1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to mapping data to requests 4 */ 5 #include <linux/kernel.h> 6 #include <linux/sched/task_stack.h> 7 #include <linux/module.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/uio.h> 11 12 #include "blk.h" 13 14 struct bio_map_data { 15 bool is_our_pages : 1; 16 bool is_null_mapped : 1; 17 struct iov_iter iter; 18 struct iovec iov[]; 19 }; 20 21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 22 gfp_t gfp_mask) 23 { 24 struct bio_map_data *bmd; 25 26 if (data->nr_segs > UIO_MAXIOV) 27 return NULL; 28 29 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 30 if (!bmd) 31 return NULL; 32 bmd->iter = *data; 33 if (iter_is_iovec(data)) { 34 memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs); 35 bmd->iter.__iov = bmd->iov; 36 } 37 return bmd; 38 } 39 40 /** 41 * bio_copy_from_iter - copy all pages from iov_iter to bio 42 * @bio: The &struct bio which describes the I/O as destination 43 * @iter: iov_iter as source 44 * 45 * Copy all pages from iov_iter to bio. 46 * Returns 0 on success, or error on failure. 47 */ 48 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 49 { 50 struct bio_vec *bvec; 51 struct bvec_iter_all iter_all; 52 53 bio_for_each_segment_all(bvec, bio, iter_all) { 54 ssize_t ret; 55 56 ret = copy_page_from_iter(bvec->bv_page, 57 bvec->bv_offset, 58 bvec->bv_len, 59 iter); 60 61 if (!iov_iter_count(iter)) 62 break; 63 64 if (ret < bvec->bv_len) 65 return -EFAULT; 66 } 67 68 return 0; 69 } 70 71 /** 72 * bio_copy_to_iter - copy all pages from bio to iov_iter 73 * @bio: The &struct bio which describes the I/O as source 74 * @iter: iov_iter as destination 75 * 76 * Copy all pages from bio to iov_iter. 77 * Returns 0 on success, or error on failure. 78 */ 79 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 80 { 81 struct bio_vec *bvec; 82 struct bvec_iter_all iter_all; 83 84 bio_for_each_segment_all(bvec, bio, iter_all) { 85 ssize_t ret; 86 87 ret = copy_page_to_iter(bvec->bv_page, 88 bvec->bv_offset, 89 bvec->bv_len, 90 &iter); 91 92 if (!iov_iter_count(&iter)) 93 break; 94 95 if (ret < bvec->bv_len) 96 return -EFAULT; 97 } 98 99 return 0; 100 } 101 102 /** 103 * bio_uncopy_user - finish previously mapped bio 104 * @bio: bio being terminated 105 * 106 * Free pages allocated from bio_copy_user_iov() and write back data 107 * to user space in case of a read. 108 */ 109 static int bio_uncopy_user(struct bio *bio) 110 { 111 struct bio_map_data *bmd = bio->bi_private; 112 int ret = 0; 113 114 if (!bmd->is_null_mapped) { 115 /* 116 * if we're in a workqueue, the request is orphaned, so 117 * don't copy into a random user address space, just free 118 * and return -EINTR so user space doesn't expect any data. 119 */ 120 if (!current->mm) 121 ret = -EINTR; 122 else if (bio_data_dir(bio) == READ) 123 ret = bio_copy_to_iter(bio, bmd->iter); 124 if (bmd->is_our_pages) 125 bio_free_pages(bio); 126 } 127 kfree(bmd); 128 return ret; 129 } 130 131 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data, 132 struct iov_iter *iter, gfp_t gfp_mask) 133 { 134 struct bio_map_data *bmd; 135 struct page *page; 136 struct bio *bio; 137 int i = 0, ret; 138 int nr_pages; 139 unsigned int len = iter->count; 140 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 141 142 bmd = bio_alloc_map_data(iter, gfp_mask); 143 if (!bmd) 144 return -ENOMEM; 145 146 /* 147 * We need to do a deep copy of the iov_iter including the iovecs. 148 * The caller provided iov might point to an on-stack or otherwise 149 * shortlived one. 150 */ 151 bmd->is_our_pages = !map_data; 152 bmd->is_null_mapped = (map_data && map_data->null_mapped); 153 154 nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE)); 155 156 ret = -ENOMEM; 157 bio = bio_kmalloc(nr_pages, gfp_mask); 158 if (!bio) 159 goto out_bmd; 160 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq)); 161 162 if (map_data) { 163 nr_pages = 1U << map_data->page_order; 164 i = map_data->offset / PAGE_SIZE; 165 } 166 while (len) { 167 unsigned int bytes = PAGE_SIZE; 168 169 bytes -= offset; 170 171 if (bytes > len) 172 bytes = len; 173 174 if (map_data) { 175 if (i == map_data->nr_entries * nr_pages) { 176 ret = -ENOMEM; 177 goto cleanup; 178 } 179 180 page = map_data->pages[i / nr_pages]; 181 page += (i % nr_pages); 182 183 i++; 184 } else { 185 page = alloc_page(GFP_NOIO | gfp_mask); 186 if (!page) { 187 ret = -ENOMEM; 188 goto cleanup; 189 } 190 } 191 192 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) { 193 if (!map_data) 194 __free_page(page); 195 break; 196 } 197 198 len -= bytes; 199 offset = 0; 200 } 201 202 if (map_data) 203 map_data->offset += bio->bi_iter.bi_size; 204 205 /* 206 * success 207 */ 208 if (iov_iter_rw(iter) == WRITE && 209 (!map_data || !map_data->null_mapped)) { 210 ret = bio_copy_from_iter(bio, iter); 211 if (ret) 212 goto cleanup; 213 } else if (map_data && map_data->from_user) { 214 struct iov_iter iter2 = *iter; 215 216 /* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */ 217 iter2.data_source = ITER_SOURCE; 218 ret = bio_copy_from_iter(bio, &iter2); 219 if (ret) 220 goto cleanup; 221 } else { 222 if (bmd->is_our_pages) 223 zero_fill_bio(bio); 224 iov_iter_advance(iter, bio->bi_iter.bi_size); 225 } 226 227 bio->bi_private = bmd; 228 229 ret = blk_rq_append_bio(rq, bio); 230 if (ret) 231 goto cleanup; 232 return 0; 233 cleanup: 234 if (!map_data) 235 bio_free_pages(bio); 236 bio_uninit(bio); 237 kfree(bio); 238 out_bmd: 239 kfree(bmd); 240 return ret; 241 } 242 243 static void blk_mq_map_bio_put(struct bio *bio) 244 { 245 if (bio->bi_opf & REQ_ALLOC_CACHE) { 246 bio_put(bio); 247 } else { 248 bio_uninit(bio); 249 kfree(bio); 250 } 251 } 252 253 static struct bio *blk_rq_map_bio_alloc(struct request *rq, 254 unsigned int nr_vecs, gfp_t gfp_mask) 255 { 256 struct bio *bio; 257 258 if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) { 259 bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask, 260 &fs_bio_set); 261 if (!bio) 262 return NULL; 263 } else { 264 bio = bio_kmalloc(nr_vecs, gfp_mask); 265 if (!bio) 266 return NULL; 267 bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq)); 268 } 269 return bio; 270 } 271 272 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter, 273 gfp_t gfp_mask) 274 { 275 iov_iter_extraction_t extraction_flags = 0; 276 unsigned int max_sectors = queue_max_hw_sectors(rq->q); 277 unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS); 278 struct bio *bio; 279 int ret; 280 int j; 281 282 if (!iov_iter_count(iter)) 283 return -EINVAL; 284 285 bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask); 286 if (bio == NULL) 287 return -ENOMEM; 288 289 if (blk_queue_pci_p2pdma(rq->q)) 290 extraction_flags |= ITER_ALLOW_P2PDMA; 291 if (iov_iter_extract_will_pin(iter)) 292 bio_set_flag(bio, BIO_PAGE_PINNED); 293 294 while (iov_iter_count(iter)) { 295 struct page *stack_pages[UIO_FASTIOV]; 296 struct page **pages = stack_pages; 297 ssize_t bytes; 298 size_t offs; 299 int npages; 300 301 if (nr_vecs > ARRAY_SIZE(stack_pages)) 302 pages = NULL; 303 304 bytes = iov_iter_extract_pages(iter, &pages, LONG_MAX, 305 nr_vecs, extraction_flags, &offs); 306 if (unlikely(bytes <= 0)) { 307 ret = bytes ? bytes : -EFAULT; 308 goto out_unmap; 309 } 310 311 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 312 313 if (unlikely(offs & queue_dma_alignment(rq->q))) 314 j = 0; 315 else { 316 for (j = 0; j < npages; j++) { 317 struct page *page = pages[j]; 318 unsigned int n = PAGE_SIZE - offs; 319 bool same_page = false; 320 321 if (n > bytes) 322 n = bytes; 323 324 if (!bio_add_hw_page(rq->q, bio, page, n, offs, 325 max_sectors, &same_page)) 326 break; 327 328 if (same_page) 329 bio_release_page(bio, page); 330 bytes -= n; 331 offs = 0; 332 } 333 } 334 /* 335 * release the pages we didn't map into the bio, if any 336 */ 337 while (j < npages) 338 bio_release_page(bio, pages[j++]); 339 if (pages != stack_pages) 340 kvfree(pages); 341 /* couldn't stuff something into bio? */ 342 if (bytes) { 343 iov_iter_revert(iter, bytes); 344 break; 345 } 346 } 347 348 ret = blk_rq_append_bio(rq, bio); 349 if (ret) 350 goto out_unmap; 351 return 0; 352 353 out_unmap: 354 bio_release_pages(bio, false); 355 blk_mq_map_bio_put(bio); 356 return ret; 357 } 358 359 static void bio_invalidate_vmalloc_pages(struct bio *bio) 360 { 361 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 362 if (bio->bi_private && !op_is_write(bio_op(bio))) { 363 unsigned long i, len = 0; 364 365 for (i = 0; i < bio->bi_vcnt; i++) 366 len += bio->bi_io_vec[i].bv_len; 367 invalidate_kernel_vmap_range(bio->bi_private, len); 368 } 369 #endif 370 } 371 372 static void bio_map_kern_endio(struct bio *bio) 373 { 374 bio_invalidate_vmalloc_pages(bio); 375 bio_uninit(bio); 376 kfree(bio); 377 } 378 379 /** 380 * bio_map_kern - map kernel address into bio 381 * @q: the struct request_queue for the bio 382 * @data: pointer to buffer to map 383 * @len: length in bytes 384 * @gfp_mask: allocation flags for bio allocation 385 * 386 * Map the kernel address into a bio suitable for io to a block 387 * device. Returns an error pointer in case of error. 388 */ 389 static struct bio *bio_map_kern(struct request_queue *q, void *data, 390 unsigned int len, gfp_t gfp_mask) 391 { 392 unsigned long kaddr = (unsigned long)data; 393 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 394 unsigned long start = kaddr >> PAGE_SHIFT; 395 const int nr_pages = end - start; 396 bool is_vmalloc = is_vmalloc_addr(data); 397 struct page *page; 398 int offset, i; 399 struct bio *bio; 400 401 bio = bio_kmalloc(nr_pages, gfp_mask); 402 if (!bio) 403 return ERR_PTR(-ENOMEM); 404 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); 405 406 if (is_vmalloc) { 407 flush_kernel_vmap_range(data, len); 408 bio->bi_private = data; 409 } 410 411 offset = offset_in_page(kaddr); 412 for (i = 0; i < nr_pages; i++) { 413 unsigned int bytes = PAGE_SIZE - offset; 414 415 if (len <= 0) 416 break; 417 418 if (bytes > len) 419 bytes = len; 420 421 if (!is_vmalloc) 422 page = virt_to_page(data); 423 else 424 page = vmalloc_to_page(data); 425 if (bio_add_pc_page(q, bio, page, bytes, 426 offset) < bytes) { 427 /* we don't support partial mappings */ 428 bio_uninit(bio); 429 kfree(bio); 430 return ERR_PTR(-EINVAL); 431 } 432 433 data += bytes; 434 len -= bytes; 435 offset = 0; 436 } 437 438 bio->bi_end_io = bio_map_kern_endio; 439 return bio; 440 } 441 442 static void bio_copy_kern_endio(struct bio *bio) 443 { 444 bio_free_pages(bio); 445 bio_uninit(bio); 446 kfree(bio); 447 } 448 449 static void bio_copy_kern_endio_read(struct bio *bio) 450 { 451 char *p = bio->bi_private; 452 struct bio_vec *bvec; 453 struct bvec_iter_all iter_all; 454 455 bio_for_each_segment_all(bvec, bio, iter_all) { 456 memcpy_from_bvec(p, bvec); 457 p += bvec->bv_len; 458 } 459 460 bio_copy_kern_endio(bio); 461 } 462 463 /** 464 * bio_copy_kern - copy kernel address into bio 465 * @q: the struct request_queue for the bio 466 * @data: pointer to buffer to copy 467 * @len: length in bytes 468 * @gfp_mask: allocation flags for bio and page allocation 469 * @reading: data direction is READ 470 * 471 * copy the kernel address into a bio suitable for io to a block 472 * device. Returns an error pointer in case of error. 473 */ 474 static struct bio *bio_copy_kern(struct request_queue *q, void *data, 475 unsigned int len, gfp_t gfp_mask, int reading) 476 { 477 unsigned long kaddr = (unsigned long)data; 478 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 479 unsigned long start = kaddr >> PAGE_SHIFT; 480 struct bio *bio; 481 void *p = data; 482 int nr_pages = 0; 483 484 /* 485 * Overflow, abort 486 */ 487 if (end < start) 488 return ERR_PTR(-EINVAL); 489 490 nr_pages = end - start; 491 bio = bio_kmalloc(nr_pages, gfp_mask); 492 if (!bio) 493 return ERR_PTR(-ENOMEM); 494 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); 495 496 while (len) { 497 struct page *page; 498 unsigned int bytes = PAGE_SIZE; 499 500 if (bytes > len) 501 bytes = len; 502 503 page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask); 504 if (!page) 505 goto cleanup; 506 507 if (!reading) 508 memcpy(page_address(page), p, bytes); 509 510 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 511 break; 512 513 len -= bytes; 514 p += bytes; 515 } 516 517 if (reading) { 518 bio->bi_end_io = bio_copy_kern_endio_read; 519 bio->bi_private = data; 520 } else { 521 bio->bi_end_io = bio_copy_kern_endio; 522 } 523 524 return bio; 525 526 cleanup: 527 bio_free_pages(bio); 528 bio_uninit(bio); 529 kfree(bio); 530 return ERR_PTR(-ENOMEM); 531 } 532 533 /* 534 * Append a bio to a passthrough request. Only works if the bio can be merged 535 * into the request based on the driver constraints. 536 */ 537 int blk_rq_append_bio(struct request *rq, struct bio *bio) 538 { 539 struct bvec_iter iter; 540 struct bio_vec bv; 541 unsigned int nr_segs = 0; 542 543 bio_for_each_bvec(bv, bio, iter) 544 nr_segs++; 545 546 if (!rq->bio) { 547 blk_rq_bio_prep(rq, bio, nr_segs); 548 } else { 549 if (!ll_back_merge_fn(rq, bio, nr_segs)) 550 return -EINVAL; 551 rq->biotail->bi_next = bio; 552 rq->biotail = bio; 553 rq->__data_len += (bio)->bi_iter.bi_size; 554 bio_crypt_free_ctx(bio); 555 } 556 557 return 0; 558 } 559 EXPORT_SYMBOL(blk_rq_append_bio); 560 561 /* Prepare bio for passthrough IO given ITER_BVEC iter */ 562 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter) 563 { 564 struct request_queue *q = rq->q; 565 size_t nr_iter = iov_iter_count(iter); 566 size_t nr_segs = iter->nr_segs; 567 struct bio_vec *bvecs, *bvprvp = NULL; 568 const struct queue_limits *lim = &q->limits; 569 unsigned int nsegs = 0, bytes = 0; 570 struct bio *bio; 571 size_t i; 572 573 if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q)) 574 return -EINVAL; 575 if (nr_segs > queue_max_segments(q)) 576 return -EINVAL; 577 578 /* no iovecs to alloc, as we already have a BVEC iterator */ 579 bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL); 580 if (bio == NULL) 581 return -ENOMEM; 582 583 bio_iov_bvec_set(bio, (struct iov_iter *)iter); 584 blk_rq_bio_prep(rq, bio, nr_segs); 585 586 /* loop to perform a bunch of sanity checks */ 587 bvecs = (struct bio_vec *)iter->bvec; 588 for (i = 0; i < nr_segs; i++) { 589 struct bio_vec *bv = &bvecs[i]; 590 591 /* 592 * If the queue doesn't support SG gaps and adding this 593 * offset would create a gap, fallback to copy. 594 */ 595 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) { 596 blk_mq_map_bio_put(bio); 597 return -EREMOTEIO; 598 } 599 /* check full condition */ 600 if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len) 601 goto put_bio; 602 if (bytes + bv->bv_len > nr_iter) 603 break; 604 605 nsegs++; 606 bytes += bv->bv_len; 607 bvprvp = bv; 608 } 609 return 0; 610 put_bio: 611 blk_mq_map_bio_put(bio); 612 return -EINVAL; 613 } 614 615 /** 616 * blk_rq_map_user_iov - map user data to a request, for passthrough requests 617 * @q: request queue where request should be inserted 618 * @rq: request to map data to 619 * @map_data: pointer to the rq_map_data holding pages (if necessary) 620 * @iter: iovec iterator 621 * @gfp_mask: memory allocation flags 622 * 623 * Description: 624 * Data will be mapped directly for zero copy I/O, if possible. Otherwise 625 * a kernel bounce buffer is used. 626 * 627 * A matching blk_rq_unmap_user() must be issued at the end of I/O, while 628 * still in process context. 629 */ 630 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq, 631 struct rq_map_data *map_data, 632 const struct iov_iter *iter, gfp_t gfp_mask) 633 { 634 bool copy = false, map_bvec = false; 635 unsigned long align = q->dma_pad_mask | queue_dma_alignment(q); 636 struct bio *bio = NULL; 637 struct iov_iter i; 638 int ret = -EINVAL; 639 640 if (map_data) 641 copy = true; 642 else if (blk_queue_may_bounce(q)) 643 copy = true; 644 else if (iov_iter_alignment(iter) & align) 645 copy = true; 646 else if (iov_iter_is_bvec(iter)) 647 map_bvec = true; 648 else if (!user_backed_iter(iter)) 649 copy = true; 650 else if (queue_virt_boundary(q)) 651 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter); 652 653 if (map_bvec) { 654 ret = blk_rq_map_user_bvec(rq, iter); 655 if (!ret) 656 return 0; 657 if (ret != -EREMOTEIO) 658 goto fail; 659 /* fall back to copying the data on limits mismatches */ 660 copy = true; 661 } 662 663 i = *iter; 664 do { 665 if (copy) 666 ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask); 667 else 668 ret = bio_map_user_iov(rq, &i, gfp_mask); 669 if (ret) 670 goto unmap_rq; 671 if (!bio) 672 bio = rq->bio; 673 } while (iov_iter_count(&i)); 674 675 return 0; 676 677 unmap_rq: 678 blk_rq_unmap_user(bio); 679 fail: 680 rq->bio = NULL; 681 return ret; 682 } 683 EXPORT_SYMBOL(blk_rq_map_user_iov); 684 685 int blk_rq_map_user(struct request_queue *q, struct request *rq, 686 struct rq_map_data *map_data, void __user *ubuf, 687 unsigned long len, gfp_t gfp_mask) 688 { 689 struct iov_iter i; 690 int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i); 691 692 if (unlikely(ret < 0)) 693 return ret; 694 695 return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask); 696 } 697 EXPORT_SYMBOL(blk_rq_map_user); 698 699 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data, 700 void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask, 701 bool vec, int iov_count, bool check_iter_count, int rw) 702 { 703 int ret = 0; 704 705 if (vec) { 706 struct iovec fast_iov[UIO_FASTIOV]; 707 struct iovec *iov = fast_iov; 708 struct iov_iter iter; 709 710 ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len, 711 UIO_FASTIOV, &iov, &iter); 712 if (ret < 0) 713 return ret; 714 715 if (iov_count) { 716 /* SG_IO howto says that the shorter of the two wins */ 717 iov_iter_truncate(&iter, buf_len); 718 if (check_iter_count && !iov_iter_count(&iter)) { 719 kfree(iov); 720 return -EINVAL; 721 } 722 } 723 724 ret = blk_rq_map_user_iov(req->q, req, map_data, &iter, 725 gfp_mask); 726 kfree(iov); 727 } else if (buf_len) { 728 ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len, 729 gfp_mask); 730 } 731 return ret; 732 } 733 EXPORT_SYMBOL(blk_rq_map_user_io); 734 735 /** 736 * blk_rq_unmap_user - unmap a request with user data 737 * @bio: start of bio list 738 * 739 * Description: 740 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must 741 * supply the original rq->bio from the blk_rq_map_user() return, since 742 * the I/O completion may have changed rq->bio. 743 */ 744 int blk_rq_unmap_user(struct bio *bio) 745 { 746 struct bio *next_bio; 747 int ret = 0, ret2; 748 749 while (bio) { 750 if (bio->bi_private) { 751 ret2 = bio_uncopy_user(bio); 752 if (ret2 && !ret) 753 ret = ret2; 754 } else { 755 bio_release_pages(bio, bio_data_dir(bio) == READ); 756 } 757 758 next_bio = bio; 759 bio = bio->bi_next; 760 blk_mq_map_bio_put(next_bio); 761 } 762 763 return ret; 764 } 765 EXPORT_SYMBOL(blk_rq_unmap_user); 766 767 /** 768 * blk_rq_map_kern - map kernel data to a request, for passthrough requests 769 * @q: request queue where request should be inserted 770 * @rq: request to fill 771 * @kbuf: the kernel buffer 772 * @len: length of user data 773 * @gfp_mask: memory allocation flags 774 * 775 * Description: 776 * Data will be mapped directly if possible. Otherwise a bounce 777 * buffer is used. Can be called multiple times to append multiple 778 * buffers. 779 */ 780 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf, 781 unsigned int len, gfp_t gfp_mask) 782 { 783 int reading = rq_data_dir(rq) == READ; 784 unsigned long addr = (unsigned long) kbuf; 785 struct bio *bio; 786 int ret; 787 788 if (len > (queue_max_hw_sectors(q) << 9)) 789 return -EINVAL; 790 if (!len || !kbuf) 791 return -EINVAL; 792 793 if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) || 794 blk_queue_may_bounce(q)) 795 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading); 796 else 797 bio = bio_map_kern(q, kbuf, len, gfp_mask); 798 799 if (IS_ERR(bio)) 800 return PTR_ERR(bio); 801 802 bio->bi_opf &= ~REQ_OP_MASK; 803 bio->bi_opf |= req_op(rq); 804 805 ret = blk_rq_append_bio(rq, bio); 806 if (unlikely(ret)) { 807 bio_uninit(bio); 808 kfree(bio); 809 } 810 return ret; 811 } 812 EXPORT_SYMBOL(blk_rq_map_kern); 813