
135 	struct page *page;
136 	struct bio *bio;
137 	int i = 0, ret;
138 	int nr_pages;
139 	unsigned int len = iter->count;
140 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
141 
142 	bmd = bio_alloc_map_data(iter, gfp_mask);
143 	if (!bmd)
144 		return -ENOMEM;
145 
146 	/*
147 	 * We need to do a deep copy of the iov_iter including the iovecs.
148 	 * The caller provided iov might point to an on-stack or otherwise
149 	 * shortlived one.
150 	 */
151 	bmd->is_our_pages = !map_data;
152 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
153 
154 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
155 
156 	ret = -ENOMEM;
157 	bio = bio_kmalloc(nr_pages, gfp_mask);
158 	if (!bio)
159 		goto out_bmd;
160 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
161 
162 	if (map_data) {
163 		nr_pages = 1U << map_data->page_order;
164 		i = map_data->offset / PAGE_SIZE;
165 	}
166 	while (len) {
167 		unsigned int bytes = PAGE_SIZE;
168 
169 		bytes -= offset;
170 
171 		if (bytes > len)
172 			bytes = len;
173 
174 		if (map_data) {
175 			if (i == map_data->nr_entries * nr_pages) {
176 				ret = -ENOMEM;
177 				goto cleanup;
178 			}
179 
180 			page = map_data->pages[i / nr_pages];
181 			page += (i % nr_pages);
182 
183 			i++;
184 		} else {
185 			page = alloc_page(GFP_NOIO | gfp_mask);
186 			if (!page) {
187 				ret = -ENOMEM;
188 				goto cleanup;
189 			}
190 		}
191 
192 		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
193 			if (!map_data)
194 				__free_page(page);
195 			break;
196 		}
197 
198 		len -= bytes;
199 		offset = 0;
200 	}
201 
202 	if (map_data)
203 		map_data->offset += bio->bi_iter.bi_size;
204 
205 	/*
206 	 * success
207 	 */
208 	if ((iov_iter_rw(iter) == WRITE &&
209 	     (!map_data || !map_data->null_mapped)) ||
210 	    (map_data && map_data->from_user)) {
211 		ret = bio_copy_from_iter(bio, iter);
212 		if (ret)
213 			goto cleanup;
214 	} else {
215 		if (bmd->is_our_pages)
216 			zero_fill_bio(bio);
217 		iov_iter_advance(iter, bio->bi_iter.bi_size);
218 	}
219 
220 	bio->bi_private = bmd;
221 
222 	ret = blk_rq_append_bio(rq, bio);
223 	if (ret)
224 		goto cleanup;
225 	return 0;
226 cleanup:
227 	if (!map_data)
228 		bio_free_pages(bio);
229 	bio_uninit(bio);
230 	kfree(bio);
231 out_bmd:
232 	kfree(bmd);
233 	return ret;
234 }
235 
236 static void blk_mq_map_bio_put(struct bio *bio)
237 {
238 	if (bio->bi_opf & REQ_ALLOC_CACHE) {
239 		bio_put(bio);
240 	} else {
241 		bio_uninit(bio);
242 		kfree(bio);
243 	}
244 }
245 
246 static struct bio *blk_rq_map_bio_alloc(struct request *rq,
247 		unsigned int nr_vecs, gfp_t gfp_mask)
248 {
249 	struct bio *bio;
250 
251 	if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) {
252 		bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask,
253 					&fs_bio_set);
254 		if (!bio)
255 			return NULL;
256 	} else {
257 		bio = bio_kmalloc(nr_vecs, gfp_mask);
258 		if (!bio)
259 			return NULL;
260 		bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
261 	}
262 	return bio;
263 }
264 
265 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
266 		gfp_t gfp_mask)
267 {
268 	iov_iter_extraction_t extraction_flags = 0;
269 	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
270 	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
271 	struct bio *bio;
272 	int ret;
273 	int j;
274 
275 	if (!iov_iter_count(iter))
276 		return -EINVAL;
277 
278 	bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
279 	if (bio == NULL)
280 		return -ENOMEM;
281 
282 	if (blk_queue_pci_p2pdma(rq->q))
283 		extraction_flags |= ITER_ALLOW_P2PDMA;
284 	if (iov_iter_extract_will_pin(iter))
285 		bio_set_flag(bio, BIO_PAGE_PINNED);
286 
287 	while (iov_iter_count(iter)) {
288 		struct page *stack_pages[UIO_FASTIOV];
289 		struct page **pages = stack_pages;
290 		ssize_t bytes;
291 		size_t offs;
292 		int npages;
293 
294 		if (nr_vecs > ARRAY_SIZE(stack_pages))
295 			pages = NULL;
296 
297 		bytes = iov_iter_extract_pages(iter, &pages, LONG_MAX,
298 					       nr_vecs, extraction_flags, &offs);
299 		if (unlikely(bytes <= 0)) {
300 			ret = bytes ? bytes : -EFAULT;
301 			goto out_unmap;
302 		}
303 
304 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
305 
306 		if (unlikely(offs & queue_dma_alignment(rq->q)))
307 			j = 0;
308 		else {
309 			for (j = 0; j < npages; j++) {
310 				struct page *page = pages[j];
311 				unsigned int n = PAGE_SIZE - offs;
312 				bool same_page = false;
313 
314 				if (n > bytes)
315 					n = bytes;
316 
317 				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
318 						     max_sectors, &same_page))
319 					break;
320 
321 				if (same_page)
322 					bio_release_page(bio, page);
323 				bytes -= n;
324 				offs = 0;
325 			}
326 		}
327 		/*
328 		 * release the pages we didn't map into the bio, if any
329 		 */
330 		while (j < npages)
331 			bio_release_page(bio, pages[j++]);
332 		if (pages != stack_pages)
333 			kvfree(pages);
334 		/* couldn't stuff something into bio? */
335 		if (bytes) {
336 			iov_iter_revert(iter, bytes);
337 			break;
338 		}
339 	}
340 
341 	ret = blk_rq_append_bio(rq, bio);
342 	if (ret)
343 		goto out_unmap;
344 	return 0;
345 
346  out_unmap:
347 	bio_release_pages(bio, false);
348 	blk_mq_map_bio_put(bio);
349 	return ret;
350 }
351 
352 static void bio_invalidate_vmalloc_pages(struct bio *bio)
353 {
354 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
355 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
356 		unsigned long i, len = 0;
357 
358 		for (i = 0; i < bio->bi_vcnt; i++)
359 			len += bio->bi_io_vec[i].bv_len;
360 		invalidate_kernel_vmap_range(bio->bi_private, len);
361 	}
362 #endif
363 }
364 
365 static void bio_map_kern_endio(struct bio *bio)
366 {
367 	bio_invalidate_vmalloc_pages(bio);
368 	bio_uninit(bio);
369 	kfree(bio);
370 }
371 
372 /**
373  *	bio_map_kern	-	map kernel address into bio
374  *	@q: the struct request_queue for the bio
375  *	@data: pointer to buffer to map
376  *	@len: length in bytes
377  *	@gfp_mask: allocation flags for bio allocation
378  *
379  *	Map the kernel address into a bio suitable for io to a block
380  *	device. Returns an error pointer in case of error.
381  */
382 static struct bio *bio_map_kern(struct request_queue *q, void *data,
383 		unsigned int len, gfp_t gfp_mask)
384 {
385 	unsigned long kaddr = (unsigned long)data;
386 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
387 	unsigned long start = kaddr >> PAGE_SHIFT;
388 	const int nr_pages = end - start;
389 	bool is_vmalloc = is_vmalloc_addr(data);
390 	struct page *page;
391 	int offset, i;
392 	struct bio *bio;
393 
394 	bio = bio_kmalloc(nr_pages, gfp_mask);
395 	if (!bio)
396 		return ERR_PTR(-ENOMEM);
397 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
398 
399 	if (is_vmalloc) {
400 		flush_kernel_vmap_range(data, len);
401 		bio->bi_private = data;
402 	}
403 
404 	offset = offset_in_page(kaddr);
405 	for (i = 0; i < nr_pages; i++) {
406 		unsigned int bytes = PAGE_SIZE - offset;
407 
408 		if (len <= 0)
409 			break;
410 
411 		if (bytes > len)
412 			bytes = len;
413 
414 		if (!is_vmalloc)
415 			page = virt_to_page(data);
416 		else
417 			page = vmalloc_to_page(data);
418 		if (bio_add_pc_page(q, bio, page, bytes,
419 				    offset) < bytes) {
420 			/* we don't support partial mappings */
421 			bio_uninit(bio);
422 			kfree(bio);
423 			return ERR_PTR(-EINVAL);
424 		}
425 
426 		data += bytes;
427 		len -= bytes;
428 		offset = 0;
429 	}
430 
431 	bio->bi_end_io = bio_map_kern_endio;
432 	return bio;
433 }
434 
435 static void bio_copy_kern_endio(struct bio *bio)
436 {
437 	bio_free_pages(bio);
438 	bio_uninit(bio);
439 	kfree(bio);
440 }
441 
442 static void bio_copy_kern_endio_read(struct bio *bio)
443 {
444 	char *p = bio->bi_private;
445 	struct bio_vec *bvec;
446 	struct bvec_iter_all iter_all;
447 
448 	bio_for_each_segment_all(bvec, bio, iter_all) {
449 		memcpy_from_bvec(p, bvec);
450 		p += bvec->bv_len;
451 	}
452 
453 	bio_copy_kern_endio(bio);
454 }
455 
456 /**
457  *	bio_copy_kern	-	copy kernel address into bio
458  *	@q: the struct request_queue for the bio
459  *	@data: pointer to buffer to copy
460  *	@len: length in bytes
461  *	@gfp_mask: allocation flags for bio and page allocation
462  *	@reading: data direction is READ
463  *
464  *	copy the kernel address into a bio suitable for io to a block
465  *	device. Returns an error pointer in case of error.
466  */
467 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
468 		unsigned int len, gfp_t gfp_mask, int reading)
469 {
470 	unsigned long kaddr = (unsigned long)data;
471 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
472 	unsigned long start = kaddr >> PAGE_SHIFT;
473 	struct bio *bio;
474 	void *p = data;
475 	int nr_pages = 0;
476 
477 	/*
478 	 * Overflow, abort
479 	 */
480 	if (end < start)
481 		return ERR_PTR(-EINVAL);
482 
483 	nr_pages = end - start;
484 	bio = bio_kmalloc(nr_pages, gfp_mask);
485 	if (!bio)
486 		return ERR_PTR(-ENOMEM);
487 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
488 
489 	while (len) {
490 		struct page *page;
491 		unsigned int bytes = PAGE_SIZE;
492 
493 		if (bytes > len)
494 			bytes = len;
495 
496 		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
497 		if (!page)
498 			goto cleanup;
499 
500 		if (!reading)
501 			memcpy(page_address(page), p, bytes);
502 
503 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
504 			break;
505 
506 		len -= bytes;
507 		p += bytes;
508 	}
509 
510 	if (reading) {
511 		bio->bi_end_io = bio_copy_kern_endio_read;
512 		bio->bi_private = data;
513 	} else {
514 		bio->bi_end_io = bio_copy_kern_endio;
515 	}
516 
517 	return bio;
518 
519 cleanup:
520 	bio_free_pages(bio);
521 	bio_uninit(bio);
522 	kfree(bio);
523 	return ERR_PTR(-ENOMEM);
524 }
525 
526 /*
527  * Append a bio to a passthrough request.  Only works if the bio can be merged
528  * into the request based on the driver constraints.
529  */
530 int blk_rq_append_bio(struct request *rq, struct bio *bio)
531 {
532 	struct bvec_iter iter;
533 	struct bio_vec bv;
534 	unsigned int nr_segs = 0;
535 
536 	bio_for_each_bvec(bv, bio, iter)
537 		nr_segs++;
538 
539 	if (!rq->bio) {
540 		blk_rq_bio_prep(rq, bio, nr_segs);
541 	} else {
542 		if (!ll_back_merge_fn(rq, bio, nr_segs))
543 			return -EINVAL;
544 		rq->biotail->bi_next = bio;
545 		rq->biotail = bio;
546 		rq->__data_len += (bio)->bi_iter.bi_size;
547 		bio_crypt_free_ctx(bio);
548 	}
549 
550 	return 0;
551 }
552 EXPORT_SYMBOL(blk_rq_append_bio);
553 
554 /* Prepare bio for passthrough IO given ITER_BVEC iter */
555 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
556 {
557 	struct request_queue *q = rq->q;
558 	size_t nr_iter = iov_iter_count(iter);
559 	size_t nr_segs = iter->nr_segs;
560 	struct bio_vec *bvecs, *bvprvp = NULL;
561 	const struct queue_limits *lim = &q->limits;
562 	unsigned int nsegs = 0, bytes = 0;
563 	struct bio *bio;
564 	size_t i;
565 
566 	if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q))
567 		return -EINVAL;
568 	if (nr_segs > queue_max_segments(q))
569 		return -EINVAL;
570 
571 	/* no iovecs to alloc, as we already have a BVEC iterator */
572 	bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
573 	if (bio == NULL)
574 		return -ENOMEM;
575 
576 	bio_iov_bvec_set(bio, (struct iov_iter *)iter);
577 	blk_rq_bio_prep(rq, bio, nr_segs);
578 
579 	/* loop to perform a bunch of sanity checks */
580 	bvecs = (struct bio_vec *)iter->bvec;
581 	for (i = 0; i < nr_segs; i++) {
582 		struct bio_vec *bv = &bvecs[i];
583 
584 		/*
585 		 * If the queue doesn't support SG gaps and adding this
586 		 * offset would create a gap, fallback to copy.
587 		 */
588 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) {
589 			blk_mq_map_bio_put(bio);
590 			return -EREMOTEIO;
591 		}
592 		/* check full condition */
593 		if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
594 			goto put_bio;
595 		if (bytes + bv->bv_len > nr_iter)
596 			goto put_bio;
597 		if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
598 			goto put_bio;
599 
600 		nsegs++;
601 		bytes += bv->bv_len;
602 		bvprvp = bv;
603 	}
604 	return 0;
605 put_bio:
606 	blk_mq_map_bio_put(bio);
607 	return -EINVAL;
608 }
609 
610 /**
611  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
612  * @q:		request queue where request should be inserted
613  * @rq:		request to map data to
614  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
615  * @iter:	iovec iterator
616  * @gfp_mask:	memory allocation flags
617  *
618  * Description:
619  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
620  *    a kernel bounce buffer is used.
621  *
622  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
623  *    still in process context.
624  */
625 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
626 			struct rq_map_data *map_data,
627 			const struct iov_iter *iter, gfp_t gfp_mask)
628 {
629 	bool copy = false, map_bvec = false;
630 	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
631 	struct bio *bio = NULL;
632 	struct iov_iter i;
633 	int ret = -EINVAL;
634 
635 	if (map_data)
636 		copy = true;
637 	else if (blk_queue_may_bounce(q))
638 		copy = true;
639 	else if (iov_iter_alignment(iter) & align)
640 		copy = true;
641 	else if (iov_iter_is_bvec(iter))
642 		map_bvec = true;
643 	else if (!user_backed_iter(iter))
644 		copy = true;
645 	else if (queue_virt_boundary(q))
646 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
647 
648 	if (map_bvec) {
649 		ret = blk_rq_map_user_bvec(rq, iter);
650 		if (!ret)
651 			return 0;
652 		if (ret != -EREMOTEIO)
653 			goto fail;
654 		/* fall back to copying the data on limits mismatches */
655 		copy = true;
656 	}
657 
658 	i = *iter;
659 	do {
660 		if (copy)
661 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
662 		else
663 			ret = bio_map_user_iov(rq, &i, gfp_mask);
664 		if (ret)
665 			goto unmap_rq;
666 		if (!bio)
667 			bio = rq->bio;
668 	} while (iov_iter_count(&i));
669 
670 	return 0;
671 
672 unmap_rq:
673 	blk_rq_unmap_user(bio);
674 fail:
675 	rq->bio = NULL;
676 	return ret;
677 }
678 EXPORT_SYMBOL(blk_rq_map_user_iov);
679 
680 int blk_rq_map_user(struct request_queue *q, struct request *rq,
681 		    struct rq_map_data *map_data, void __user *ubuf,
682 		    unsigned long len, gfp_t gfp_mask)
683 {
684 	struct iov_iter i;
685 	int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i);
686 
687 	if (unlikely(ret < 0))
688 		return ret;
689 
690 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
691 }
692 EXPORT_SYMBOL(blk_rq_map_user);
693 
694 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
695 		void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
696 		bool vec, int iov_count, bool check_iter_count, int rw)
697 {
698 	int ret = 0;
699 
700 	if (vec) {
701 		struct iovec fast_iov[UIO_FASTIOV];
702 		struct iovec *iov = fast_iov;
703 		struct iov_iter iter;
704 
705 		ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
706 				UIO_FASTIOV, &iov, &iter);
707 		if (ret < 0)
708 			return ret;
709 
710 		if (iov_count) {
711 			/* SG_IO howto says that the shorter of the two wins */
712 			iov_iter_truncate(&iter, buf_len);
713 			if (check_iter_count && !iov_iter_count(&iter)) {
714 				kfree(iov);
715 				return -EINVAL;
716 			}
717 		}
718 
719 		ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
720 				gfp_mask);
721 		kfree(iov);
722 	} else if (buf_len) {
723 		ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
724 				gfp_mask);
725 	}
726 	return ret;
727 }
728 EXPORT_SYMBOL(blk_rq_map_user_io);
729 
730 /**
731  * blk_rq_unmap_user - unmap a request with user data
732  * @bio:	       start of bio list
733  *
734  * Description:
735  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
736  *    supply the original rq->bio from the blk_rq_map_user() return, since
737  *    the I/O completion may have changed rq->bio.
738  */
739 int blk_rq_unmap_user(struct bio *bio)
740 {
741 	struct bio *next_bio;
742 	int ret = 0, ret2;
743 
744 	while (bio) {
745 		if (bio->bi_private) {
746 			ret2 = bio_uncopy_user(bio);
747 			if (ret2 && !ret)
748 				ret = ret2;
749 		} else {
750 			bio_release_pages(bio, bio_data_dir(bio) == READ);
751 		}
752 
753 		next_bio = bio;
754 		bio = bio->bi_next;
755 		blk_mq_map_bio_put(next_bio);
756 	}
757 
758 	return ret;
759 }
760 EXPORT_SYMBOL(blk_rq_unmap_user);
761 
762 /**
763  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
764  * @q:		request queue where request should be inserted
765  * @rq:		request to fill
766  * @kbuf:	the kernel buffer
767  * @len:	length of user data
768  * @gfp_mask:	memory allocation flags
769  *
770  * Description:
771  *    Data will be mapped directly if possible. Otherwise a bounce
772  *    buffer is used. Can be called multiple times to append multiple
773  *    buffers.
774  */
775 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
776 		    unsigned int len, gfp_t gfp_mask)
777 {
778 	int reading = rq_data_dir(rq) == READ;
779 	unsigned long addr = (unsigned long) kbuf;
780 	struct bio *bio;
781 	int ret;
782 
783 	if (len > (queue_max_hw_sectors(q) << 9))
784 		return -EINVAL;
785 	if (!len || !kbuf)
786 		return -EINVAL;
787 
788 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
789 	    blk_queue_may_bounce(q))
790 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
791 	else
792 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
793 
794 	if (IS_ERR(bio))
795 		return PTR_ERR(bio);
796 
797 	bio->bi_opf &= ~REQ_OP_MASK;
798 	bio->bi_opf |= req_op(rq);
799 
800 	ret = blk_rq_append_bio(rq, bio);
801 	if (unlikely(ret)) {
802 		bio_uninit(bio);
803 		kfree(bio);
804 	}
805 	return ret;
806 }
807 EXPORT_SYMBOL(blk_rq_map_kern);
808