1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * paramters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (HWEIGHT_WHOLE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO iff doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, soley depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The ouput looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <linux/blk-cgroup.h> 182 #include "blk-rq-qos.h" 183 #include "blk-stat.h" 184 #include "blk-wbt.h" 185 186 #ifdef CONFIG_TRACEPOINTS 187 188 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 189 #define TRACE_IOCG_PATH_LEN 1024 190 static DEFINE_SPINLOCK(trace_iocg_path_lock); 191 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 192 193 #define TRACE_IOCG_PATH(type, iocg, ...) \ 194 do { \ 195 unsigned long flags; \ 196 if (trace_iocost_##type##_enabled()) { \ 197 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 198 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 199 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 200 trace_iocost_##type(iocg, trace_iocg_path, \ 201 ##__VA_ARGS__); \ 202 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 203 } \ 204 } while (0) 205 206 #else /* CONFIG_TRACE_POINTS */ 207 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 208 #endif /* CONFIG_TRACE_POINTS */ 209 210 enum { 211 MILLION = 1000000, 212 213 /* timer period is calculated from latency requirements, bound it */ 214 MIN_PERIOD = USEC_PER_MSEC, 215 MAX_PERIOD = USEC_PER_SEC, 216 217 /* 218 * A cgroup's vtime can run 50% behind the device vtime, which 219 * serves as its IO credit buffer. Surplus weight adjustment is 220 * immediately canceled if the vtime margin runs below 10%. 221 */ 222 MARGIN_PCT = 50, 223 INUSE_MARGIN_PCT = 10, 224 225 /* Have some play in waitq timer operations */ 226 WAITQ_TIMER_MARGIN_PCT = 5, 227 228 /* 229 * vtime can wrap well within a reasonable uptime when vrate is 230 * consistently raised. Don't trust recorded cgroup vtime if the 231 * period counter indicates that it's older than 5mins. 232 */ 233 VTIME_VALID_DUR = 300 * USEC_PER_SEC, 234 235 /* 236 * Remember the past three non-zero usages and use the max for 237 * surplus calculation. Three slots guarantee that we remember one 238 * full period usage from the last active stretch even after 239 * partial deactivation and re-activation periods. Don't start 240 * giving away weight before collecting two data points to prevent 241 * hweight adjustments based on one partial activation period. 242 */ 243 NR_USAGE_SLOTS = 3, 244 MIN_VALID_USAGES = 2, 245 246 /* 1/64k is granular enough and can easily be handled w/ u32 */ 247 HWEIGHT_WHOLE = 1 << 16, 248 249 /* 250 * As vtime is used to calculate the cost of each IO, it needs to 251 * be fairly high precision. For example, it should be able to 252 * represent the cost of a single page worth of discard with 253 * suffificient accuracy. At the same time, it should be able to 254 * represent reasonably long enough durations to be useful and 255 * convenient during operation. 256 * 257 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 258 * granularity and days of wrap-around time even at extreme vrates. 259 */ 260 VTIME_PER_SEC_SHIFT = 37, 261 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 262 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 263 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 264 265 /* bound vrate adjustments within two orders of magnitude */ 266 VRATE_MIN_PPM = 10000, /* 1% */ 267 VRATE_MAX_PPM = 100000000, /* 10000% */ 268 269 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 270 VRATE_CLAMP_ADJ_PCT = 4, 271 272 /* if IOs end up waiting for requests, issue less */ 273 RQ_WAIT_BUSY_PCT = 5, 274 275 /* unbusy hysterisis */ 276 UNBUSY_THR_PCT = 75, 277 278 /* don't let cmds which take a very long time pin lagging for too long */ 279 MAX_LAGGING_PERIODS = 10, 280 281 /* 282 * If usage% * 1.25 + 2% is lower than hweight% by more than 3%, 283 * donate the surplus. 284 */ 285 SURPLUS_SCALE_PCT = 125, /* * 125% */ 286 SURPLUS_SCALE_ABS = HWEIGHT_WHOLE / 50, /* + 2% */ 287 SURPLUS_MIN_ADJ_DELTA = HWEIGHT_WHOLE / 33, /* 3% */ 288 289 /* switch iff the conditions are met for longer than this */ 290 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 291 292 /* 293 * Count IO size in 4k pages. The 12bit shift helps keeping 294 * size-proportional components of cost calculation in closer 295 * numbers of digits to per-IO cost components. 296 */ 297 IOC_PAGE_SHIFT = 12, 298 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 299 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 300 301 /* if apart further than 16M, consider randio for linear model */ 302 LCOEF_RANDIO_PAGES = 4096, 303 }; 304 305 enum ioc_running { 306 IOC_IDLE, 307 IOC_RUNNING, 308 IOC_STOP, 309 }; 310 311 /* io.cost.qos controls including per-dev enable of the whole controller */ 312 enum { 313 QOS_ENABLE, 314 QOS_CTRL, 315 NR_QOS_CTRL_PARAMS, 316 }; 317 318 /* io.cost.qos params */ 319 enum { 320 QOS_RPPM, 321 QOS_RLAT, 322 QOS_WPPM, 323 QOS_WLAT, 324 QOS_MIN, 325 QOS_MAX, 326 NR_QOS_PARAMS, 327 }; 328 329 /* io.cost.model controls */ 330 enum { 331 COST_CTRL, 332 COST_MODEL, 333 NR_COST_CTRL_PARAMS, 334 }; 335 336 /* builtin linear cost model coefficients */ 337 enum { 338 I_LCOEF_RBPS, 339 I_LCOEF_RSEQIOPS, 340 I_LCOEF_RRANDIOPS, 341 I_LCOEF_WBPS, 342 I_LCOEF_WSEQIOPS, 343 I_LCOEF_WRANDIOPS, 344 NR_I_LCOEFS, 345 }; 346 347 enum { 348 LCOEF_RPAGE, 349 LCOEF_RSEQIO, 350 LCOEF_RRANDIO, 351 LCOEF_WPAGE, 352 LCOEF_WSEQIO, 353 LCOEF_WRANDIO, 354 NR_LCOEFS, 355 }; 356 357 enum { 358 AUTOP_INVALID, 359 AUTOP_HDD, 360 AUTOP_SSD_QD1, 361 AUTOP_SSD_DFL, 362 AUTOP_SSD_FAST, 363 }; 364 365 struct ioc_gq; 366 367 struct ioc_params { 368 u32 qos[NR_QOS_PARAMS]; 369 u64 i_lcoefs[NR_I_LCOEFS]; 370 u64 lcoefs[NR_LCOEFS]; 371 u32 too_fast_vrate_pct; 372 u32 too_slow_vrate_pct; 373 }; 374 375 struct ioc_missed { 376 u32 nr_met; 377 u32 nr_missed; 378 u32 last_met; 379 u32 last_missed; 380 }; 381 382 struct ioc_pcpu_stat { 383 struct ioc_missed missed[2]; 384 385 u64 rq_wait_ns; 386 u64 last_rq_wait_ns; 387 }; 388 389 /* per device */ 390 struct ioc { 391 struct rq_qos rqos; 392 393 bool enabled; 394 395 struct ioc_params params; 396 u32 period_us; 397 u32 margin_us; 398 u64 vrate_min; 399 u64 vrate_max; 400 401 spinlock_t lock; 402 struct timer_list timer; 403 struct list_head active_iocgs; /* active cgroups */ 404 struct ioc_pcpu_stat __percpu *pcpu_stat; 405 406 enum ioc_running running; 407 atomic64_t vtime_rate; 408 409 seqcount_t period_seqcount; 410 u32 period_at; /* wallclock starttime */ 411 u64 period_at_vtime; /* vtime starttime */ 412 413 atomic64_t cur_period; /* inc'd each period */ 414 int busy_level; /* saturation history */ 415 416 u64 inuse_margin_vtime; 417 bool weights_updated; 418 atomic_t hweight_gen; /* for lazy hweights */ 419 420 u64 autop_too_fast_at; 421 u64 autop_too_slow_at; 422 int autop_idx; 423 bool user_qos_params:1; 424 bool user_cost_model:1; 425 }; 426 427 /* per device-cgroup pair */ 428 struct ioc_gq { 429 struct blkg_policy_data pd; 430 struct ioc *ioc; 431 432 /* 433 * A iocg can get its weight from two sources - an explicit 434 * per-device-cgroup configuration or the default weight of the 435 * cgroup. `cfg_weight` is the explicit per-device-cgroup 436 * configuration. `weight` is the effective considering both 437 * sources. 438 * 439 * When an idle cgroup becomes active its `active` goes from 0 to 440 * `weight`. `inuse` is the surplus adjusted active weight. 441 * `active` and `inuse` are used to calculate `hweight_active` and 442 * `hweight_inuse`. 443 * 444 * `last_inuse` remembers `inuse` while an iocg is idle to persist 445 * surplus adjustments. 446 */ 447 u32 cfg_weight; 448 u32 weight; 449 u32 active; 450 u32 inuse; 451 u32 last_inuse; 452 453 sector_t cursor; /* to detect randio */ 454 455 /* 456 * `vtime` is this iocg's vtime cursor which progresses as IOs are 457 * issued. If lagging behind device vtime, the delta represents 458 * the currently available IO budget. If runnning ahead, the 459 * overage. 460 * 461 * `vtime_done` is the same but progressed on completion rather 462 * than issue. The delta behind `vtime` represents the cost of 463 * currently in-flight IOs. 464 * 465 * `last_vtime` is used to remember `vtime` at the end of the last 466 * period to calculate utilization. 467 */ 468 atomic64_t vtime; 469 atomic64_t done_vtime; 470 u64 abs_vdebt; 471 u64 last_vtime; 472 473 /* 474 * The period this iocg was last active in. Used for deactivation 475 * and invalidating `vtime`. 476 */ 477 atomic64_t active_period; 478 struct list_head active_list; 479 480 /* see __propagate_active_weight() and current_hweight() for details */ 481 u64 child_active_sum; 482 u64 child_inuse_sum; 483 int hweight_gen; 484 u32 hweight_active; 485 u32 hweight_inuse; 486 bool has_surplus; 487 488 struct wait_queue_head waitq; 489 struct hrtimer waitq_timer; 490 struct hrtimer delay_timer; 491 492 /* usage is recorded as fractions of HWEIGHT_WHOLE */ 493 int usage_idx; 494 u32 usages[NR_USAGE_SLOTS]; 495 496 /* this iocg's depth in the hierarchy and ancestors including self */ 497 int level; 498 struct ioc_gq *ancestors[]; 499 }; 500 501 /* per cgroup */ 502 struct ioc_cgrp { 503 struct blkcg_policy_data cpd; 504 unsigned int dfl_weight; 505 }; 506 507 struct ioc_now { 508 u64 now_ns; 509 u32 now; 510 u64 vnow; 511 u64 vrate; 512 }; 513 514 struct iocg_wait { 515 struct wait_queue_entry wait; 516 struct bio *bio; 517 u64 abs_cost; 518 bool committed; 519 }; 520 521 struct iocg_wake_ctx { 522 struct ioc_gq *iocg; 523 u32 hw_inuse; 524 s64 vbudget; 525 }; 526 527 static const struct ioc_params autop[] = { 528 [AUTOP_HDD] = { 529 .qos = { 530 [QOS_RLAT] = 250000, /* 250ms */ 531 [QOS_WLAT] = 250000, 532 [QOS_MIN] = VRATE_MIN_PPM, 533 [QOS_MAX] = VRATE_MAX_PPM, 534 }, 535 .i_lcoefs = { 536 [I_LCOEF_RBPS] = 174019176, 537 [I_LCOEF_RSEQIOPS] = 41708, 538 [I_LCOEF_RRANDIOPS] = 370, 539 [I_LCOEF_WBPS] = 178075866, 540 [I_LCOEF_WSEQIOPS] = 42705, 541 [I_LCOEF_WRANDIOPS] = 378, 542 }, 543 }, 544 [AUTOP_SSD_QD1] = { 545 .qos = { 546 [QOS_RLAT] = 25000, /* 25ms */ 547 [QOS_WLAT] = 25000, 548 [QOS_MIN] = VRATE_MIN_PPM, 549 [QOS_MAX] = VRATE_MAX_PPM, 550 }, 551 .i_lcoefs = { 552 [I_LCOEF_RBPS] = 245855193, 553 [I_LCOEF_RSEQIOPS] = 61575, 554 [I_LCOEF_RRANDIOPS] = 6946, 555 [I_LCOEF_WBPS] = 141365009, 556 [I_LCOEF_WSEQIOPS] = 33716, 557 [I_LCOEF_WRANDIOPS] = 26796, 558 }, 559 }, 560 [AUTOP_SSD_DFL] = { 561 .qos = { 562 [QOS_RLAT] = 25000, /* 25ms */ 563 [QOS_WLAT] = 25000, 564 [QOS_MIN] = VRATE_MIN_PPM, 565 [QOS_MAX] = VRATE_MAX_PPM, 566 }, 567 .i_lcoefs = { 568 [I_LCOEF_RBPS] = 488636629, 569 [I_LCOEF_RSEQIOPS] = 8932, 570 [I_LCOEF_RRANDIOPS] = 8518, 571 [I_LCOEF_WBPS] = 427891549, 572 [I_LCOEF_WSEQIOPS] = 28755, 573 [I_LCOEF_WRANDIOPS] = 21940, 574 }, 575 .too_fast_vrate_pct = 500, 576 }, 577 [AUTOP_SSD_FAST] = { 578 .qos = { 579 [QOS_RLAT] = 5000, /* 5ms */ 580 [QOS_WLAT] = 5000, 581 [QOS_MIN] = VRATE_MIN_PPM, 582 [QOS_MAX] = VRATE_MAX_PPM, 583 }, 584 .i_lcoefs = { 585 [I_LCOEF_RBPS] = 3102524156LLU, 586 [I_LCOEF_RSEQIOPS] = 724816, 587 [I_LCOEF_RRANDIOPS] = 778122, 588 [I_LCOEF_WBPS] = 1742780862LLU, 589 [I_LCOEF_WSEQIOPS] = 425702, 590 [I_LCOEF_WRANDIOPS] = 443193, 591 }, 592 .too_slow_vrate_pct = 10, 593 }, 594 }; 595 596 /* 597 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 598 * vtime credit shortage and down on device saturation. 599 */ 600 static u32 vrate_adj_pct[] = 601 { 0, 0, 0, 0, 602 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 603 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 604 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 605 606 static struct blkcg_policy blkcg_policy_iocost; 607 608 /* accessors and helpers */ 609 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 610 { 611 return container_of(rqos, struct ioc, rqos); 612 } 613 614 static struct ioc *q_to_ioc(struct request_queue *q) 615 { 616 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 617 } 618 619 static const char *q_name(struct request_queue *q) 620 { 621 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags)) 622 return kobject_name(q->kobj.parent); 623 else 624 return "<unknown>"; 625 } 626 627 static const char __maybe_unused *ioc_name(struct ioc *ioc) 628 { 629 return q_name(ioc->rqos.q); 630 } 631 632 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 633 { 634 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 635 } 636 637 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 638 { 639 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 640 } 641 642 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 643 { 644 return pd_to_blkg(&iocg->pd); 645 } 646 647 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 648 { 649 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 650 struct ioc_cgrp, cpd); 651 } 652 653 /* 654 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 655 * weight, the more expensive each IO. Must round up. 656 */ 657 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 658 { 659 return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse); 660 } 661 662 /* 663 * The inverse of abs_cost_to_cost(). Must round up. 664 */ 665 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 666 { 667 return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE); 668 } 669 670 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost) 671 { 672 bio->bi_iocost_cost = cost; 673 atomic64_add(cost, &iocg->vtime); 674 } 675 676 #define CREATE_TRACE_POINTS 677 #include <trace/events/iocost.h> 678 679 /* latency Qos params changed, update period_us and all the dependent params */ 680 static void ioc_refresh_period_us(struct ioc *ioc) 681 { 682 u32 ppm, lat, multi, period_us; 683 684 lockdep_assert_held(&ioc->lock); 685 686 /* pick the higher latency target */ 687 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 688 ppm = ioc->params.qos[QOS_RPPM]; 689 lat = ioc->params.qos[QOS_RLAT]; 690 } else { 691 ppm = ioc->params.qos[QOS_WPPM]; 692 lat = ioc->params.qos[QOS_WLAT]; 693 } 694 695 /* 696 * We want the period to be long enough to contain a healthy number 697 * of IOs while short enough for granular control. Define it as a 698 * multiple of the latency target. Ideally, the multiplier should 699 * be scaled according to the percentile so that it would nominally 700 * contain a certain number of requests. Let's be simpler and 701 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 702 */ 703 if (ppm) 704 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 705 else 706 multi = 2; 707 period_us = multi * lat; 708 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 709 710 /* calculate dependent params */ 711 ioc->period_us = period_us; 712 ioc->margin_us = period_us * MARGIN_PCT / 100; 713 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP( 714 period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100); 715 } 716 717 static int ioc_autop_idx(struct ioc *ioc) 718 { 719 int idx = ioc->autop_idx; 720 const struct ioc_params *p = &autop[idx]; 721 u32 vrate_pct; 722 u64 now_ns; 723 724 /* rotational? */ 725 if (!blk_queue_nonrot(ioc->rqos.q)) 726 return AUTOP_HDD; 727 728 /* handle SATA SSDs w/ broken NCQ */ 729 if (blk_queue_depth(ioc->rqos.q) == 1) 730 return AUTOP_SSD_QD1; 731 732 /* use one of the normal ssd sets */ 733 if (idx < AUTOP_SSD_DFL) 734 return AUTOP_SSD_DFL; 735 736 /* if user is overriding anything, maintain what was there */ 737 if (ioc->user_qos_params || ioc->user_cost_model) 738 return idx; 739 740 /* step up/down based on the vrate */ 741 vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100, 742 VTIME_PER_USEC); 743 now_ns = ktime_get_ns(); 744 745 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 746 if (!ioc->autop_too_fast_at) 747 ioc->autop_too_fast_at = now_ns; 748 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 749 return idx + 1; 750 } else { 751 ioc->autop_too_fast_at = 0; 752 } 753 754 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 755 if (!ioc->autop_too_slow_at) 756 ioc->autop_too_slow_at = now_ns; 757 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 758 return idx - 1; 759 } else { 760 ioc->autop_too_slow_at = 0; 761 } 762 763 return idx; 764 } 765 766 /* 767 * Take the followings as input 768 * 769 * @bps maximum sequential throughput 770 * @seqiops maximum sequential 4k iops 771 * @randiops maximum random 4k iops 772 * 773 * and calculate the linear model cost coefficients. 774 * 775 * *@page per-page cost 1s / (@bps / 4096) 776 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 777 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 778 */ 779 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 780 u64 *page, u64 *seqio, u64 *randio) 781 { 782 u64 v; 783 784 *page = *seqio = *randio = 0; 785 786 if (bps) 787 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 788 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 789 790 if (seqiops) { 791 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 792 if (v > *page) 793 *seqio = v - *page; 794 } 795 796 if (randiops) { 797 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 798 if (v > *page) 799 *randio = v - *page; 800 } 801 } 802 803 static void ioc_refresh_lcoefs(struct ioc *ioc) 804 { 805 u64 *u = ioc->params.i_lcoefs; 806 u64 *c = ioc->params.lcoefs; 807 808 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 809 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 810 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 811 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 812 } 813 814 static bool ioc_refresh_params(struct ioc *ioc, bool force) 815 { 816 const struct ioc_params *p; 817 int idx; 818 819 lockdep_assert_held(&ioc->lock); 820 821 idx = ioc_autop_idx(ioc); 822 p = &autop[idx]; 823 824 if (idx == ioc->autop_idx && !force) 825 return false; 826 827 if (idx != ioc->autop_idx) 828 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 829 830 ioc->autop_idx = idx; 831 ioc->autop_too_fast_at = 0; 832 ioc->autop_too_slow_at = 0; 833 834 if (!ioc->user_qos_params) 835 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 836 if (!ioc->user_cost_model) 837 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 838 839 ioc_refresh_period_us(ioc); 840 ioc_refresh_lcoefs(ioc); 841 842 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 843 VTIME_PER_USEC, MILLION); 844 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 845 VTIME_PER_USEC, MILLION); 846 847 return true; 848 } 849 850 /* take a snapshot of the current [v]time and vrate */ 851 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 852 { 853 unsigned seq; 854 855 now->now_ns = ktime_get(); 856 now->now = ktime_to_us(now->now_ns); 857 now->vrate = atomic64_read(&ioc->vtime_rate); 858 859 /* 860 * The current vtime is 861 * 862 * vtime at period start + (wallclock time since the start) * vrate 863 * 864 * As a consistent snapshot of `period_at_vtime` and `period_at` is 865 * needed, they're seqcount protected. 866 */ 867 do { 868 seq = read_seqcount_begin(&ioc->period_seqcount); 869 now->vnow = ioc->period_at_vtime + 870 (now->now - ioc->period_at) * now->vrate; 871 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 872 } 873 874 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 875 { 876 lockdep_assert_held(&ioc->lock); 877 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 878 879 write_seqcount_begin(&ioc->period_seqcount); 880 ioc->period_at = now->now; 881 ioc->period_at_vtime = now->vnow; 882 write_seqcount_end(&ioc->period_seqcount); 883 884 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 885 add_timer(&ioc->timer); 886 } 887 888 /* 889 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 890 * weight sums and propagate upwards accordingly. 891 */ 892 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse) 893 { 894 struct ioc *ioc = iocg->ioc; 895 int lvl; 896 897 lockdep_assert_held(&ioc->lock); 898 899 inuse = min(active, inuse); 900 901 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 902 struct ioc_gq *parent = iocg->ancestors[lvl]; 903 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 904 u32 parent_active = 0, parent_inuse = 0; 905 906 /* update the level sums */ 907 parent->child_active_sum += (s32)(active - child->active); 908 parent->child_inuse_sum += (s32)(inuse - child->inuse); 909 /* apply the udpates */ 910 child->active = active; 911 child->inuse = inuse; 912 913 /* 914 * The delta between inuse and active sums indicates that 915 * that much of weight is being given away. Parent's inuse 916 * and active should reflect the ratio. 917 */ 918 if (parent->child_active_sum) { 919 parent_active = parent->weight; 920 parent_inuse = DIV64_U64_ROUND_UP( 921 parent_active * parent->child_inuse_sum, 922 parent->child_active_sum); 923 } 924 925 /* do we need to keep walking up? */ 926 if (parent_active == parent->active && 927 parent_inuse == parent->inuse) 928 break; 929 930 active = parent_active; 931 inuse = parent_inuse; 932 } 933 934 ioc->weights_updated = true; 935 } 936 937 static void commit_active_weights(struct ioc *ioc) 938 { 939 lockdep_assert_held(&ioc->lock); 940 941 if (ioc->weights_updated) { 942 /* paired with rmb in current_hweight(), see there */ 943 smp_wmb(); 944 atomic_inc(&ioc->hweight_gen); 945 ioc->weights_updated = false; 946 } 947 } 948 949 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse) 950 { 951 __propagate_active_weight(iocg, active, inuse); 952 commit_active_weights(iocg->ioc); 953 } 954 955 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 956 { 957 struct ioc *ioc = iocg->ioc; 958 int lvl; 959 u32 hwa, hwi; 960 int ioc_gen; 961 962 /* hot path - if uptodate, use cached */ 963 ioc_gen = atomic_read(&ioc->hweight_gen); 964 if (ioc_gen == iocg->hweight_gen) 965 goto out; 966 967 /* 968 * Paired with wmb in commit_active_weights(). If we saw the 969 * updated hweight_gen, all the weight updates from 970 * __propagate_active_weight() are visible too. 971 * 972 * We can race with weight updates during calculation and get it 973 * wrong. However, hweight_gen would have changed and a future 974 * reader will recalculate and we're guaranteed to discard the 975 * wrong result soon. 976 */ 977 smp_rmb(); 978 979 hwa = hwi = HWEIGHT_WHOLE; 980 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 981 struct ioc_gq *parent = iocg->ancestors[lvl]; 982 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 983 u32 active_sum = READ_ONCE(parent->child_active_sum); 984 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum); 985 u32 active = READ_ONCE(child->active); 986 u32 inuse = READ_ONCE(child->inuse); 987 988 /* we can race with deactivations and either may read as zero */ 989 if (!active_sum || !inuse_sum) 990 continue; 991 992 active_sum = max(active, active_sum); 993 hwa = hwa * active / active_sum; /* max 16bits * 10000 */ 994 995 inuse_sum = max(inuse, inuse_sum); 996 hwi = hwi * inuse / inuse_sum; /* max 16bits * 10000 */ 997 } 998 999 iocg->hweight_active = max_t(u32, hwa, 1); 1000 iocg->hweight_inuse = max_t(u32, hwi, 1); 1001 iocg->hweight_gen = ioc_gen; 1002 out: 1003 if (hw_activep) 1004 *hw_activep = iocg->hweight_active; 1005 if (hw_inusep) 1006 *hw_inusep = iocg->hweight_inuse; 1007 } 1008 1009 static void weight_updated(struct ioc_gq *iocg) 1010 { 1011 struct ioc *ioc = iocg->ioc; 1012 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1013 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1014 u32 weight; 1015 1016 lockdep_assert_held(&ioc->lock); 1017 1018 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1019 if (weight != iocg->weight && iocg->active) 1020 propagate_active_weight(iocg, weight, 1021 DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight)); 1022 iocg->weight = weight; 1023 } 1024 1025 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1026 { 1027 struct ioc *ioc = iocg->ioc; 1028 u64 last_period, cur_period, max_period_delta; 1029 u64 vtime, vmargin, vmin; 1030 int i; 1031 1032 /* 1033 * If seem to be already active, just update the stamp to tell the 1034 * timer that we're still active. We don't mind occassional races. 1035 */ 1036 if (!list_empty(&iocg->active_list)) { 1037 ioc_now(ioc, now); 1038 cur_period = atomic64_read(&ioc->cur_period); 1039 if (atomic64_read(&iocg->active_period) != cur_period) 1040 atomic64_set(&iocg->active_period, cur_period); 1041 return true; 1042 } 1043 1044 /* racy check on internal node IOs, treat as root level IOs */ 1045 if (iocg->child_active_sum) 1046 return false; 1047 1048 spin_lock_irq(&ioc->lock); 1049 1050 ioc_now(ioc, now); 1051 1052 /* update period */ 1053 cur_period = atomic64_read(&ioc->cur_period); 1054 last_period = atomic64_read(&iocg->active_period); 1055 atomic64_set(&iocg->active_period, cur_period); 1056 1057 /* already activated or breaking leaf-only constraint? */ 1058 if (!list_empty(&iocg->active_list)) 1059 goto succeed_unlock; 1060 for (i = iocg->level - 1; i > 0; i--) 1061 if (!list_empty(&iocg->ancestors[i]->active_list)) 1062 goto fail_unlock; 1063 1064 if (iocg->child_active_sum) 1065 goto fail_unlock; 1066 1067 /* 1068 * vtime may wrap when vrate is raised substantially due to 1069 * underestimated IO costs. Look at the period and ignore its 1070 * vtime if the iocg has been idle for too long. Also, cap the 1071 * budget it can start with to the margin. 1072 */ 1073 max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us); 1074 vtime = atomic64_read(&iocg->vtime); 1075 vmargin = ioc->margin_us * now->vrate; 1076 vmin = now->vnow - vmargin; 1077 1078 if (last_period + max_period_delta < cur_period || 1079 time_before64(vtime, vmin)) { 1080 atomic64_add(vmin - vtime, &iocg->vtime); 1081 atomic64_add(vmin - vtime, &iocg->done_vtime); 1082 vtime = vmin; 1083 } 1084 1085 /* 1086 * Activate, propagate weight and start period timer if not 1087 * running. Reset hweight_gen to avoid accidental match from 1088 * wrapping. 1089 */ 1090 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1091 list_add(&iocg->active_list, &ioc->active_iocgs); 1092 propagate_active_weight(iocg, iocg->weight, 1093 iocg->last_inuse ?: iocg->weight); 1094 1095 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1096 last_period, cur_period, vtime); 1097 1098 iocg->last_vtime = vtime; 1099 1100 if (ioc->running == IOC_IDLE) { 1101 ioc->running = IOC_RUNNING; 1102 ioc_start_period(ioc, now); 1103 } 1104 1105 succeed_unlock: 1106 spin_unlock_irq(&ioc->lock); 1107 return true; 1108 1109 fail_unlock: 1110 spin_unlock_irq(&ioc->lock); 1111 return false; 1112 } 1113 1114 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1115 int flags, void *key) 1116 { 1117 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1118 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; 1119 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1120 1121 ctx->vbudget -= cost; 1122 1123 if (ctx->vbudget < 0) 1124 return -1; 1125 1126 iocg_commit_bio(ctx->iocg, wait->bio, cost); 1127 1128 /* 1129 * autoremove_wake_function() removes the wait entry only when it 1130 * actually changed the task state. We want the wait always 1131 * removed. Remove explicitly and use default_wake_function(). 1132 */ 1133 list_del_init(&wq_entry->entry); 1134 wait->committed = true; 1135 1136 default_wake_function(wq_entry, mode, flags, key); 1137 return 0; 1138 } 1139 1140 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now) 1141 { 1142 struct ioc *ioc = iocg->ioc; 1143 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1144 u64 margin_ns = (u64)(ioc->period_us * 1145 WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC; 1146 u64 vdebt, vshortage, expires, oexpires; 1147 s64 vbudget; 1148 u32 hw_inuse; 1149 1150 lockdep_assert_held(&iocg->waitq.lock); 1151 1152 current_hweight(iocg, NULL, &hw_inuse); 1153 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1154 1155 /* pay off debt */ 1156 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hw_inuse); 1157 if (vdebt && vbudget > 0) { 1158 u64 delta = min_t(u64, vbudget, vdebt); 1159 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse), 1160 iocg->abs_vdebt); 1161 1162 atomic64_add(delta, &iocg->vtime); 1163 atomic64_add(delta, &iocg->done_vtime); 1164 iocg->abs_vdebt -= abs_delta; 1165 } 1166 1167 /* 1168 * Wake up the ones which are due and see how much vtime we'll need 1169 * for the next one. 1170 */ 1171 ctx.hw_inuse = hw_inuse; 1172 ctx.vbudget = vbudget - vdebt; 1173 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1174 if (!waitqueue_active(&iocg->waitq)) 1175 return; 1176 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1177 return; 1178 1179 /* determine next wakeup, add a quarter margin to guarantee chunking */ 1180 vshortage = -ctx.vbudget; 1181 expires = now->now_ns + 1182 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC; 1183 expires += margin_ns / 4; 1184 1185 /* if already active and close enough, don't bother */ 1186 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1187 if (hrtimer_is_queued(&iocg->waitq_timer) && 1188 abs(oexpires - expires) <= margin_ns / 4) 1189 return; 1190 1191 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1192 margin_ns / 4, HRTIMER_MODE_ABS); 1193 } 1194 1195 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1196 { 1197 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1198 struct ioc_now now; 1199 unsigned long flags; 1200 1201 ioc_now(iocg->ioc, &now); 1202 1203 spin_lock_irqsave(&iocg->waitq.lock, flags); 1204 iocg_kick_waitq(iocg, &now); 1205 spin_unlock_irqrestore(&iocg->waitq.lock, flags); 1206 1207 return HRTIMER_NORESTART; 1208 } 1209 1210 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1211 { 1212 struct ioc *ioc = iocg->ioc; 1213 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1214 u64 vtime = atomic64_read(&iocg->vtime); 1215 u64 vmargin = ioc->margin_us * now->vrate; 1216 u64 margin_ns = ioc->margin_us * NSEC_PER_USEC; 1217 u64 delta_ns, expires, oexpires; 1218 u32 hw_inuse; 1219 1220 lockdep_assert_held(&iocg->waitq.lock); 1221 1222 /* debt-adjust vtime */ 1223 current_hweight(iocg, NULL, &hw_inuse); 1224 vtime += abs_cost_to_cost(iocg->abs_vdebt, hw_inuse); 1225 1226 /* 1227 * Clear or maintain depending on the overage. Non-zero vdebt is what 1228 * guarantees that @iocg is online and future iocg_kick_delay() will 1229 * clear use_delay. Don't leave it on when there's no vdebt. 1230 */ 1231 if (!iocg->abs_vdebt || time_before_eq64(vtime, now->vnow)) { 1232 blkcg_clear_delay(blkg); 1233 return false; 1234 } 1235 if (!atomic_read(&blkg->use_delay) && 1236 time_before_eq64(vtime, now->vnow + vmargin)) 1237 return false; 1238 1239 /* use delay */ 1240 delta_ns = DIV64_U64_ROUND_UP(vtime - now->vnow, 1241 now->vrate) * NSEC_PER_USEC; 1242 blkcg_set_delay(blkg, delta_ns); 1243 expires = now->now_ns + delta_ns; 1244 1245 /* if already active and close enough, don't bother */ 1246 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer)); 1247 if (hrtimer_is_queued(&iocg->delay_timer) && 1248 abs(oexpires - expires) <= margin_ns / 4) 1249 return true; 1250 1251 hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires), 1252 margin_ns / 4, HRTIMER_MODE_ABS); 1253 return true; 1254 } 1255 1256 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer) 1257 { 1258 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer); 1259 struct ioc_now now; 1260 unsigned long flags; 1261 1262 spin_lock_irqsave(&iocg->waitq.lock, flags); 1263 ioc_now(iocg->ioc, &now); 1264 iocg_kick_delay(iocg, &now); 1265 spin_unlock_irqrestore(&iocg->waitq.lock, flags); 1266 1267 return HRTIMER_NORESTART; 1268 } 1269 1270 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1271 { 1272 u32 nr_met[2] = { }; 1273 u32 nr_missed[2] = { }; 1274 u64 rq_wait_ns = 0; 1275 int cpu, rw; 1276 1277 for_each_online_cpu(cpu) { 1278 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1279 u64 this_rq_wait_ns; 1280 1281 for (rw = READ; rw <= WRITE; rw++) { 1282 u32 this_met = READ_ONCE(stat->missed[rw].nr_met); 1283 u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed); 1284 1285 nr_met[rw] += this_met - stat->missed[rw].last_met; 1286 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1287 stat->missed[rw].last_met = this_met; 1288 stat->missed[rw].last_missed = this_missed; 1289 } 1290 1291 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns); 1292 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1293 stat->last_rq_wait_ns = this_rq_wait_ns; 1294 } 1295 1296 for (rw = READ; rw <= WRITE; rw++) { 1297 if (nr_met[rw] + nr_missed[rw]) 1298 missed_ppm_ar[rw] = 1299 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1300 nr_met[rw] + nr_missed[rw]); 1301 else 1302 missed_ppm_ar[rw] = 0; 1303 } 1304 1305 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1306 ioc->period_us * NSEC_PER_USEC); 1307 } 1308 1309 /* was iocg idle this period? */ 1310 static bool iocg_is_idle(struct ioc_gq *iocg) 1311 { 1312 struct ioc *ioc = iocg->ioc; 1313 1314 /* did something get issued this period? */ 1315 if (atomic64_read(&iocg->active_period) == 1316 atomic64_read(&ioc->cur_period)) 1317 return false; 1318 1319 /* is something in flight? */ 1320 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1321 return false; 1322 1323 return true; 1324 } 1325 1326 /* returns usage with margin added if surplus is large enough */ 1327 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse) 1328 { 1329 /* add margin */ 1330 usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100); 1331 usage += SURPLUS_SCALE_ABS; 1332 1333 /* don't bother if the surplus is too small */ 1334 if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse) 1335 return 0; 1336 1337 return usage; 1338 } 1339 1340 static void ioc_timer_fn(struct timer_list *timer) 1341 { 1342 struct ioc *ioc = container_of(timer, struct ioc, timer); 1343 struct ioc_gq *iocg, *tiocg; 1344 struct ioc_now now; 1345 int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0; 1346 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 1347 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 1348 u32 missed_ppm[2], rq_wait_pct; 1349 u64 period_vtime; 1350 int prev_busy_level, i; 1351 1352 /* how were the latencies during the period? */ 1353 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 1354 1355 /* take care of active iocgs */ 1356 spin_lock_irq(&ioc->lock); 1357 1358 ioc_now(ioc, &now); 1359 1360 period_vtime = now.vnow - ioc->period_at_vtime; 1361 if (WARN_ON_ONCE(!period_vtime)) { 1362 spin_unlock_irq(&ioc->lock); 1363 return; 1364 } 1365 1366 /* 1367 * Waiters determine the sleep durations based on the vrate they 1368 * saw at the time of sleep. If vrate has increased, some waiters 1369 * could be sleeping for too long. Wake up tardy waiters which 1370 * should have woken up in the last period and expire idle iocgs. 1371 */ 1372 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 1373 if (!waitqueue_active(&iocg->waitq) && iocg->abs_vdebt && 1374 !iocg_is_idle(iocg)) 1375 continue; 1376 1377 spin_lock(&iocg->waitq.lock); 1378 1379 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt) { 1380 /* might be oversleeping vtime / hweight changes, kick */ 1381 iocg_kick_waitq(iocg, &now); 1382 iocg_kick_delay(iocg, &now); 1383 } else if (iocg_is_idle(iocg)) { 1384 /* no waiter and idle, deactivate */ 1385 iocg->last_inuse = iocg->inuse; 1386 __propagate_active_weight(iocg, 0, 0); 1387 list_del_init(&iocg->active_list); 1388 } 1389 1390 spin_unlock(&iocg->waitq.lock); 1391 } 1392 commit_active_weights(ioc); 1393 1394 /* calc usages and see whether some weights need to be moved around */ 1395 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 1396 u64 vdone, vtime, vusage, vmargin, vmin; 1397 u32 hw_active, hw_inuse, usage; 1398 1399 /* 1400 * Collect unused and wind vtime closer to vnow to prevent 1401 * iocgs from accumulating a large amount of budget. 1402 */ 1403 vdone = atomic64_read(&iocg->done_vtime); 1404 vtime = atomic64_read(&iocg->vtime); 1405 current_hweight(iocg, &hw_active, &hw_inuse); 1406 1407 /* 1408 * Latency QoS detection doesn't account for IOs which are 1409 * in-flight for longer than a period. Detect them by 1410 * comparing vdone against period start. If lagging behind 1411 * IOs from past periods, don't increase vrate. 1412 */ 1413 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 1414 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 1415 time_after64(vtime, vdone) && 1416 time_after64(vtime, now.vnow - 1417 MAX_LAGGING_PERIODS * period_vtime) && 1418 time_before64(vdone, now.vnow - period_vtime)) 1419 nr_lagging++; 1420 1421 if (waitqueue_active(&iocg->waitq)) 1422 vusage = now.vnow - iocg->last_vtime; 1423 else if (time_before64(iocg->last_vtime, vtime)) 1424 vusage = vtime - iocg->last_vtime; 1425 else 1426 vusage = 0; 1427 1428 iocg->last_vtime += vusage; 1429 /* 1430 * Factor in in-flight vtime into vusage to avoid 1431 * high-latency completions appearing as idle. This should 1432 * be done after the above ->last_time adjustment. 1433 */ 1434 vusage = max(vusage, vtime - vdone); 1435 1436 /* calculate hweight based usage ratio and record */ 1437 if (vusage) { 1438 usage = DIV64_U64_ROUND_UP(vusage * hw_inuse, 1439 period_vtime); 1440 iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS; 1441 iocg->usages[iocg->usage_idx] = usage; 1442 } else { 1443 usage = 0; 1444 } 1445 1446 /* see whether there's surplus vtime */ 1447 vmargin = ioc->margin_us * now.vrate; 1448 vmin = now.vnow - vmargin; 1449 1450 iocg->has_surplus = false; 1451 1452 if (!waitqueue_active(&iocg->waitq) && 1453 time_before64(vtime, vmin)) { 1454 u64 delta = vmin - vtime; 1455 1456 /* throw away surplus vtime */ 1457 atomic64_add(delta, &iocg->vtime); 1458 atomic64_add(delta, &iocg->done_vtime); 1459 iocg->last_vtime += delta; 1460 /* if usage is sufficiently low, maybe it can donate */ 1461 if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) { 1462 iocg->has_surplus = true; 1463 nr_surpluses++; 1464 } 1465 } else if (hw_inuse < hw_active) { 1466 u32 new_hwi, new_inuse; 1467 1468 /* was donating but might need to take back some */ 1469 if (waitqueue_active(&iocg->waitq)) { 1470 new_hwi = hw_active; 1471 } else { 1472 new_hwi = max(hw_inuse, 1473 usage * SURPLUS_SCALE_PCT / 100 + 1474 SURPLUS_SCALE_ABS); 1475 } 1476 1477 new_inuse = div64_u64((u64)iocg->inuse * new_hwi, 1478 hw_inuse); 1479 new_inuse = clamp_t(u32, new_inuse, 1, iocg->active); 1480 1481 if (new_inuse > iocg->inuse) { 1482 TRACE_IOCG_PATH(inuse_takeback, iocg, &now, 1483 iocg->inuse, new_inuse, 1484 hw_inuse, new_hwi); 1485 __propagate_active_weight(iocg, iocg->weight, 1486 new_inuse); 1487 } 1488 } else { 1489 /* genuninely out of vtime */ 1490 nr_shortages++; 1491 } 1492 } 1493 1494 if (!nr_shortages || !nr_surpluses) 1495 goto skip_surplus_transfers; 1496 1497 /* there are both shortages and surpluses, transfer surpluses */ 1498 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 1499 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse; 1500 int nr_valid = 0; 1501 1502 if (!iocg->has_surplus) 1503 continue; 1504 1505 /* base the decision on max historical usage */ 1506 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) { 1507 if (iocg->usages[i]) { 1508 usage = max(usage, iocg->usages[i]); 1509 nr_valid++; 1510 } 1511 } 1512 if (nr_valid < MIN_VALID_USAGES) 1513 continue; 1514 1515 current_hweight(iocg, &hw_active, &hw_inuse); 1516 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse); 1517 if (!new_hwi) 1518 continue; 1519 1520 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi, 1521 hw_inuse); 1522 if (new_inuse < iocg->inuse) { 1523 TRACE_IOCG_PATH(inuse_giveaway, iocg, &now, 1524 iocg->inuse, new_inuse, 1525 hw_inuse, new_hwi); 1526 __propagate_active_weight(iocg, iocg->weight, new_inuse); 1527 } 1528 } 1529 skip_surplus_transfers: 1530 commit_active_weights(ioc); 1531 1532 /* 1533 * If q is getting clogged or we're missing too much, we're issuing 1534 * too much IO and should lower vtime rate. If we're not missing 1535 * and experiencing shortages but not surpluses, we're too stingy 1536 * and should increase vtime rate. 1537 */ 1538 prev_busy_level = ioc->busy_level; 1539 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 1540 missed_ppm[READ] > ppm_rthr || 1541 missed_ppm[WRITE] > ppm_wthr) { 1542 /* clearly missing QoS targets, slow down vrate */ 1543 ioc->busy_level = max(ioc->busy_level, 0); 1544 ioc->busy_level++; 1545 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 1546 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 1547 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 1548 /* QoS targets are being met with >25% margin */ 1549 if (nr_shortages) { 1550 /* 1551 * We're throttling while the device has spare 1552 * capacity. If vrate was being slowed down, stop. 1553 */ 1554 ioc->busy_level = min(ioc->busy_level, 0); 1555 1556 /* 1557 * If there are IOs spanning multiple periods, wait 1558 * them out before pushing the device harder. If 1559 * there are surpluses, let redistribution work it 1560 * out first. 1561 */ 1562 if (!nr_lagging && !nr_surpluses) 1563 ioc->busy_level--; 1564 } else { 1565 /* 1566 * Nobody is being throttled and the users aren't 1567 * issuing enough IOs to saturate the device. We 1568 * simply don't know how close the device is to 1569 * saturation. Coast. 1570 */ 1571 ioc->busy_level = 0; 1572 } 1573 } else { 1574 /* inside the hysterisis margin, we're good */ 1575 ioc->busy_level = 0; 1576 } 1577 1578 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 1579 1580 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) { 1581 u64 vrate = atomic64_read(&ioc->vtime_rate); 1582 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 1583 1584 /* rq_wait signal is always reliable, ignore user vrate_min */ 1585 if (rq_wait_pct > RQ_WAIT_BUSY_PCT) 1586 vrate_min = VRATE_MIN; 1587 1588 /* 1589 * If vrate is out of bounds, apply clamp gradually as the 1590 * bounds can change abruptly. Otherwise, apply busy_level 1591 * based adjustment. 1592 */ 1593 if (vrate < vrate_min) { 1594 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 1595 100); 1596 vrate = min(vrate, vrate_min); 1597 } else if (vrate > vrate_max) { 1598 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 1599 100); 1600 vrate = max(vrate, vrate_max); 1601 } else { 1602 int idx = min_t(int, abs(ioc->busy_level), 1603 ARRAY_SIZE(vrate_adj_pct) - 1); 1604 u32 adj_pct = vrate_adj_pct[idx]; 1605 1606 if (ioc->busy_level > 0) 1607 adj_pct = 100 - adj_pct; 1608 else 1609 adj_pct = 100 + adj_pct; 1610 1611 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1612 vrate_min, vrate_max); 1613 } 1614 1615 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1616 nr_lagging, nr_shortages, 1617 nr_surpluses); 1618 1619 atomic64_set(&ioc->vtime_rate, vrate); 1620 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP( 1621 ioc->period_us * vrate * INUSE_MARGIN_PCT, 100); 1622 } else if (ioc->busy_level != prev_busy_level || nr_lagging) { 1623 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 1624 missed_ppm, rq_wait_pct, nr_lagging, 1625 nr_shortages, nr_surpluses); 1626 } 1627 1628 ioc_refresh_params(ioc, false); 1629 1630 /* 1631 * This period is done. Move onto the next one. If nothing's 1632 * going on with the device, stop the timer. 1633 */ 1634 atomic64_inc(&ioc->cur_period); 1635 1636 if (ioc->running != IOC_STOP) { 1637 if (!list_empty(&ioc->active_iocgs)) { 1638 ioc_start_period(ioc, &now); 1639 } else { 1640 ioc->busy_level = 0; 1641 ioc->running = IOC_IDLE; 1642 } 1643 } 1644 1645 spin_unlock_irq(&ioc->lock); 1646 } 1647 1648 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 1649 bool is_merge, u64 *costp) 1650 { 1651 struct ioc *ioc = iocg->ioc; 1652 u64 coef_seqio, coef_randio, coef_page; 1653 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 1654 u64 seek_pages = 0; 1655 u64 cost = 0; 1656 1657 switch (bio_op(bio)) { 1658 case REQ_OP_READ: 1659 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 1660 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 1661 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 1662 break; 1663 case REQ_OP_WRITE: 1664 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 1665 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 1666 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 1667 break; 1668 default: 1669 goto out; 1670 } 1671 1672 if (iocg->cursor) { 1673 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 1674 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 1675 } 1676 1677 if (!is_merge) { 1678 if (seek_pages > LCOEF_RANDIO_PAGES) { 1679 cost += coef_randio; 1680 } else { 1681 cost += coef_seqio; 1682 } 1683 } 1684 cost += pages * coef_page; 1685 out: 1686 *costp = cost; 1687 } 1688 1689 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 1690 { 1691 u64 cost; 1692 1693 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 1694 return cost; 1695 } 1696 1697 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 1698 u64 *costp) 1699 { 1700 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 1701 1702 switch (req_op(rq)) { 1703 case REQ_OP_READ: 1704 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 1705 break; 1706 case REQ_OP_WRITE: 1707 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 1708 break; 1709 default: 1710 *costp = 0; 1711 } 1712 } 1713 1714 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 1715 { 1716 u64 cost; 1717 1718 calc_size_vtime_cost_builtin(rq, ioc, &cost); 1719 return cost; 1720 } 1721 1722 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 1723 { 1724 struct blkcg_gq *blkg = bio->bi_blkg; 1725 struct ioc *ioc = rqos_to_ioc(rqos); 1726 struct ioc_gq *iocg = blkg_to_iocg(blkg); 1727 struct ioc_now now; 1728 struct iocg_wait wait; 1729 u32 hw_active, hw_inuse; 1730 u64 abs_cost, cost, vtime; 1731 1732 /* bypass IOs if disabled or for root cgroup */ 1733 if (!ioc->enabled || !iocg->level) 1734 return; 1735 1736 /* always activate so that even 0 cost IOs get protected to some level */ 1737 if (!iocg_activate(iocg, &now)) 1738 return; 1739 1740 /* calculate the absolute vtime cost */ 1741 abs_cost = calc_vtime_cost(bio, iocg, false); 1742 if (!abs_cost) 1743 return; 1744 1745 iocg->cursor = bio_end_sector(bio); 1746 1747 vtime = atomic64_read(&iocg->vtime); 1748 current_hweight(iocg, &hw_active, &hw_inuse); 1749 1750 if (hw_inuse < hw_active && 1751 time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) { 1752 TRACE_IOCG_PATH(inuse_reset, iocg, &now, 1753 iocg->inuse, iocg->weight, hw_inuse, hw_active); 1754 spin_lock_irq(&ioc->lock); 1755 propagate_active_weight(iocg, iocg->weight, iocg->weight); 1756 spin_unlock_irq(&ioc->lock); 1757 current_hweight(iocg, &hw_active, &hw_inuse); 1758 } 1759 1760 cost = abs_cost_to_cost(abs_cost, hw_inuse); 1761 1762 /* 1763 * If no one's waiting and within budget, issue right away. The 1764 * tests are racy but the races aren't systemic - we only miss once 1765 * in a while which is fine. 1766 */ 1767 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 1768 time_before_eq64(vtime + cost, now.vnow)) { 1769 iocg_commit_bio(iocg, bio, cost); 1770 return; 1771 } 1772 1773 /* 1774 * We activated above but w/o any synchronization. Deactivation is 1775 * synchronized with waitq.lock and we won't get deactivated as long 1776 * as we're waiting or has debt, so we're good if we're activated 1777 * here. In the unlikely case that we aren't, just issue the IO. 1778 */ 1779 spin_lock_irq(&iocg->waitq.lock); 1780 1781 if (unlikely(list_empty(&iocg->active_list))) { 1782 spin_unlock_irq(&iocg->waitq.lock); 1783 iocg_commit_bio(iocg, bio, cost); 1784 return; 1785 } 1786 1787 /* 1788 * We're over budget. If @bio has to be issued regardless, remember 1789 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 1790 * off the debt before waking more IOs. 1791 * 1792 * This way, the debt is continuously paid off each period with the 1793 * actual budget available to the cgroup. If we just wound vtime, we 1794 * would incorrectly use the current hw_inuse for the entire amount 1795 * which, for example, can lead to the cgroup staying blocked for a 1796 * long time even with substantially raised hw_inuse. 1797 * 1798 * An iocg with vdebt should stay online so that the timer can keep 1799 * deducting its vdebt and [de]activate use_delay mechanism 1800 * accordingly. We don't want to race against the timer trying to 1801 * clear them and leave @iocg inactive w/ dangling use_delay heavily 1802 * penalizing the cgroup and its descendants. 1803 */ 1804 if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) { 1805 iocg->abs_vdebt += abs_cost; 1806 if (iocg_kick_delay(iocg, &now)) 1807 blkcg_schedule_throttle(rqos->q, 1808 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 1809 spin_unlock_irq(&iocg->waitq.lock); 1810 return; 1811 } 1812 1813 /* 1814 * Append self to the waitq and schedule the wakeup timer if we're 1815 * the first waiter. The timer duration is calculated based on the 1816 * current vrate. vtime and hweight changes can make it too short 1817 * or too long. Each wait entry records the absolute cost it's 1818 * waiting for to allow re-evaluation using a custom wait entry. 1819 * 1820 * If too short, the timer simply reschedules itself. If too long, 1821 * the period timer will notice and trigger wakeups. 1822 * 1823 * All waiters are on iocg->waitq and the wait states are 1824 * synchronized using waitq.lock. 1825 */ 1826 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 1827 wait.wait.private = current; 1828 wait.bio = bio; 1829 wait.abs_cost = abs_cost; 1830 wait.committed = false; /* will be set true by waker */ 1831 1832 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 1833 iocg_kick_waitq(iocg, &now); 1834 1835 spin_unlock_irq(&iocg->waitq.lock); 1836 1837 while (true) { 1838 set_current_state(TASK_UNINTERRUPTIBLE); 1839 if (wait.committed) 1840 break; 1841 io_schedule(); 1842 } 1843 1844 /* waker already committed us, proceed */ 1845 finish_wait(&iocg->waitq, &wait.wait); 1846 } 1847 1848 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 1849 struct bio *bio) 1850 { 1851 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 1852 struct ioc *ioc = iocg->ioc; 1853 sector_t bio_end = bio_end_sector(bio); 1854 struct ioc_now now; 1855 u32 hw_inuse; 1856 u64 abs_cost, cost; 1857 unsigned long flags; 1858 1859 /* bypass if disabled or for root cgroup */ 1860 if (!ioc->enabled || !iocg->level) 1861 return; 1862 1863 abs_cost = calc_vtime_cost(bio, iocg, true); 1864 if (!abs_cost) 1865 return; 1866 1867 ioc_now(ioc, &now); 1868 current_hweight(iocg, NULL, &hw_inuse); 1869 cost = abs_cost_to_cost(abs_cost, hw_inuse); 1870 1871 /* update cursor if backmerging into the request at the cursor */ 1872 if (blk_rq_pos(rq) < bio_end && 1873 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 1874 iocg->cursor = bio_end; 1875 1876 /* 1877 * Charge if there's enough vtime budget and the existing request has 1878 * cost assigned. 1879 */ 1880 if (rq->bio && rq->bio->bi_iocost_cost && 1881 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 1882 iocg_commit_bio(iocg, bio, cost); 1883 return; 1884 } 1885 1886 /* 1887 * Otherwise, account it as debt if @iocg is online, which it should 1888 * be for the vast majority of cases. See debt handling in 1889 * ioc_rqos_throttle() for details. 1890 */ 1891 spin_lock_irqsave(&iocg->waitq.lock, flags); 1892 if (likely(!list_empty(&iocg->active_list))) { 1893 iocg->abs_vdebt += abs_cost; 1894 iocg_kick_delay(iocg, &now); 1895 } else { 1896 iocg_commit_bio(iocg, bio, cost); 1897 } 1898 spin_unlock_irqrestore(&iocg->waitq.lock, flags); 1899 } 1900 1901 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 1902 { 1903 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 1904 1905 if (iocg && bio->bi_iocost_cost) 1906 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 1907 } 1908 1909 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 1910 { 1911 struct ioc *ioc = rqos_to_ioc(rqos); 1912 u64 on_q_ns, rq_wait_ns, size_nsec; 1913 int pidx, rw; 1914 1915 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 1916 return; 1917 1918 switch (req_op(rq) & REQ_OP_MASK) { 1919 case REQ_OP_READ: 1920 pidx = QOS_RLAT; 1921 rw = READ; 1922 break; 1923 case REQ_OP_WRITE: 1924 pidx = QOS_WLAT; 1925 rw = WRITE; 1926 break; 1927 default: 1928 return; 1929 } 1930 1931 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 1932 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 1933 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 1934 1935 if (on_q_ns <= size_nsec || 1936 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 1937 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met); 1938 else 1939 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed); 1940 1941 this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns); 1942 } 1943 1944 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 1945 { 1946 struct ioc *ioc = rqos_to_ioc(rqos); 1947 1948 spin_lock_irq(&ioc->lock); 1949 ioc_refresh_params(ioc, false); 1950 spin_unlock_irq(&ioc->lock); 1951 } 1952 1953 static void ioc_rqos_exit(struct rq_qos *rqos) 1954 { 1955 struct ioc *ioc = rqos_to_ioc(rqos); 1956 1957 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 1958 1959 spin_lock_irq(&ioc->lock); 1960 ioc->running = IOC_STOP; 1961 spin_unlock_irq(&ioc->lock); 1962 1963 del_timer_sync(&ioc->timer); 1964 free_percpu(ioc->pcpu_stat); 1965 kfree(ioc); 1966 } 1967 1968 static struct rq_qos_ops ioc_rqos_ops = { 1969 .throttle = ioc_rqos_throttle, 1970 .merge = ioc_rqos_merge, 1971 .done_bio = ioc_rqos_done_bio, 1972 .done = ioc_rqos_done, 1973 .queue_depth_changed = ioc_rqos_queue_depth_changed, 1974 .exit = ioc_rqos_exit, 1975 }; 1976 1977 static int blk_iocost_init(struct request_queue *q) 1978 { 1979 struct ioc *ioc; 1980 struct rq_qos *rqos; 1981 int ret; 1982 1983 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 1984 if (!ioc) 1985 return -ENOMEM; 1986 1987 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 1988 if (!ioc->pcpu_stat) { 1989 kfree(ioc); 1990 return -ENOMEM; 1991 } 1992 1993 rqos = &ioc->rqos; 1994 rqos->id = RQ_QOS_COST; 1995 rqos->ops = &ioc_rqos_ops; 1996 rqos->q = q; 1997 1998 spin_lock_init(&ioc->lock); 1999 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2000 INIT_LIST_HEAD(&ioc->active_iocgs); 2001 2002 ioc->running = IOC_IDLE; 2003 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2004 seqcount_init(&ioc->period_seqcount); 2005 ioc->period_at = ktime_to_us(ktime_get()); 2006 atomic64_set(&ioc->cur_period, 0); 2007 atomic_set(&ioc->hweight_gen, 0); 2008 2009 spin_lock_irq(&ioc->lock); 2010 ioc->autop_idx = AUTOP_INVALID; 2011 ioc_refresh_params(ioc, true); 2012 spin_unlock_irq(&ioc->lock); 2013 2014 rq_qos_add(q, rqos); 2015 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 2016 if (ret) { 2017 rq_qos_del(q, rqos); 2018 free_percpu(ioc->pcpu_stat); 2019 kfree(ioc); 2020 return ret; 2021 } 2022 return 0; 2023 } 2024 2025 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2026 { 2027 struct ioc_cgrp *iocc; 2028 2029 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2030 if (!iocc) 2031 return NULL; 2032 2033 iocc->dfl_weight = CGROUP_WEIGHT_DFL; 2034 return &iocc->cpd; 2035 } 2036 2037 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2038 { 2039 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2040 } 2041 2042 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2043 struct blkcg *blkcg) 2044 { 2045 int levels = blkcg->css.cgroup->level + 1; 2046 struct ioc_gq *iocg; 2047 2048 iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]), 2049 gfp, q->node); 2050 if (!iocg) 2051 return NULL; 2052 2053 return &iocg->pd; 2054 } 2055 2056 static void ioc_pd_init(struct blkg_policy_data *pd) 2057 { 2058 struct ioc_gq *iocg = pd_to_iocg(pd); 2059 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2060 struct ioc *ioc = q_to_ioc(blkg->q); 2061 struct ioc_now now; 2062 struct blkcg_gq *tblkg; 2063 unsigned long flags; 2064 2065 ioc_now(ioc, &now); 2066 2067 iocg->ioc = ioc; 2068 atomic64_set(&iocg->vtime, now.vnow); 2069 atomic64_set(&iocg->done_vtime, now.vnow); 2070 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2071 INIT_LIST_HEAD(&iocg->active_list); 2072 iocg->hweight_active = HWEIGHT_WHOLE; 2073 iocg->hweight_inuse = HWEIGHT_WHOLE; 2074 2075 init_waitqueue_head(&iocg->waitq); 2076 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2077 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2078 hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2079 iocg->delay_timer.function = iocg_delay_timer_fn; 2080 2081 iocg->level = blkg->blkcg->css.cgroup->level; 2082 2083 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2084 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2085 iocg->ancestors[tiocg->level] = tiocg; 2086 } 2087 2088 spin_lock_irqsave(&ioc->lock, flags); 2089 weight_updated(iocg); 2090 spin_unlock_irqrestore(&ioc->lock, flags); 2091 } 2092 2093 static void ioc_pd_free(struct blkg_policy_data *pd) 2094 { 2095 struct ioc_gq *iocg = pd_to_iocg(pd); 2096 struct ioc *ioc = iocg->ioc; 2097 2098 if (ioc) { 2099 spin_lock(&ioc->lock); 2100 if (!list_empty(&iocg->active_list)) { 2101 propagate_active_weight(iocg, 0, 0); 2102 list_del_init(&iocg->active_list); 2103 } 2104 spin_unlock(&ioc->lock); 2105 2106 hrtimer_cancel(&iocg->waitq_timer); 2107 hrtimer_cancel(&iocg->delay_timer); 2108 } 2109 kfree(iocg); 2110 } 2111 2112 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 2113 int off) 2114 { 2115 const char *dname = blkg_dev_name(pd->blkg); 2116 struct ioc_gq *iocg = pd_to_iocg(pd); 2117 2118 if (dname && iocg->cfg_weight) 2119 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight); 2120 return 0; 2121 } 2122 2123 2124 static int ioc_weight_show(struct seq_file *sf, void *v) 2125 { 2126 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2127 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 2128 2129 seq_printf(sf, "default %u\n", iocc->dfl_weight); 2130 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 2131 &blkcg_policy_iocost, seq_cft(sf)->private, false); 2132 return 0; 2133 } 2134 2135 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 2136 size_t nbytes, loff_t off) 2137 { 2138 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 2139 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 2140 struct blkg_conf_ctx ctx; 2141 struct ioc_gq *iocg; 2142 u32 v; 2143 int ret; 2144 2145 if (!strchr(buf, ':')) { 2146 struct blkcg_gq *blkg; 2147 2148 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 2149 return -EINVAL; 2150 2151 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 2152 return -EINVAL; 2153 2154 spin_lock(&blkcg->lock); 2155 iocc->dfl_weight = v; 2156 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 2157 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2158 2159 if (iocg) { 2160 spin_lock_irq(&iocg->ioc->lock); 2161 weight_updated(iocg); 2162 spin_unlock_irq(&iocg->ioc->lock); 2163 } 2164 } 2165 spin_unlock(&blkcg->lock); 2166 2167 return nbytes; 2168 } 2169 2170 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 2171 if (ret) 2172 return ret; 2173 2174 iocg = blkg_to_iocg(ctx.blkg); 2175 2176 if (!strncmp(ctx.body, "default", 7)) { 2177 v = 0; 2178 } else { 2179 if (!sscanf(ctx.body, "%u", &v)) 2180 goto einval; 2181 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 2182 goto einval; 2183 } 2184 2185 spin_lock(&iocg->ioc->lock); 2186 iocg->cfg_weight = v; 2187 weight_updated(iocg); 2188 spin_unlock(&iocg->ioc->lock); 2189 2190 blkg_conf_finish(&ctx); 2191 return nbytes; 2192 2193 einval: 2194 blkg_conf_finish(&ctx); 2195 return -EINVAL; 2196 } 2197 2198 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 2199 int off) 2200 { 2201 const char *dname = blkg_dev_name(pd->blkg); 2202 struct ioc *ioc = pd_to_iocg(pd)->ioc; 2203 2204 if (!dname) 2205 return 0; 2206 2207 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 2208 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 2209 ioc->params.qos[QOS_RPPM] / 10000, 2210 ioc->params.qos[QOS_RPPM] % 10000 / 100, 2211 ioc->params.qos[QOS_RLAT], 2212 ioc->params.qos[QOS_WPPM] / 10000, 2213 ioc->params.qos[QOS_WPPM] % 10000 / 100, 2214 ioc->params.qos[QOS_WLAT], 2215 ioc->params.qos[QOS_MIN] / 10000, 2216 ioc->params.qos[QOS_MIN] % 10000 / 100, 2217 ioc->params.qos[QOS_MAX] / 10000, 2218 ioc->params.qos[QOS_MAX] % 10000 / 100); 2219 return 0; 2220 } 2221 2222 static int ioc_qos_show(struct seq_file *sf, void *v) 2223 { 2224 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2225 2226 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 2227 &blkcg_policy_iocost, seq_cft(sf)->private, false); 2228 return 0; 2229 } 2230 2231 static const match_table_t qos_ctrl_tokens = { 2232 { QOS_ENABLE, "enable=%u" }, 2233 { QOS_CTRL, "ctrl=%s" }, 2234 { NR_QOS_CTRL_PARAMS, NULL }, 2235 }; 2236 2237 static const match_table_t qos_tokens = { 2238 { QOS_RPPM, "rpct=%s" }, 2239 { QOS_RLAT, "rlat=%u" }, 2240 { QOS_WPPM, "wpct=%s" }, 2241 { QOS_WLAT, "wlat=%u" }, 2242 { QOS_MIN, "min=%s" }, 2243 { QOS_MAX, "max=%s" }, 2244 { NR_QOS_PARAMS, NULL }, 2245 }; 2246 2247 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 2248 size_t nbytes, loff_t off) 2249 { 2250 struct gendisk *disk; 2251 struct ioc *ioc; 2252 u32 qos[NR_QOS_PARAMS]; 2253 bool enable, user; 2254 char *p; 2255 int ret; 2256 2257 disk = blkcg_conf_get_disk(&input); 2258 if (IS_ERR(disk)) 2259 return PTR_ERR(disk); 2260 2261 ioc = q_to_ioc(disk->queue); 2262 if (!ioc) { 2263 ret = blk_iocost_init(disk->queue); 2264 if (ret) 2265 goto err; 2266 ioc = q_to_ioc(disk->queue); 2267 } 2268 2269 spin_lock_irq(&ioc->lock); 2270 memcpy(qos, ioc->params.qos, sizeof(qos)); 2271 enable = ioc->enabled; 2272 user = ioc->user_qos_params; 2273 spin_unlock_irq(&ioc->lock); 2274 2275 while ((p = strsep(&input, " \t\n"))) { 2276 substring_t args[MAX_OPT_ARGS]; 2277 char buf[32]; 2278 int tok; 2279 s64 v; 2280 2281 if (!*p) 2282 continue; 2283 2284 switch (match_token(p, qos_ctrl_tokens, args)) { 2285 case QOS_ENABLE: 2286 match_u64(&args[0], &v); 2287 enable = v; 2288 continue; 2289 case QOS_CTRL: 2290 match_strlcpy(buf, &args[0], sizeof(buf)); 2291 if (!strcmp(buf, "auto")) 2292 user = false; 2293 else if (!strcmp(buf, "user")) 2294 user = true; 2295 else 2296 goto einval; 2297 continue; 2298 } 2299 2300 tok = match_token(p, qos_tokens, args); 2301 switch (tok) { 2302 case QOS_RPPM: 2303 case QOS_WPPM: 2304 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 2305 sizeof(buf)) 2306 goto einval; 2307 if (cgroup_parse_float(buf, 2, &v)) 2308 goto einval; 2309 if (v < 0 || v > 10000) 2310 goto einval; 2311 qos[tok] = v * 100; 2312 break; 2313 case QOS_RLAT: 2314 case QOS_WLAT: 2315 if (match_u64(&args[0], &v)) 2316 goto einval; 2317 qos[tok] = v; 2318 break; 2319 case QOS_MIN: 2320 case QOS_MAX: 2321 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 2322 sizeof(buf)) 2323 goto einval; 2324 if (cgroup_parse_float(buf, 2, &v)) 2325 goto einval; 2326 if (v < 0) 2327 goto einval; 2328 qos[tok] = clamp_t(s64, v * 100, 2329 VRATE_MIN_PPM, VRATE_MAX_PPM); 2330 break; 2331 default: 2332 goto einval; 2333 } 2334 user = true; 2335 } 2336 2337 if (qos[QOS_MIN] > qos[QOS_MAX]) 2338 goto einval; 2339 2340 spin_lock_irq(&ioc->lock); 2341 2342 if (enable) { 2343 blk_stat_enable_accounting(ioc->rqos.q); 2344 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 2345 ioc->enabled = true; 2346 } else { 2347 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 2348 ioc->enabled = false; 2349 } 2350 2351 if (user) { 2352 memcpy(ioc->params.qos, qos, sizeof(qos)); 2353 ioc->user_qos_params = true; 2354 } else { 2355 ioc->user_qos_params = false; 2356 } 2357 2358 ioc_refresh_params(ioc, true); 2359 spin_unlock_irq(&ioc->lock); 2360 2361 put_disk_and_module(disk); 2362 return nbytes; 2363 einval: 2364 ret = -EINVAL; 2365 err: 2366 put_disk_and_module(disk); 2367 return ret; 2368 } 2369 2370 static u64 ioc_cost_model_prfill(struct seq_file *sf, 2371 struct blkg_policy_data *pd, int off) 2372 { 2373 const char *dname = blkg_dev_name(pd->blkg); 2374 struct ioc *ioc = pd_to_iocg(pd)->ioc; 2375 u64 *u = ioc->params.i_lcoefs; 2376 2377 if (!dname) 2378 return 0; 2379 2380 seq_printf(sf, "%s ctrl=%s model=linear " 2381 "rbps=%llu rseqiops=%llu rrandiops=%llu " 2382 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 2383 dname, ioc->user_cost_model ? "user" : "auto", 2384 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 2385 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 2386 return 0; 2387 } 2388 2389 static int ioc_cost_model_show(struct seq_file *sf, void *v) 2390 { 2391 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2392 2393 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 2394 &blkcg_policy_iocost, seq_cft(sf)->private, false); 2395 return 0; 2396 } 2397 2398 static const match_table_t cost_ctrl_tokens = { 2399 { COST_CTRL, "ctrl=%s" }, 2400 { COST_MODEL, "model=%s" }, 2401 { NR_COST_CTRL_PARAMS, NULL }, 2402 }; 2403 2404 static const match_table_t i_lcoef_tokens = { 2405 { I_LCOEF_RBPS, "rbps=%u" }, 2406 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 2407 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 2408 { I_LCOEF_WBPS, "wbps=%u" }, 2409 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 2410 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 2411 { NR_I_LCOEFS, NULL }, 2412 }; 2413 2414 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 2415 size_t nbytes, loff_t off) 2416 { 2417 struct gendisk *disk; 2418 struct ioc *ioc; 2419 u64 u[NR_I_LCOEFS]; 2420 bool user; 2421 char *p; 2422 int ret; 2423 2424 disk = blkcg_conf_get_disk(&input); 2425 if (IS_ERR(disk)) 2426 return PTR_ERR(disk); 2427 2428 ioc = q_to_ioc(disk->queue); 2429 if (!ioc) { 2430 ret = blk_iocost_init(disk->queue); 2431 if (ret) 2432 goto err; 2433 ioc = q_to_ioc(disk->queue); 2434 } 2435 2436 spin_lock_irq(&ioc->lock); 2437 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 2438 user = ioc->user_cost_model; 2439 spin_unlock_irq(&ioc->lock); 2440 2441 while ((p = strsep(&input, " \t\n"))) { 2442 substring_t args[MAX_OPT_ARGS]; 2443 char buf[32]; 2444 int tok; 2445 u64 v; 2446 2447 if (!*p) 2448 continue; 2449 2450 switch (match_token(p, cost_ctrl_tokens, args)) { 2451 case COST_CTRL: 2452 match_strlcpy(buf, &args[0], sizeof(buf)); 2453 if (!strcmp(buf, "auto")) 2454 user = false; 2455 else if (!strcmp(buf, "user")) 2456 user = true; 2457 else 2458 goto einval; 2459 continue; 2460 case COST_MODEL: 2461 match_strlcpy(buf, &args[0], sizeof(buf)); 2462 if (strcmp(buf, "linear")) 2463 goto einval; 2464 continue; 2465 } 2466 2467 tok = match_token(p, i_lcoef_tokens, args); 2468 if (tok == NR_I_LCOEFS) 2469 goto einval; 2470 if (match_u64(&args[0], &v)) 2471 goto einval; 2472 u[tok] = v; 2473 user = true; 2474 } 2475 2476 spin_lock_irq(&ioc->lock); 2477 if (user) { 2478 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 2479 ioc->user_cost_model = true; 2480 } else { 2481 ioc->user_cost_model = false; 2482 } 2483 ioc_refresh_params(ioc, true); 2484 spin_unlock_irq(&ioc->lock); 2485 2486 put_disk_and_module(disk); 2487 return nbytes; 2488 2489 einval: 2490 ret = -EINVAL; 2491 err: 2492 put_disk_and_module(disk); 2493 return ret; 2494 } 2495 2496 static struct cftype ioc_files[] = { 2497 { 2498 .name = "weight", 2499 .flags = CFTYPE_NOT_ON_ROOT, 2500 .seq_show = ioc_weight_show, 2501 .write = ioc_weight_write, 2502 }, 2503 { 2504 .name = "cost.qos", 2505 .flags = CFTYPE_ONLY_ON_ROOT, 2506 .seq_show = ioc_qos_show, 2507 .write = ioc_qos_write, 2508 }, 2509 { 2510 .name = "cost.model", 2511 .flags = CFTYPE_ONLY_ON_ROOT, 2512 .seq_show = ioc_cost_model_show, 2513 .write = ioc_cost_model_write, 2514 }, 2515 {} 2516 }; 2517 2518 static struct blkcg_policy blkcg_policy_iocost = { 2519 .dfl_cftypes = ioc_files, 2520 .cpd_alloc_fn = ioc_cpd_alloc, 2521 .cpd_free_fn = ioc_cpd_free, 2522 .pd_alloc_fn = ioc_pd_alloc, 2523 .pd_init_fn = ioc_pd_init, 2524 .pd_free_fn = ioc_pd_free, 2525 }; 2526 2527 static int __init ioc_init(void) 2528 { 2529 return blkcg_policy_register(&blkcg_policy_iocost); 2530 } 2531 2532 static void __exit ioc_exit(void) 2533 { 2534 return blkcg_policy_unregister(&blkcg_policy_iocost); 2535 } 2536 2537 module_init(ioc_init); 2538 module_exit(ioc_exit); 2539